
AWS Whitepaper

Developing and Deploying .NET
Applications on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Developing and Deploying .NET Applications on AWS: AWS
Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Table of Contents

.NET Applications on AWS .. 1
Abstract ... 1

Introduction ... 2
Working with .NET .. 2

.NET Core / .NET 5 .. 3
Running .NET Applications in the AWS Cloud ... 4

Choosing a Host Operating System ... 5
Building Monoliths or Microservices ... 6
Migrating and Rehosting .NET Applications .. 7

AWS Elastic Beanstalk .. 8
Amazon Elastic Compute Cloud (EC2) Instances .. 9
AWS Systems Manager .. 10

Modernizing and Re-platforming .NET Applications ... 11
Running Applications in Containers .. 12
Creating Serverless Applications with AWS Lambda ... 15

Storage Solutions for .NET Applications on AWS .. 16
Artificial Intelligence and Machine Learning with .NET ... 17

Developing .NET Applications ... 19
AWS .NET SDKs ... 19
AWS Toolkit for Visual Studio ... 19
AWS Toolkit for Visual Studio Code ... 20
AWS Toolkit for Rider ... 20
AWS Tools for PowerShell .. 21
Test Tools ... 21

Continuous Integration and Continuous Delivery ... 22
Infrastructure as Code ... 22

AWS CloudFormation ... 22
AWS Cloud Development Kit (AWS CDK) ... 23

Using AWS Developer Tools ... 23
Version Control .. 24
Build and Package Applications ... 24
Application Deployment .. 25
Building a CI/CD Pipeline .. 26

Seamless Integration with Azure DevOps ... 26

iii

Developing and Deploying .NET Applications on AWS AWS Whitepaper

AWS Tools for Azure DevOps ... 26
Custom Scripts ... 28

Security and Operations ... 29
Application Security ... 29

Programmatic Authentication and Authorization .. 29
Active Directory ... 30
User Identity Management ... 31
Storing and Retrieving Secrets .. 31

Monitoring ... 32
Amazon CloudWatch .. 33
Amazon CloudWatch Application Insights for .NET and SQL Server .. 34
Auditability and Change Tracking ... 35
AWS X-Ray .. 35
Additional AWS Service Logs ... 37

Conclusion .. 39
Contributors ... 40
Document Revisions .. 41
Notices .. 42

iv

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Developing and Deploying .NET Applications on AWS

Developing and Deploying .NET Applications on AWS

Publication date: February 25, 2021 (Document Revisions)

Abstract

Developing and deploying .NET applications on Amazon Web Services (AWS) is a key activity to
help organizations achieve the scale and agility offered by cloud computing. It is the standard
application development framework for Microsoft Windows, and its growing ecosystem of
applications runs on Linux and other platforms,

This whitepaper introduces the AWS tools and services that are directly suited for .NET
development and deployment. It serves as a starting point for .NET architects and developers who
wish to develop, build, deploy, and maintain their applications on AWS. It describes the approaches
that can be used to deploy .NET applications on AWS, and details the options, choices, and services
that can help readers get the most business value from their cloud-based .NET workloads.

Abstract 1

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Introduction

Whether you’re migrating legacy .NET Framework applications or creating modern microservices
using .NET Core/.NET 5, AWS offers a wide range of end-to-end services, tools, and solutions
for application development, deployment, and maintenance. AWS is a preferred platform to run
traditional and modern .NET applications.

Rapid and continuous development and deployment of applications are critical aspects of
providing modern organizations with new and innovative services, while helping them to maintain
and operate their existing capabilities. .NET has been the standard for Windows since it was first
released by Microsoft. With the release of .NET Core and .NET 5, it is used for a variety of cross-
platform workloads.

.NET applications depend on environments to execute in, and require a plethora of additional
services, including, but not limited to:

• Relational databases

• Queuing middleware

• Authentication and authorization services

• File storage

• Networking

• Caching

.NET also includes a variety of operational monitoring and logging services.

AWS provides a reliable, scalable, and global infrastructure platform with a broad set of global
cloud-based services. With over 200 services that can be provisioned quickly without upfront
capital expenses, AWS provides the ideal environment to deploy existing .NET applications and
create new, modern, and innovative .NET applications.

This whitepaper focuses on the key AWS Services for developing and deploying .NET applications.
For information on the full range of services, refer to the homepage on the AWS website.

Working with .NET

With the release of .NET 5, .NET is working to provide a uniform runtime to customers, allowing
access to a single set of APIs, tools, and languages to target multiple platforms such as mobile,

Working with .NET 2

https://dotnet.microsoft.com/
https://en.wikipedia.org/wiki/.NET_Core
https://docs.microsoft.com/en-us/dotnet/core/dotnet-five
https://aws.amazon.com/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Internet of Things (IoT), and the cloud. The .NET Framework no longer receives any new features or
updates, although it continues to be included in the Windows operating system. Although previous
runtimes will continue to be supported for a while, both .NET Framework and .NET Core developers
can now move on to use .NET 5 for new applications.

.NET 5 unified runtime

.NET Core / .NET 5

.NET 5 is a modern, open-source, cross-platform implementation of .NET, and runs on Windows,
Linux, macOS, and other devices. .NET 5 is the evolution of .NET Core. Although .NET Core provided
many of the same interfaces and method signatures as the .NET Framework, there were a variety of
differences, making it potentially difficult to migrate applications from the .NET Framework to .NET
Core. However, .NET 5 removes most of those differences and has made it possible to unify those
legacy platforms.

As the next generation after .NET Core, .NET 5 is now the recommended platform for modern
scalable and high-performance applications, and, unlike .NET Framework, its design makes it
ideal for targeting microservices architectures. You can run .NET 5 applications on AWS as direct
deployments on Windows or Linux EC2 instances, on Windows or Linux containers running on
EC2 instances, serverless Linux containers running on AWS Fargate, or serverless AWS Lambda
functions. These services are discussed in more detail in later sections of this whitepaper.

Going forward in this whitepaper, whenever .NET 5 is mentioned, the same statements also apply
to .NET Core. We explicitly call out any differences for .NET 5 and .NET Core use.

.NET Core / .NET 5 3

https://aws.amazon.com/fargate/
https://aws.amazon.com/lambda/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Running .NET Applications in the AWS Cloud

The AWS Cloud provides a number of benefits, including elasticity, scalability, and flexibility, but
many legacy applications were designed with the server hardware and infrastructure as critical
aspects of the application’s design.

Architects and software engineers had little choice but to shape .NET applications into existing
deployment environments, which generally involved a fixed set of resources that often needed to
be shared across a number of applications or services.

For the many legacy .NET applications, the most suitable compute choice for running applications
in AWS is using virtual machines, using either AWS Elastic Beanstalk or Amazon Elastic Compute
Cloud (Amazon EC2). In some cases, it’s also possible to run .NET applications in Windows
containers, and you can also run .NET applications on Amazon EC2 bare metal instances, either by
running directly on the Windows OS of the host instance, or by running Hyper-V on the instance.

In contrast, with the advent of .NET Core, modern .NET Core applications can be designed to take
advantage of all the cloud benefits. Modern applications can use the traditional set of compute
choices, and also target various types of serverless environment, including AWS Fargate or AWS
Lambda.

.NET 5 now also allows performant hosting of workloads on ARM64 EC2 instances such as the
Graviton2 EC2 families. This enables access to the latest generation of processors available on
Amazon EC2, meaning your applications can be hosted on compute specialized to your workload
type, such as video encoding, web servers, and high-performance computing (HPC).

4

https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://aws.amazon.com/blogs/compute/running-hyper-v-on-amazon-ec2-bare-metal-instances/
https://en.wikipedia.org/wiki/AArch64
https://aws.amazon.com/ec2/graviton/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

AWS deployment targets for compute workloads

For new applications, consider serverless options for innovative and highly-elastic workloads,
and then consider the various container options or virtual machines when there are specific
dependencies on the environment or when more precise control over the infrastructure is needed.

For legacy .NET applications, virtual machines are often considered the natural choice, although
the integration of Docker with Windows means the use of containers is increasingly common.
Containers have a number of benefits, including immutable deployment and improved resource
utilization.

Subsequent sections cover each of these compute choices in more detail. However, prior to
choosing a compute environment, you must choose an operating system for hosting an application,
and choose a suitable architectural style.

Choosing a Host Operating System

Although Windows remains the natural choice for legacy applications using the .NET Framework,
the cross-platform nature of .NET 5 means Linux is now an equally viable choice for new and
future .NET applications. One of the challenges in choosing an OS is that they have broadly
reached a state of commoditization. The current focus on OS evolution is largely about increased
efficiency of resource use, as shown by the growing popularity of containers, and the future lure of
library operating systems.

Choosing a Host Operating System 5

https://docs.docker.com/docker-for-windows/install/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Another factor driving the choice of OS is the current architectural wisdom to explicitly declare and
isolate dependencies, as promoted by the 12-factor app approach, which also aligns to the single
process model of containers. Given the rich set of services built into Windows, it is common for
legacy .NET Framework applications to implicitly depend on a variety of services, such as Active
Directory for authentication and authorization, COM+ for distributed transaction processing, or
Distributed File System (DFS) for file sharing. However, with the move toward explicitly declaring
and isolating such dependencies, relying on Windows’ intrinsic features no longer holds the lure
for .NET applications that it once did.

.NET 5 also makes it possible to avoid licensing cost and implications of the Windows operating
system. .NET applications liberated from underlying operating system (OS) license restrictions can
easily scale in and out to address contemporary IT demands.

Building Monoliths or Microservices

One of the most common ways to build enterprise applications is as a single, unified application,
in which all components are tightly coupled, and working from a shared database. When the .NET
Framework was released, such monolithic applications were widespread. Even today it’s not
uncommon to see ASP.NET applications with over 100,000 lines of code that have to be deployed
to a single internet information service (IIS) instance.

As enterprise applications grew bigger, new challenges emerge out of this approach. The first
problem is managing the resources available to an application. As monolithic applications grow
bigger, they invariably require more resources, from compute and memory requirements to storage
and network bandwidth. Although these issues can be solved by scaling the application servers
vertically up or horizontally out, this approach naturally scales the whole application, even if a
single module needs the additional resources.

The second problem is complexity. Monolithic applications with tightly coupled modules grow
increasingly complex over time, which can make maintenance so complicated that even the
smallest changes require significant effort for development, testing, and deployment. The
increasing complexity adds friction to the business need for agility.

Because of the challenges inherent in monolithic applications, many modern applications have
shifted to a new paradigm, commonly known as a microservices architecture. Microservices are
small services providing a bounded context of functionality, each using their own data store, and
predominantly integrating with other services by using event-driven communication.

Building Monoliths or Microservices 6

https://aws.amazon.com/blogs/compute/applying-the-twelve-factor-app-methodology-to-serverless-applications/
https://www.programmersought.com/article/94153031976/
https://www.programmersought.com/article/94153031976/
https://azure.microsoft.com/en-us/services/active-directory
https://azure.microsoft.com/en-us/services/active-directory
https://docs.microsoft.com/windows/win32/cossdk/com--application-overview
https://docs.microsoft.com/windows/win32/dfs/distributed-file-system-dfs-functions

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Although microservices introduce their own complexities, such as how to separate data or how
to distribute services, breaking monolithic applications into loosely coupled microservices can
help overcome many of the problems with monolithic applications. Aside from the architectural
benefits of microservices, the loose coupling in microservices means each service can be deployed
and scaled independently. By ensuring each microservice has its own development lifecycle,
DevOps teams are no longer tied to other team’s release cycles, and can therefore increase their
deployment frequency, improving their agility, and increasing the business’s ability to respond to
change.

Although .NET 5 can be used for a variety of application architectures, its lighter footprint and
cross-platform nature makes it ideal for microservices. .NET 5 is also highly suitable for deploying
to modern execution environments, including containers and serverless functions.

The following sections of this paper include several ways you can deploy both monolithic and
distributed applications in the AWS Cloud. Monolithic deployment patterns are mostly applicable
for legacy enterprise applications, or for developing new applications with limited complexity or
scaling requirements, whereas microservices are commonly chosen for building optimized modern
applications.

For more information on how to design and develop microservices, see the Implementing
Microservices on AWS whitepaper.

Migrating and Rehosting .NET Applications

When migrating any type of application to AWS, including legacy .NET Framework applications,
there are a number of different approaches. These approaches are known as the six Rs of
migration.

Migrating and Rehosting .NET Applications 7

https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/whitepapers/latest/aws-migration-whitepaper/the-6-rs-6-application-migration-strategies.html
https://docs.aws.amazon.com/whitepapers/latest/aws-migration-whitepaper/the-6-rs-6-application-migration-strategies.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Six Rs of migration

Although there are reasons to modernize applications by re-platforming or refactoring, including
optimizing or adding new features, the simplest way to migrate .NET applications to AWS is to
rehost the applications using either AWS Elastic Beanstalk or Amazon EC2.

AWS Elastic Beanstalk

In many cases, you may not require full control over the underlying infrastructure used for hosting
an application and may prefer a managed environment, which enables you to focus on the
application and simply deploy application updates when needed.

AWS Elastic Beanstalk is the fastest and simplest way to deploy .NET applications on AWS. As
a .NET developer, With AWS Elastic Beanstalk, you can continue using your favorite programming
languages with .NET Framework or .NET 5. When you’ve completed developing your application on
your computer, your application will be ready within minutes to use without any infrastructure or
resource configuration work.

The key advantage of this model is that it’s not too different from the way most existing and legacy
applications work. It can be an excellent option to maximize the benefits of deploying legacy
applications in the cloud, without a significant migration overhead.

For example, you can take an existing ASP.NET web application that uses IIS and move it into AWS
Elastic Beanstalk. You can use Windows Web Application Migration Assistant to quickly select
the application, and allow the tool to handle the rest of migration process, including packaging,
creating the Elastic Beanstalk environment, and uploading the application package into it.

AWS Elastic Beanstalk provisions, operates, maintains, scales, monitors, heals, updates, and
patches Windows and IIS for you, enabling you to focus on your application code rather than
its operating environment. AWS Elastic Beanstalk also gives you complete control over your
application resources, so you can seamlessly make changes to the way your applications run inside
the AWS Elastic Beanstalk environment. For .NET 5 applications, Elastic Beanstalk gives you the
choice of running your code on either Windows or Linux.

To get started with AWS Elastic Beanstalk, you create environments for your application, such as
Dev, Test, or Production. Every time you make an application change, you compile and package
your new build and upload it as a new application version in your Elastic Beanstalk application. This
enables you to deploy any application versions across your application environments with a few
clicks.

AWS Elastic Beanstalk 8

https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/blogs/devops/migrating-asp-net-applications-to-elastic-beanstalk-with-windows-web-application-migration-assistant/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

You can also choose to deploy one or more applications in each of your AWS Elastic Beanstalk
environments, using deployment manifests to configure multiple applications to run in each IIS
web server. It also enables you to control application pools associated with your web applications
in IIS, which makes it possible to host multiple applications with a shared application pool, or
assign dedicated application pools to each application.

You can further customize and configure your web server in Elastic Beanstalk using configuration
files, which let you install additional software packages, files, windows services, or other
dependencies your application needs to run.

Elastic Beanstalk also supports several deployment options, including:

• All at once

• Rolling

• Rolling with additional batch

• Immutable

Through integration with Amazon Route 53, Elastic Beanstalk supports environment URL
swapping, which makes it easy to implement a blue-green deployment model.

There are no additional costs associated with using Elastic Beanstalk, and you pay only for the
underlying resources used to run your application, such as the EC2 instances, load balancers, and
any Amazon Relational Database Service (Amazon RDS) database instances.

Elastic Beanstalk can help you quickly move your .NET applications to AWS with minimal changes.
If you need more control of the underlying infrastructure, using Amazon EC2 virtual machines
enables you to fine tune your infrastructure configuration.

Amazon Elastic Compute Cloud (EC2) Instances

Amazon EC2 provides a flexible compute service with a wide variety of virtual machines and bare
metal instance types.

AWS is responsible for operating all levels up to hypervisor and host OS, giving you full access
and control over the guest operating system. AWS also provides tools, features, and services that
enable you to create a fully automated and self-managing infrastructure, such as AWS Auto Scaling
and AWS Systems Manager. You are responsible for patching, updating, securing, and maintaining
the Windows or Linux OS, application server, web server, and any application code, either using

Amazon Elastic Compute Cloud (EC2) Instances 9

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/dotnet-manifest.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-windows-ec2.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers-windows-ec2.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deploy-existing-version.html
https://aws.amazon.com/route53/
https://aws.amazon.com/rds/
https://en.wikipedia.org/wiki/Bare-metal_server
https://en.wikipedia.org/wiki/Bare-metal_server
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/systems-manager/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

AWS-provided tools or features, or any other custom methods. Because you have full control of
your environment, you also have complete flexibility to configure your environment as needed. For
example, you may want to use Nginx or Apache HTTP Server instead of IIS as your web server.

Amazon EC2 instances provide the highest level of flexibility and control in the cloud. This
flexibility often proves essential for legacy applications, but can also be useful for many modern
applications. You have the choice of x86 (32-bit), x64 (64-bit), and Arm-based platforms in Amazon
EC2. You also have access to most popular Linux versions and all Windows Server versions, from
Windows Server 2008 to Windows Server 2019. For modern Windows applications, you can also
use Semi-Annual Channel Windows releases, including 1709, 1803, 1809 and 1903.

For any of these, you can choose from Amazon Machine Images (AMIs) provided by AWS, numerous
community and AWS Partner AMIs available in the AWS Marketplace, or you can create or import
your own images.

You can also benefit from various features such as automatic scaling, self-healing, and deep
integration with other services, such as AWS Identity and Access Management (AWS IAM), AWS Key
Management Service (AWS KMS), or Amazon Elastic Block Storage (Amazon EBS).

There are a variety of ways you can deploy your .NET applications on Amazon EC2 instances, from
manual deployments to using Infrastructure as Code with AWS CloudFormation templates and
Continuous Integration / Continuous Deployment pipelines.

AWS Systems Manager

AWS Systems Manager is a service for hybrid and cross-platform infrastructure management.
Although it is designed to help system administrators maintain their infrastructure resources, some
of its capabilities are also useful for developers and DevOps engineers.

One of the most basic application requirements is the need for configuration variables; for
example, an external service’s URL, or a database connection string. A common practice is to store
these variables in an app.config or web.config configuration file, or to store them in environment
variables. However, this requires updating the configuration on all the application servers,
which requires a significant effort when working with a multi-server environment. The AWS
Systems Manager Parameter Store provides the alternative of a centralized location for storing
configuration variables, allowing configuration values to be updated in a single place and retrieved
by all application instances.

Another common use case handled by Systems Manager is the ability to run a particular command
or script on multiple servers. For example, you may have a simple PowerShell cmdlet to delete files

AWS Systems Manager 10

https://www.nginx.com/
https://httpd.apache.org/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/marketplace
https://aws.amazon.com/iam/
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://aws.amazon.com/ebs/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/systems-manager/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

from a local application cache. One way to run the command is to open a Remote Desktop Protocol
(RDP) session to the target servers and manually run the command. However, if the command
must run on dozens, hundreds, or even thousands of servers, this approach becomes impractical.
Fortunately, you can use the AWS Systems Manager Run Command to securely run the command
at any scale.

You can also use AWS Systems Manager State Manager for handling drift-management and
ensuring compliance of your target server configurations. State Manager supports PowerShell
Desired State Configuration (DSC) and enables you to use DSC Managed Object Format (MOF) files
to define your desired state using declarative language. For example, you can specify the installed
state of Windows Communication Foundation (WCF) as the desired state on a server, and DSC will
ensure WCF is installed. AWS Systems Manager augments PowerShell DSC through integration with
Parameter Store, Amazon Simple Storage Service (Amazon S3) and Amazon CloudWatch.

For more details, see this entry on the AWS Management Tools Blog.

Finally, you can use AWS Systems Manager Automation to simplify complex operations and define
dynamic workflows that orchestrate invocation of AWS Systems Manager or any other AWS APIs in
fully automated runbooks.

For example, you can define these steps in a document to update EC2 instances:

• Provision a new EC2 instance using an updated AMI

• Bootstrap the new instance and deploy the application in offline mode

• Shut down the old instance

• Switch the new instance into online mode

By specifying these steps in a Systems Manager Automation document, the steps can be saved as a
reusable runbook, ensuring updates can be carried out consistently and shared between members
of the development and operations teams.

Modernizing and Re-platforming .NET Applications

With the push to unlock business agility by using modern development and operations practices
known as DevOps, modern applications are increasingly designed for flexibility using the principles
of evolutionary design and a variety of best practices.

Modernizing and Re-platforming .NET Applications 11

https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-state.html
https://docs.microsoft.com/powershell/scripting/dsc/overview/
https://docs.microsoft.com/powershell/scripting/dsc/overview/
https://docs.microsoft.com/windows/win32/wmisdk/managed-object-format--mof-
https://docs.microsoft.com/dotnet/framework/wcf/whats-wcf
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://aws.amazon.com/s3/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/blogs/mt/run-compliance-enforcement-and-view-compliant-and-non-compliant-instances-using-aws-systems-manager-and-powershell-dsc/
https://aws.amazon.com/blogs/aws/category/management-tools/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

From the use of immutable infrastructure to increase deployment consistency, to the use of
automation, Continuous Integration (CI), and Continuous Deployment (CD) to speed up delivery,
there are a growing number of practices that help deliver business value.

Although many of these approaches can be partially applied to traditional architectures, modern
application architectures are evolving to best take advantage of these new development practices.
With the AWS Cloud increasing the speed of evolution, now is the perfect time to design or re-
platform .NET applications to align with modern practices.

Porting Assistant for .NET

Porting Assistant for .NET is an analysis tool provided by AWS that scans .NET Framework
applications and generates a .NET 5 compatibility assessment. .NET 5 is the future of .NET. New
features and contributions will be available exclusively in .NET 5. .NET 5 applications are cross
platform, and porting existing .NET Framework applications to .NET 5 gives you extra versatility
and ability to run those applications on Linux to save cost and improve performance. In most cases,
porting an application with the same code from .NET Framework to .NET 5 immediately yields
significant performance gains.

However, porting applications to .NET 5 can be a significant manual effort. Application owners
must spend valuable time identifying the dependencies and APIs that are incompatible with .NET
5, and estimating the level of effort involved. Porting Assistant for .NET quickly scans .NET
Framework applications to identify incompatibilities with .NET 5, finds known replacements,
and generates a detailed compatibility assessment. This reduces the manual effort involved in
modernizing your applications to Linux. AWS Porting Assistant for .NET supports .NET Core 3.1
and .NET 5 as target.

Running Applications in Containers

Containers allow applications to be bundled with their own libraries and configuration files, and
then executed in isolation on a single OS kernel, bringing a number of benefits, including:

• Isolation and high-density — Containerization ensures application isolation in terms of
security and data access, and as resource allocation. It’s a reliable solution to run multiple tasks
or applications on the same host. This approach enables you to maximize overall resource
utilization and minimize idle capacity, also known as a “high-density” deployment.

• Runtime packaging and seamless deployment — Containers include application code or
binaries along with all the dependencies needed to keep the application running. This approach

Running Applications in Containers 12

https://aws.amazon.com/porting-assistant-dotnet/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

ensures the application behaves consistently in all environments, from a developer laptop to a
production environment. It also simplifies migrating applications from one host to another.

• High availability (HA) — Container orchestrators provide an abstraction layer on top of
conventional hosting environments and keep track of running containers. You don’t have to run
applications, just tell the orchestrator which applications are expected to run. The orchestration
engine keeps track of the existing state, evaluates it against the expected state, and corrects as
needed. If an application goes down, the orchestrator immediately spins up another container to
run your application in the next available host.

• Resource management for distributed systems — Containerization is an effective approach to
run microservices and other types of distributed systems. The deployment abstraction provided
by containers enables you to focus on your applications rather than their dependencies with
underlying hosts and infrastructure.

The following sections discuss the four container services available in AWS.

Amazon Elastic Container Service

Amazon Elastic Container Service (Amazon ECS) is a highly scalable and high-performance
container orchestration service. It was natively developed in AWS, and offers deep integration with
AWS services such as Elastic Load Balancing, Amazon Virtual Private Cloud (Amazon VPC), IAM,
AWS Batch, and Amazon CloudWatch.

Amazon ECS is suitable for a broad range of containerized applications, from long-running
applications and microservices to batch jobs and High-Performance Computing workloads, and
supports both Linux and Windows containers. Linux containers are available in Amazon Linux and
other Linux distributions, and Windows containers are available in Windows 2016 and later.

To use Amazon ECS, you can either use one of the prebuilt Amazon ECS optimized AMIs to spin up
a cluster of host instances, or build your own AMIs by adding the Amazon ECS container agent to
an existing or custom-built EC2 host.

For more information on running Windows containers on ECS, see this entry on the AWS Compute
Blog.

Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service (Amazon EKS) is one of the most popular open-source
orchestration engines for containerized workloads. Amazon EKS enables you to run containerized
applications using the same toolset on-premises and in the cloud.

Running Applications in Containers 13

https://aws.amazon.com/ecs/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/vpc/
https://aws.amazon.com/iam/
https://aws.amazon.com/batch/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/blogs/compute/migrating-net-classic-applications-to-amazon-ecs-using-windows-containers/
https://aws.amazon.com/blogs/compute/
https://aws.amazon.com/blogs/compute/
https://aws.amazon.com/eks/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Amazon EKS enables you to deploy, manage, and scale containerized applications using Kubernetes
on AWS by managing clusters of Amazon EC2 instances, and running containers on those instances.
Amazon EKS provides a management plane for a highly available Multi-AZ Kubernetes cluster,
which you can join to your additional worker nodes as EC2 instances.

Because Linux containers are available in all versions of Kubernetes, you can run .NET Core
applications on any version of it. In contrast, Windows containers are only available starting with
Kubernetes 1.14, and they are supported only in Windows 2019 and later.

Amazon Elastic Container Registry

Amazon Elastic Container Registry (Amazon ECR) is a fully-managed, highly-available and secure
Docker container registry that helps developers store, manage, and deploy Docker container
images.

Amazon ECR is integrated with other AWS services, such as AWS IAM, and provides a repository to
store container images which you can use from Amazon ECS, AWS Fargate, and Amazon EKS.

AWS Fargate

AWS Fargate is a serverless compute engine for Amazon ECS and EKS that abstracts away details of
the underlying host infrastructure such as the instance types, instance sizes, and host OS version.

By letting you focus on designing and building your applications and removing the need to manage
the underlying infrastructure, AWS Fargate can help reduce the operational overheads of using
containers.

AWS Fargate supports Linux containers and is a powerful option for running .NET 5 applications.
For details, see this entry on the AWS Compute Blog.

AWS App2Container (A2C)

AWS App2Container is a tool provided by AWS to help you modernize .NET and Java applications
into containerized applications. Containerizing existing applications requires you to identify
application dependencies, network port configurations, and software delivery process. These tasks
can be manual, time consuming, and error prone.

Using App2Container, you simply select the applications you want to containerize, and A2C
analyzes your applications and automatically generates a container image that is configured
with the correct dependencies, network configurations, and deployment instructions for ECS or

Running Applications in Containers 14

https://aws.amazon.com/ecr/
https://www.docker.com/
https://aws.amazon.com/fargate/
https://aws.amazon.com/blogs/compute/hosting-asp-net-core-applications-in-amazon-ecs-using-aws-fargate/
https://aws.amazon.com/blogs/compute/
https://aws.amazon.com/app2container/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Kubernetes. A2C provisions, through CloudFormation, the cloud infrastructure and CI/CD pipelines
required to deploy the containerized .NET or Java application into production.

Creating Serverless Applications with AWS Lambda

Containers provide a high level of flexibility; however, you still need to manage your container
images, including the guest OS and any application dependencies.

For example, suppose you need to deploy an ASP.NET Core application. In addition to the
application, the container image must also include a choice of guest OS, the .NET Core runtime
library, the ASP.NET Kestrel engine, and a web server such as Nginx or Apache. Although this gives
you more control over your runtime environment, it also means additional undifferentiated efforts,
and in most cases this level of control is not required.

AWS Lambda solves this problem by providing a serverless Function-as-a-Service (FaaS) model,
which automatically manages the underlying compute resources for you. C# code can be uploaded
into a Lambda function, and everything else is handled by Lambda.

Lambda provides the highest level of abstraction, simplicity, efficiency and scalability for
running .NET code in the cloud. It is simple because it allows developers to run their code without
having to worry about the infrastructure that runs it; efficient because there is no charge when
the code is not running; and scalable because it seamlessly handles load fluctuations. Lambda
supports many popular programming languages, including C# and PowerShell. Lambda already
includes .NET Core 2.1 and 3.1 as managed runtime environments. You can also run .NET 5
applications on Lambda using an event-driven custom container image as your function, or using
custom runtimes.

Lambda functions are often deployed behind API instances in Amazon API Gateway, which
provide managed endpoints that act as front doors for consuming applications to access data or
backend functionality. API Gateway handles all the tasks involved in accepting and processing up
to hundreds of thousands of concurrent API calls, including traffic management, authorization
and access control, monitoring, and API version management. API Gateway can also be used with
workloads running on EC2 instances or ECS tasks.

When you don’t need the governance features API Gateway offers, you can deploy Lambda
functions behind an Application Load Balancer (ALB), which allows load to scale elastically without
having to maintain a set of managed APIs.

For more information on how to create applications using AWS Lambda, see the Serverless
Architectures with AWS Lambda whitepaper.

Creating Serverless Applications with AWS Lambda 15

https://en.wikipedia.org/wiki/CI/CD
https://kestrelcomputer.github.io/kestrel/
https://www.nginx.com/
https://aws.amazon.com/lambda/
https://aws.amazon.com/blogs/developer/net-5-aws-lambda-support-with-container-images/
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-lambda/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-architectures-lambda/welcome.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Load Balancing .NET Applications on AWS

Load balancing is a common problem for building and deploying scalable applications. AWS
provides a variety of solutions for load balancing. Each solution is optimized to address a specific
set of requirements.

• Application Load Balancer (ALB) is best suited for load balancing of HTTP and HTTPS
traffic, and provides advanced request routing targeted at the delivery of modern application
architectures, including microservices and containers. Application Load Balancer routes traffic
to targets within the Amazon Virtual Private Cloud (Amazon VPC) based on the content of
the request. AWS ALB also supports end-to-end HTTP/2 and gRPC, with health-check on
target endpoints. This is a popular solution for microservice integration and client-server
communications. For more information, see this blog post.

• Network Load Balancer (NLB) is best suited for load balancing of Transmission Control Protocol
(TCP), User Datagram Protocol (UDP), and Transport Layer Security (TLS) traffic where extreme
performance is required. Network Load Balancer routes traffic to targets within the Amazon VPC,
and is capable of handling millions of requests per second while maintaining ultra-low latencies.

• Gateway Load Balancer makes it easy to deploy, scale, and run third-party virtual networking
appliances. Providing load balancing and auto scaling for fleets of third-party appliances,
Gateway Load Balancer is transparent to the source and destination of traffic. This capability
makes it well suited for working with third-party appliances for security, network analytics, and
other use cases.

Storage Solutions for .NET Applications on AWS

Most applications need various storage requirements, such as relational or NoSQL databases, flat
files, object storage, block storage, or various types of in-memory cache tiers. .NET applications are
no exception and depending on their functionalities, may require one or more of these solutions.

AWS includes a number of purpose-built relational database services, such as Amazon Relational
Database Service (Amazon RDS), Amazon Aurora, and Amazon Redshift, the fastest growing cloud
data warehouse service. Amazon RDS supports popular open-source engines (MySQL, PostgreSQL,
and MariaDB), as well as commercial engines (Microsoft SQL Server and Oracle). You can run these
or any other engine on Amazon EC2 instances.

Storage Solutions for .NET Applications on AWS 16

https://aws.amazon.com/vpc/
https://grpc.io/
https://aws.amazon.com/blogs/aws/new-application-load-balancer-support-for-end-to-end-http-2-and-grpc/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/redshift/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

There are a number of specialized databases, including Amazon DynamoDB for key-value and
document storage, Amazon Neptune for graph data, Amazon Quantum Ledger Database, and
Amazon Managed Blockchain.

.NET applications can use Amazon S3 for object storage, and Amazon EFS for Linux-based shared
file systems, or Amazon FSx for Windows file shares.

Finally, Amazon Elastic Block Storage is an easy to use, high performance block storage service
designed for use with Amazon EC2 for both throughput and transaction intensive workloads at any
scale.

You can build extremely high-performance .NET applications using elasticity and flexibility
of managed AWS services for in-memory caching, such as Amazon ElastiCache for Redis and
Memcached, or Amazon OpenSearch Service.

Artificial Intelligence and Machine Learning with .NET

Artificial Intelligence (AI) and Machine Learning (ML) are increasingly used to solve new types of
problems, and are becoming fundamental parts of many modern applications.

AWS provides a rich set of services that aim to put AI and ML in the hands of every developer.
You can either choose from a set of pre-trained AI services, including computer vision, language,
recommendations, and forecasting, or you can build, train and deploy custom models with support
for all the popular open-source frameworks.

Amazon Rekognition allows you to add image and video analysis to your applications, and can
identify objects, text, and activities, and can also be used for facial recognition.

There are a number of services for working with language, allowing you to easily add intelligence
and process natural language in your .NET applications. Amazon Transcribe automatically converts
speech to text, making it simple to enable speech in your applications. Amazon Textract extracts
text from scanned documents, after which you can use Amazon Comprehend to find insights
or relationships in text, helping you to extract key phrases, classify text, or analyze sentiment.
Amazon Translate enables you to translate text between more than 25 languages, and helps you
build .NET applications that can localize content.

Amazon Polly turns text into lifelike speech, and Amazon Lex enables you to build conversational
interfaces and chatbots into any application using voice and text. Amazon Lex can recognize the
intent from a piece of text, enabling you to orchestrate a conversation and build applications with
highly engaging user experiences.

Artificial Intelligence and Machine Learning with .NET 17

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/neptune/
https://aws.amazon.com/qldb/
https://aws.amazon.com/managed-blockchain/
https://aws.amazon.com/s3/
https://aws.amazon.com/efs/
https://aws.amazon.com/fsx/windows/
https://aws.amazon.com/ebs/
https://aws.amazon.com/elasticache/
https://redis.io/
https://memcached.org/
https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/rekognition/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/textract/
https://aws.amazon.com/comprehend/
https://aws.amazon.com/translate/
https://aws.amazon.com/polly/
https://aws.amazon.com/lex/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Amazon Personalize enables you to enhance your applications with real-time personalization and
recommendations, by working with an activity stream from your application, identifying what is
meaningful, and helping you serve personalized content to users.

Finally, Amazon Forecast is an accurate time-series forecasting service, allowing your application
to process historical time-series data and to produce meaningful forecasts based on trends in the
data.

Although the pre-trained AI services enable you to enhance your .NET applications with a rich
set of capabilities, you can also build your own machine learning models. Amazon SageMaker is
a managed service that enables developers and data scientists to quickly build, train, and deploy
machine learning models. Using the AWS .NET SDK, you can set up, configure, and execute Amazon
SageMaker jobs, enabling you to push new ML boundaries.

Access from .NET applications to all the pre-trained services and to Amazon SageMaker is available
through the AWS SDK for .NET.

Artificial Intelligence and Machine Learning with .NET 18

https://aws.amazon.com/personalize/
https://aws.amazon.com/forecast/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sdk-for-net/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Developing .NET Applications

One of the fundamental requirements when developing .NET applications to run or integrate
with AWS Services is having easy-to-use tools to help access the services, integrate with the
development workflow and tooling, and enable higher levels of developer productivity.

Choosing the right tools depends on numerous factors, including development approach, team
composition, and organizational standards. AWS provides a rich set of tools that can be used
together or alone to help .NET developers make the most of the services.

AWS .NET SDKs

One of the great advantages AWS offers over traditional, on-premises resources is that its services
can be accessed through REST APIs, enabling integration from any programming or scripting
environment capable of stringing together HTTPS requests and sending them over the internet.

Although REST APIs are flexible, it’s easier for developers to work in their native language than to
work with REST APIs, and the AWS SDK for .NET helps developers get started quickly by providing
native .NET APIs to the AWS Services. Calling an AWS Service is as easy as calling a method on an
object using the SDK.

The AWS SDK for .NET is distributed as multiple NuGet packages, and contains assemblies for .NET
Standard 2.0, .NET Framework 3.5, and .NET Framework 4.x.

As the standard for .NET package management, NuGet is the preferred option for installing the
SDK, and provides a number of service-specific packages, such as AWSSDK.EC2 or AWSSDK.S3,
each of which depends on the AWSSDK.Core package, which is automatically installed when you
reference a service package in the NuGet Package Manager.

If you’re working with older versions of .NET that don’t support .NET Standard 2.0, then the
versions of the SDK prior to v3.5 also contain Portable Class Library assemblies, and the AWS
Mobile SDK for Unity and AWS Mobile SDK for .NET and Xamarin are available for older versions of
Unity and Xamarin.

AWS Toolkit for Visual Studio

The AWS Toolkit for Visual Studio is a plugin for Visual Studio that makes it easier to develop,
debug, and deploy .NET applications that use AWS.

AWS .NET SDKs 19

https://aws.amazon.com/sdk-for-net/
https://www.nuget.org/
https://docs.aws.amazon.com/mobile/sdkforunity/developerguide/what-is-unity-plugin.html
https://docs.aws.amazon.com/mobile/sdkforunity/developerguide/what-is-unity-plugin.html
https://docs.aws.amazon.com/mobile/sdkforxamarin/developerguide/Welcome.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

The toolkit is available from the Visual Studio Marketplace and supports Visual Studio 2017 and
2019.

You can use NuGet to include the AWS SDK for .NET in your projects, so you can get started
building .NET applications on AWS infrastructure services in Visual Studio, including Amazon S3,
Amazon EC2, AWS Elastic Beanstalk, and Amazon DynamoDB.

The toolkit allows you to create, configure, edit, or query resources in your AWS account, directly
from within Visual Studio and without having to visit AWS Management Console or use any other
secondary tool.

The toolkit contains a rich set of features that help configure and deploy new solutions, and can be
broken down into a number of core features, most of which are available from the AWS Explorer
in Visual Studio’s View menu. For example, you can use Visual Studio to build a CloudFormation
template (Infrastructure as Code) with the convenience of IntelliSense and deploy to AWS with
AWS CloudFormation. The AWS Toolkit for Visual Studio also includes project templates for
Lambda functions, CloudFormation templates and sample projects showing how to use various
AWS Services. It also makes it easy to deploy your applications into AWS runtime platforms, such as
Elastic Beanstalk, Lambda and API Gateway, and ECS containers.

AWS Toolkit for Visual Studio Code

Software development teams working on codebases written in multiple programming languages
and for multiple platforms increasingly choose Visual Studio Code as their Integrated Development
Environment (IDE), due to its flexibility and low resource requirements.

The AWS Toolkit for Visual Studio Code is an open-source plug-in for Visual Studio Code that helps
developers get started faster and provides an integrated experience for developing, deploying, and
testing serverless applications.

AWS Toolkit for Rider

Rider is .NET IDE created by JetBrains. The AWS Toolkit for Rider is an open-source plug-in for
the Rider IDE that makes it easier to create, debug, and deploy .NET applications on AWS. The
plugin is open-source and makes it easier for developers to develop, debug, and deploy serverless
applications that use AWS.

Using the AWS Toolkit for Rider, you can select a quick start serverless application template
to initially scaffold your code. After you develop an application, you can use the tool to your

AWS Toolkit for Visual Studio Code 20

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/console/
https://aws.amazon.com/visualstudiocode/
https://www.jetbrains.com/rider/
https://www.jetbrains.com/
https://aws.amazon.com/rider/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

serverless application in a few clicks. It enables you to set breakpoints and debug serverless
applications locally, and view and search for specific error codes or patterns from CloudWatch log
streams.

AWS Tools for PowerShell

PowerShell is a scripting environment built on .NET, and is widely used as the standard scripting
tool on Windows, but is also available for MacOS, and Linux. Although primarily used for executing
OS-level management scripts, PowerShell is frequently used by .NET developers as part of their
build and deployment pipelines.

AWS Tools for PowerShell enables developers to directly access AWS Services from within
PowerShell scripts, enabling them to manage and interact with AWS Services with their standard
toolset, and removing the need to call the AWS SDK for .NET directly from within scripts.

AWS Tools for .NET CLI

These tool extensions are focused on building .NET Core and ASP.NET Core applications and
deploying them to AWS Services (AWS Elastic Beanstalk, Amazon ECS, and AWS Lambda). Many of
these deployment commands are the same commands the AWS Toolkit for Visual Studio uses to
perform its deployment features. This enables you to do initial deployment in Visual Studio, and
then transition from Visual Studio to the command line and automate the deployment.

For example, with the AWS Lambda .NET CLI tool extension configured, you can deploy a Lambda
function from the command line in the Lambda function's project root directory.

Test Tools

Test automation plays a critical part in DevOps, and is the fundamental development practice that
enables continuous integration and continuous delivery.

Many developers opt to run their integration tests in environments hosted in AWS. However, if you
prefer to execute some tests locally, AWS SAM Local and the AWS .NET Mock Lambda Test Tool can
help when developing Lambda functions. The Localstack project is an open-source tool that runs
AWS APIs locally, and can be called directly from your test suites.

When creating mobile applications using Xamarin, the AWS Device Farm gives access to a wide
variety of physical phones and devices, providing an effective environment for testing Android and
iOS applications.

AWS Tools for PowerShell 21

https://aws.amazon.com/powershell/
https://github.com/aws/aws-extensions-for-dotnet-cli
https://github.com/thoeni/aws-sam-local
https://aws.amazon.com/blogs/developer/debugging-net-core-aws-lambda-functions-using-the-aws-net-mock-lambda-test-tool/
https://github.com/localstack/localstack
https://dotnet.microsoft.com/apps/xamarin
https://aws.amazon.com/device-farm/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Continuous Integration and Continuous Delivery

Software development has always included a number of delivery activities, such as building and
packaging new releases, testing release integration with other systems, and finally deploying new
application releases in a production environment.

In the traditional delivery approach, when projects took months to deliver a functioning
application, these activities were mostly manual. However, as the frequency of software delivery
grows to multiple versions per week or per day, these undifferentiated activities become delivery
bottlenecks.

Continuous Integration and Continuous Delivery are the combination of tools and techniques to
help overcome these bottlenecks by automating the integration and delivery of applications.

Infrastructure as Code

Modern deployment patterns require that applications, and the services and infrastructure and
those applications depend on, can be provisioned and deployed reliably and consistently.

Given the complexity of deploying modern applications and infrastructure, doing so in a repeatable
manner requires the deployment to be automated, and the practice and processes of automating
infrastructure deployment are commonly known as Infrastructure as Code.

AWS CloudFormation

AWS CloudFormation provides a declarative language that allows you to describe and provision all
the infrastructure resources in your AWS Cloud environment.

Using a simple text file called an AWS CloudFormation template, you can model resources
across all Regions and accounts, with the file serving as the single source of truth for your cloud
environment. By keeping CloudFormation templates along with your application code in the same
code repository, you can ensure code changes are bundled together with infrastructure changes,
ensuring integrity and enabling reliable deployment.

Templates can be written using JavaScript Object Notation (JSON) or YAML. There are many
predeveloped templates you can use as starting point, or you can create your templates from
scratch.

Infrastructure as Code 22

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudformation/resources/templates/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://www.json.org/json-en.html
https://yaml.org/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

You can use a variety of methods to deploy templates and provision resources, including the AWS
Management Console, AWS Command Line Interface (AWS CLI), and PowerShell or the AWS SDK
for .NET. You can also use the AWS Toolkit for Visual Studio to create and develop CloudFormation
templates, with assistance of Intellisense, and also directly deploy them into AWS from within the
IDE.

A deployed version of a CloudFormation template is called a CloudFormation stack. You can
instantiate one or multiple stacks based on each CloudFormation template, and delete deployed
stacks and all resources associated with them. AWS CloudFormation is a powerful way to quickly
deploy, duplicate, provision or deprovision resources of your applications.

CloudFormation stacks are always deployed in a single AWS Account and Region, but you can use
CloudFormation StackSets to deploy your templates across multiple AWS Accounts and Regions.

AWS Cloud Development Kit (AWS CDK)

Although CloudFormation provides a flexible mechanism to define cloud infrastructure as code, its
use of declarative syntax is not well suited in all situations.

For infrastructure requiring a high number of interrelated services, or that is best defined using
iteration, the resulting CloudFormation template can easily grow to hundreds or thousands of
lines, which raises its own complications.

The AWS Cloud Development Kit (AWS CDK) (AWS CDK) enables you to define cloud resources
in various programming languages, including TypeScript, JavaScript, Python, C#, and Java.
Developers use one of the supported languages to write code that defines reusable cloud
components known as Constructs, which can then be composed into Stacks and Apps.

After you’ve defined an AWS CDK App, you can use the AWS CDK toolkit to synthesize a
CloudFormation template, and then to deploy the defined resources to AWS.

Although using the AWS CDK adds an additional level of complexity to your Infrastructure as Code,
by using an imperative language it allows you to work with high-level abstractions, rich logic, and
enables the sharing of infrastructure definitions as reusable libraries of components.

Using AWS Developer Tools

There are a number of services collectively known as the AWS Developer Tools, which are
designed to solve common DevOps requirements and provide development agility and continuous
innovation.

AWS Cloud Development Kit (AWS CDK) 23

https://aws.amazon.com/visualstudio/
https://www.intellisenseinc.com/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/what-is-cfnstacksets.html
https://docs.aws.amazon.com/cdk/
https://aws.amazon.com/products/developer-tools/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

You may already be using a CI/CD pipeline. Although you can continue using your favorite tools
and easily integrate them with AWS Services, you can also use AWS developer tools to create a
complete pipeline, or complement or extend the other tools you are using. Using AWS Developer
Tools relieves you from managing infrastructure of your CI/CD pipeline tools, and helps you
increase the efficiency and productivity of your infrastructure and developers.

Version Control

Most .NET developers are familiar with GitHub repositories, and are well versed in using them to
collaborate on software development projects.

Maintaining a Git repository for a single project is simple, but as the number of projects grows,
managing a Git repository can become burdensome. You have to make sure your source control
server is available all the time, its performance does not degrade, and its storage is scaled to cater
for increasing demand.

AWS CodeCommit is a fully managed source control service that enables you to securely host
private Git repositories in a highly scalable way. You can use AWS CodeCommit to store anything
from your source code to other binaries and dependencies that go with your code. AWS Toolkit for
Visual Studio integrates AWS CodeCommit.

For example, you might be developing an ASP.NET web application that also includes external DLL
dependency files and several gigabytes of graphics and other multimedia files. Separating source
code from binary files increases the risk of inconsistencies and bugs that have nothing to do with
the code. Using AWS CodeCommit, you can store all of these in one repository and avoid such
problems.

As an alternative to AWS CodeCommit, both AWS CodeBuild and AWS CodePipeline integrate with
GitHub, and AWS CodeBuild also integrates with Bitbucket.

Build and Package Applications

Building the source code is one of the key steps in any CI/CD pipeline. Once a new version is
committed in your source control system, you need a build service to pull the latest version, build
and package it so the new version can be deployed in a target environment.

One way to do this is using build servers that you dedicate for this purpose. However, as the
number of concurrent projects and number of builds in each project grows, these build servers
have to be scaled out to provide more build capacity. Otherwise, your builds wait in a queue, which
can result in decreased productivity of your developers.

Version Control 24

https://aws.amazon.com/codecommit/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codepipeline/
https://bitbucket.org/product

Developing and Deploying .NET Applications on AWS AWS Whitepaper

AWS CodeBuild is a fully managed build service that compiles source code, runs tests, and produces
software packages that are ready to deploy. It seamlessly scales and concurrently processes
multiple builds, eliminating waiting time and increasing developer productivity. You only pay for
time the build container is running.

AWS CodeBuild includes a pre-packaged build environment for .NET Core and/or .NET 5 on Linux
and Windows. Alternatively, you can use pre-built Docker images such as official Microsoft images
for the .NET, or create your own custom build environment by creating a Docker image.

For details about creating a custom build environment for .NET Framework, see this entry on the
AWS DevOps Blog.

Development teams often rely on both open-source software packages, and those packages
are built within their organization. IT leaders must be able to control access to and validate the
safety of these software packages. Teams need a way to find up-to-date packages that have been
approved for use by their IT leaders. To address these challenges, IT leaders turn to central artifact
repository services to store and share packages. However, existing solutions often require teams to
purchase licenses for software solutions that are complex to set up, scale, and operate. You can use
AWS CodeArtifact to overcome these challenges.

CodeArtifact is a pay-as-you go artifact repository service that scales based on the needs of the
organization. With CodeArtifact, there is no software to update or servers to manage. In just a few
clicks, IT leaders can set up central repositories that enable development teams to find and use the
software packages they need. IT leaders can also approve packages and control distribution across
the organization, ensuring development teams consume software packages that are safe for use.

CodeArtifact is a fully managed artifact repository service that enables organizations of any size to
securely store, publish, and share software packages used in their software development process.
CodeArtifact can be configured to automatically fetch software packages and dependencies from
public artifact repositories so developers have access to the latest versions. CodeArtifact works
with commonly used package managers and build tools such as NuGet, Apache Maven, Gradle,
npm, yarn, twine, and pip, making it easy to integrate into existing development workflows.

Application Deployment

After a new application version is built and packaged, it must be deployed in a target environment
for end users to access it. There are a couple of common deployment strategies, including mutable
in-place deployment, or immutable deployments when the entire infrastructure stack is replaced.

Application Deployment 25

https://aws.amazon.com/codebuild/
https://aws.amazon.com/blogs/devops/extending-aws-codebuild-with-custom-build-environments-for-the-net-framework/
https://aws.amazon.com/blogs/devops/
https://aws.amazon.com/codeartifact/
https://www.nuget.org/
https://maven.apache.org/
https://gradle.org/
https://www.npmjs.com/
https://yarnpkg.com/
https://twinery.org/
https://pypi.org/project/pip-tools/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

There are a variety of ways to deploy .NET applications, and AWS CodeDeploy is a deployment
service that integrates with AWS CodePipeline and helps automate application deployments
to Amazon EC2 instances, Amazon ECS services, on-premises instances, and serverless Lambda
functions. It supports in-place mutable deployment, and immutable deployment using the blue-
green deployment model.

The AWS CodePipeline Service can also be used for deployment and integrates with a number of
deployment providers, including AWS CloudFormation, AWS Elastic Beanstalk, Amazon ECS, Service
Catalog, and AWS CodeDeploy.

Building a CI/CD Pipeline

Each of the previously discussed developer tools can be used individually or in combination with
your existing tools, but you can also integrate them together to form a complete end-to-end CI/CD
pipeline.

AWS CodePipeline is an orchestration service that enables you to model the different stages of
your software release process. It can be integrated with other AWS developer tools for building,
testing and deploying your software versions. It can also easily be extended to adapt to your
specific needs. You can use its pre-built plugins or your own custom plugins in any step of your
release process.

For example, you can pull your source code from GitHub, use your on-premises Jenkins build server,
run load tests using a third-party service, or pass on deployment information to your custom
operations dashboard.

Seamless Integration with Azure DevOps

The main integration point for Azure DevOps with AWS is through Azure DevOps pipelines. You
can configure Azure DevOps pipeline to build, test, package and release software to different AWS
environments. You can use the following methods for this integration.

AWS Tools for Azure DevOps

AWS Tools for Azure DevOps is available on the Azure DevOps Extension Marketplace. To install
these extensions, navigate to the Extensions Marketplace through Azure DevOps. You can also
install them on your on-premises Azure DevOps Server.

After installation, you can choose from a set of pipeline tasks that can be included in your pipeline
to integrate with AWS.

Building a CI/CD Pipeline 26

https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://www.jenkins.io/
https://marketplace.visualstudio.com/items?itemName=AmazonWebServices.aws-vsts-tools
https://marketplace.visualstudio.com/azuredevops?WT.mc_id=azure-blog-antchu

Developing and Deploying .NET Applications on AWS AWS Whitepaper

These building blocks can then be used to construct complex deployment pipelines. The following
figure shows an example pipeline designed to build, test, and publish an ASP.NET Core web
application to an AWS Elastic Beanstalk environment.

Pipeline for building, testing, and deploying an ASP.NET Core application to AWS Elastic Beanstalk

Pipeline step descriptions

1. Executes .NET Core build task, such as Git pull

2. Executes .NET Core build task

3. Executes .NET Core test task

4. Executes .NET Core publish task

5. Copies an AWS Elastic Beanstalk manifest file into the bundle

6. Creates a zip archive from newly published website content.

7. Uploads the zip archive to an S3 bucket.

AWS Tools for Azure DevOps 27

Developing and Deploying .NET Applications on AWS AWS Whitepaper

8. Deploys the application in an AWS Elastic Beanstalk environment.

Custom Scripts

If you need functionalities beyond those provided through extensions published by AWS, or if you
need more fine-grained control over your pipeline, you can use AWS CLI or AWS Tools for Windows
PowerShell to create a custom task or step in Azure DevOps pipeline.

Custom Scripts 28

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Security and Operations

Application Security

Application security posture and requirements vary based on the type of application, scale of
deployment, and choice of environment, but there are common principles and practices that serve
as solid foundations across all types of applications.

The key principle for developing secure .NET applications is ensuring that requests from upstream
users and systems are trusted, and ensuring that requests sent to downstream systems are also
trusted. Applications need to safeguard any credentials or sensitive information they require to
operate, control the exposure of the data they process, and integrate with security providers in a
protected and maintainable way.

Running applications in a secure manner starts with developing secure applications, but also
requires operating them in a secure environment. Security is the highest priority at AWS, and
there are various AWS services that can help meet the requirements of the most security-sensitive
organizations.

The following sections focus on developing secure applications. For more information on security,
including auditing, data governance, network security, and encryption in transit and at rest, see
AWS Cloud Security.

Programmatic Authentication and Authorization

AWS IAM provides a comprehensive set of authentication and authorization features. IAM enables
granular permissions to be granted to AWS services. Permissions can then be assigned to users,
groups of users, and users or services running with a particular role.

Runtime Access Control

Although access keys are well-suited for developers, when deploying .NET applications to an AWS
environment, we recommend that you use role-based access in place of access keys.

You can create a role with permissions based on the principle of least privilege. The role is then
assigned to the compute environment hosting the .NET application, whether it requires EC2
virtual machines, ECS containers, or Lambda serverless functions. This way, you no longer need

Application Security 29

https://aws.amazon.com/security/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

to manually create and rotate programming keys to authenticate your applications. Instead,
IAM generates temporary keys and automatically rotates them on your behalf, allowing your
applications running on AWS to get authenticated and authorized to use AWS resources securely
and seamlessly.

Runtime Access Control with Temporary Credentials

Although role-based access works well for .NET applications running in AWS, for applications
hosted outside of AWS, such as desktop or mobile applications, or for applications that execute
with multiple roles, or across multiple AWS accounts, it’s better to provide an additional level of
access control by using temporary credentials.

The AWS Security Token Service (AWS STS) can be used to generate temporary credentials, and can
either be accessed through a single, global endpoint or from a series of regional endpoints.

Temporary credentials are generated dynamically when requested, and can last from a few minutes
to several hours. After credentials expire, they can no longer be used to make API requests.
However, the user can request new credentials, as long as they still have permissions to do so.

To learn about how to program with AWS STS using .NET, see Making Requests Using IAM User
Temporary Credentials - AWS SDK for .NET.

Active Directory

Active Directory is Microsoft’s directory service and provides a wide set of capabilities to
authenticate and authorize users, services and computers in Windows domains.

Although there are a number of reasons why .NET applications may need to interact with Active
Directory, the most common use case is that .NET applications running on Windows are more likely
run under a process whose permissions have been authorized by Active Directory.

Since Linux doesn’t natively use Active Directory, .NET applications are more likely to need
Active Directory on AWS when they’re being run on Windows hosts. However, Active Directory
integration is also possible for Linux-based applications. In any of these cases, you can either use
AWS Managed Microsoft AD, which runs an actual Active Directory instance on AWS managed
infrastructure, or you can use Active Directory Connector (AD Connector), a directory gateway
which redirects requests to your on-premises Active Directory servers. Many businesses also choose
to self-manage their Active Directory infrastructure to maintain full control over it, while running it
on AWS and leveraging the flexibility, scalability and efficiency of the AWS Cloud.

Active Directory 30

https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionTokenDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionTokenDotNet.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_microsoft_ad.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/directory_ad_connector.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

More information on Microsoft Active Directory on AWS is covered in the Active Directory Domain
Services on AWS whitepaper, and additional details can be found in the Securing the Microsoft
Platform on Amazon Web Services whitepaper.

User Identity Management

Successful web or mobile applications can reach millions of users, and it is critical that such
applications have a robust and scalable approach for user and identity management.

Applications can have specific requirements, such as using their own identity store, or leveraging an
existing identity provider such as Facebook, Google, or Amazon. Some need to use a combination
of their own identity store with existing identity providers. This is often coupled with requirements
for a user interface that handles user registration, login, user verification, and forgotten passwords.

Amazon Cognito enables you to add user sign-up, sign-in, and access control to your web and
mobile apps quickly and easily. Amazon Cognito scales to millions of users and supports sign-in
with social identity providers, including Facebook, Google, and Amazon, and enterprise identity
providers via SAML 2.0.

Amazon Cognito can also be used to control access to REST APIS through integration with the
Amazon API Gateway service, and can reduce the work to authenticate web application users by
integrating with the Application Load Balancer.

Security features include multi-factor authentication, checks for compromised credentials, account
takeover protection, and phone and email verification. Amazon Cognito also supports application
specific identity stores, user profiles, and customized workflows and user migration through
Lambda triggers.

For more information, see Getting Started with Amazon Cognito. To learn how you can
authenticate .NET application using Amazon Cognito, see Authenticating Users with Amazon
Cognito.

Storing and Retrieving Secrets

Your .NET application probably connects to one or more external systems, from database servers,
through to cache servers, message queues, or even other applications.

Connections to external systems are secured using some form of secret information, including
connection strings and a variety of system credentials. Storing and retrieving secret information
in a secure manner is vital to the security of the overall application. Although .NET applications

User Identity Management 31

https://d1.awsstatic.com/whitepapers/adds-on-aws.pdf
https://d1.awsstatic.com/whitepapers/adds-on-aws.pdf
https://d1.awsstatic.com/whitepapers/aws-microsoft-platform-security.pdf
https://d1.awsstatic.com/whitepapers/aws-microsoft-platform-security.pdf
https://aws.amazon.com/cognito
https://aws.amazon.com/blogs/aws/built-in-authentication-in-alb/
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-getting-started.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/cognito-apis-intro.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/cognito-apis-intro.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

frequently use configuration files to store secrets, they come with an inherent risk of being stolen,
as frequently seen when a developer mistakenly checks a configuration file into a public repository
along with the source code.

A better approach is to store secrets in a secure repository, and AWS Secrets Manager can help by
storing and retrieving secret information in an encrypted format. Secrets can be stored as a JSON
string, allowing the application to store secrets in a variety of formats. When a .NET application
needs the secret, it makes an API call to AWS Secrets Manager to fetch the secret using the secret
name.

Access to AWS Secrets Manager APIs is granted through IAM policies. Applications need explicit
permissions to access these secrets. The best practice is to have these IAM policies attached to
an IAM role, which is then assigned to the runtime environment of your application (that is, the
EC2 instance, ECS task, or Lambda function that hosts your application). This approach ensures,
not only that those secrets do not leave the boundaries of AWS Services, but also credentials that
authorize access to those secrets are also confined within your AWS account and never leave it.

For ASP.NET Core applications, there is a NuGet package available called the AWS .NET
Configuration Extension for Systems Manager, which automatically loads and refreshes
secrets from Parameter Store and AWS Secrets Manager into the configuration object for easy
consumption by application code.

Another best practice is to periodically rotate secrets to minimize risk of their potential
compromise. AWS Secrets Manager provides features that help automatically rotate secrets.

You can also use the AWS Secrets Manager local cache library for .NET to improve availability,
reduce latency and lower costs. For more information, see this entry on the AWS Security Blog.

AWS Secrets Manager provides additional benefits, such as centralized secret management,
allowing secrets to be shared by multiple users or applications.

For more information on managing secrets with AWS Secret Manager, see Tutorial: Storing and
Retrieving a Secret.

Monitoring

Successful DevOps requires excellent communication between the development of new application
capabilities and their subsequent operation. One of the key benefits over other approaches is that
it shortens the feedback loop between development and operations.

Monitoring 32

https://aws.amazon.com/secrets-manager/
https://github.com/aws/aws-dotnet-extensions-configuration/
https://github.com/aws/aws-dotnet-extensions-configuration/
https://aws.amazon.com/blogs/security/how-to-use-aws-secrets-manager-client-side-caching-in-dotnet/
https://aws.amazon.com/blogs/security/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/tutorials_basic.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Although structuring teams to include development and operations improves human
communication, running modern and distributed systems is complicated, and it is critical that
the team has a good understanding of the current state and the performance of the system
components, the interactivity between components, as well as the historic view of the system’s
behavior.

Designing a suitable approach to monitor .NET application behavior is relatively simple but requires
a combination of approaches. Approaches include logging events and errors from your application
and AWS resources, recording metrics, showing current status dashboards, sending and automating
responses to alerts, and providing tracing to help isolate problems.

While the traditional .NET monitoring approaches and third-party libraries still work in AWS,
implementing a modern, approach generally requires introducing one or more additional AWS
services or third-party tools. Although it’s not necessary to use all these tools, mature DevOps
teams invariably use a multi-layered approach to monitor the system, track performance, and
provide alerts when notable or exceptional events occur.

Amazon CloudWatch

The cornerstone for monitoring applications running on AWS is Amazon CloudWatch, a group of
services that can store log files, track metrics, send alarms, and execute automated actions when
specific events are triggered.

Sending data to CloudWatch from Windows applications can be handled automatically using
the Amazon CloudWatch agent, which runs as a Windows service to integrate with CloudWatch
from .NET applications hosted on Amazon EC2, Amazon ECS, or Amazon EKS.

Amazon CloudWatch provides a number of key features. CloudWatch dashboards are customizable
home pages in the CloudWatch console that can be used to monitor resources and view the metrics
and alarms for your AWS resources. CloudWatch Metrics stores data about the performance of
your systems, and allows publishing your own application metrics. CloudWatch Alarms can monitor
one or more metrics, and can trigger a variety of actions, including automatic scaling, or sending a
notification to an Amazon Simple Notification Service (Amazon SNS) topic.

Amazon CloudWatch Logs stores and monitors log files, and can be used for centralized access to
log files from a variety of applications, systems, and AWS services. Although logs can be sent from
Windows using the CloudWatch agent, you can configure many .NET logging libraries, including
Apache log4net, NLog, Serilog, and ASP.NET Core logging, to send log entries to CloudWatch, and
call CloudWatch directly using the AWS SDK for .NET. For .NET serverless functions running in AWS

Amazon CloudWatch 33

https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://aws.amazon.com/sns/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://github.com/aws/aws-logging-dotnet
https://logging.apache.org/log4net/
https://nlog-project.org/
https://serilog.net/
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/logging/?view=aspnetcore-5.0

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Lambda, you can send messages to CloudWatch Logs by either writing output to stdout or stderr
using the Console class, or by using the ILambda Context object.

Once logs are stored, you can view the logs from multiple sources as a time-ordered flow of events,
search the logs, and display them in custom dashboards. Although CloudWatch Logs provides a
number of common logging features, sometimes there are use cases that fit more closely with
other logging tools. Common tools used alongside or instead of CloudWatch Logs include Amazon
OpenSearch Service, Splunk, or Loggly.

Amazon CloudWatch Events receives system events from AWS resources, and can be used to
send notifications or run automated scripts when specific conditions are met. Rules are defined
to match particular sets of events and conditions, and, once triggered, events can be routed to
target actions, allowing notifications to be sent, or custom actions to execute. CloudWatch Events
can also be run on a schedule, and provides a flexible tool to trigger various types of system
automation.

Amazon CloudWatch Application Insights for .NET and SQL Server

Whereas CloudWatch gives you a rich set of tools to customize your approach to monitoring,
Amazon CloudWatch Application Insights for .NET and SQL Server enables application owners to
easily monitor their application stack. It automatically sets up and analyses important metrics and
logs from across their application resources in real time, and uses machine learning techniques to
discover anomalies and errors. CloudWatch Application Insights for .NET and SQL Server creates
automated dashboards for detected problems, helping application owners troubleshoot faster and
reduce the mean time to resolution (MTTR) for their application issues and improve Service Level
Agreements (SLAs).

• Automatically recognized application metrics and logs — CloudWatch Application Insights
for .NET and SQL Server scans your application resources and provides a list of recommended
metrics and logs to monitor, and sets them up automatically, reducing your effort spent in
setting up monitoring for your applications.

• Intelligent problem detection — CloudWatch Application Insights for .NET and SQL Server uses
prebuilt rules and machine learning algorithms to dynamically monitor and analyze symptoms of
a problem across your application stack and detect application problems. It helps you reduce the
overhead of dealing with individual metric spikes, or events, or log exceptions, and instead get
notified on real problems, along with contextual information about these problems.

• Faster troubleshooting — CloudWatch Application Insights for .NET and SQL Server assesses the
detected problems to give you insights on them, such as the possible root cause of the detected

Amazon CloudWatch Application Insights for .NET and SQL Server 34

https://aws.amazon.com/elasticsearch-service/
https://aws.amazon.com/elasticsearch-service/
https://www.splunk.com/en_us/download/splunk-enterprise.html
https://www.loggly.com/lp-loggly-general/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-application-insights.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

problem and list of metrics and logs impacted because of the problem. You can provide feedback
on generated insights to make the problem detection engine specific to your use case.

For example, consider you have an ASP .NET application backed by a SQL Server database, and
your database starts malfunctioning due to high memory pressure, leading to HTTP 500 errors
in your application server. Previously, to identify the problem and triage, you would have to go
through your metrics dashboards, sift through server, application error and database logs, and
possibly use third-party tools.

With CloudWatch Application Insights for .NET and SQL Server and its intelligent analytics, you
can find the layer (SQL database, in this case) in your application stack causing the problem just
by looking at the dynamically created dashboard of the related metrics anomalies, and log file
snippets. This significantly reduces alert fatigue and the time and effort required to troubleshoot
and return your application to a healthy state.

Auditability and Change Tracking

Effective DevOps requires that teams have a transparent view of changes made to the services
and infrastructure running their applications. AWS CloudTrail helps provide this transparency by
monitoring and logging AWS API calls, effectively recording actions taken by users, roles, or AWS
Services as CloudTrail events. These events include actions in the AWS Management Console, AWS
CLI, and AWS SDKs and APIs, allowing changes to be audited.

You can view and monitor CloudTrail events in the CloudTrail console, and you can store log files in
Amazon S3 or send them to CloudWatch Logs. You can use CloudTrail events sent to CloudWatch
to trigger alarms based on metrics, and to trigger CloudWatch events, allowing automated
actions to be executed when specific API calls are logged. This combination of using CloudTrail
and CloudWatch can be a highly effective approach for creating auto-healing scripts for your
environment, or can form part of an advanced infrastructure automation strategy.

AWS Config is a service that evaluates the configuration of your AWS resources, monitors
configuration changes and compares them against desired configurations. AWS Config can
send notifications of changes using Amazon SNS, or you can create automated responses using
CloudWatch Events, and automated remediation using AWS Systems Manager Automation.

AWS X-Ray

One of the challenges of modern applications is they are built from a number of distributed
components and services, making it difficult to determine the cause of issues and isolate the

Auditability and Change Tracking 35

https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/config/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-automation.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

underlying responsible service or component. For example, a ASP.NET application may be running
on a number of load-balanced EC2 instances, with each instance depending on a SQL Server
database hosted on Amazon RDS, and additional functionality being provided by a number
of microservices hosted across EC2 instances, containers, and Lambda functions. Although
CloudWatch provides rich capabilities to monitor each individual component, trying to isolate
which distributed components is causing a problem is a challenge in its own right.

AWS X-Ray provides an SDK that allows you to trace incoming requests to your application, and
trace requests from your application to AWS services, HTTP services, and databases. You can enable
AWS X-Ray tracing without having to modify your application.

For each request into your application, data is recorded as a series of segments that are grouped
into a trace. Once a trace is recorded, you can view it from the trace history, allowing you to inspect
your application’s performance and behavior to help focus on potential problems.

AWS X-Ray trace example

AWS X-Ray can also display service graphs, which show graphical views of the services used by
your application, helping to isolate various issues, including faults, latency spikes, and possible
bottlenecks.

AWS X-Ray 36

https://aws.amazon.com/xray/
https://aws.amazon.com/blogs/developer/a-new-more-simplified-setup-for-x-ray-tracing-of-net-applications/

Developing and Deploying .NET Applications on AWS AWS Whitepaper

AWS X-Ray service graph example showing integration across various components

By providing a cohesive view of end-to-end application behavior, AWS X-Ray makes it possible to
accurately and quickly identify sources of problems in distributed systems. At a glance, it helps
locate an API, microservice, or component with problems, allowing you to drill down farther with
more detailed tools, such as Amazon CloudWatch.

Additional AWS Service Logs

Although application and operating system monitoring can give a focused view on how an
application is behaving, sometimes it’s necessary to monitor the wider environment of AWS
services.

Amazon VPC Flow Logs allow you to monitor IP traffic for your AWS resources. Flow Logs creates
logs for network traffic going in and out of your VPC networks. For each flow log, you can choose
to filter the traffic it records and also choose to store the logs in Amazon CloudWatch or S3. Flow

Additional AWS Service Logs 37

https://aws.amazon.com/vpc

Developing and Deploying .NET Applications on AWS AWS Whitepaper

logs are useful for troubleshooting a number of networking issues, such as overly-restrictive
security group rules, and can also be used to audit the traffic passing through the network.

Closely related to Flow Logs, Amazon Route 53 Query Logging can track queries for DNS public
hosted zones and can send logs to CloudWatch Logs.

When running .NET applications on EC2 instances or in containers, Elastic Load Balancing allows
you to spread load across multiple instances, letting your application scale and letting you take
advantage of elasticity. You can use ELB Access Logs to monitor HTTP/HTTPS traffic to Application
Load Balancers and TCP traffic to Network Load Balancers. Logs are captured as compressed files
and stored in an S3 bucket, and can be used to analyze traffic patterns and troubleshoot load-
balancing issues.

For high volume ASP.NET websites with a global presence, it’s a common requirement to reduce
load on the web servers. The Amazon CloudFront Content Delivery Network helps by moving
static content closer to users, tracking detailed information about every request, and storing the
resulting logs in an S3 bucket.

For applications that need to store or share files, S3 provides a simple service to store and serve
objects at scale. You can use S3 Server Access Logging to track access requests to your S3 buckets
for troubleshooting and security audit purposes.

Additional AWS Service Logs 38

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/logging-monitoring.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerLogs.html

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Conclusion

Delivering business value by fully taking advantage of the AWS Cloud requires agile ways of
working, flexible application architectures, and modern development practices.

Although .NET was considered as an exclusive Windows technology, the use of Xamarin for cross-
platform mobile development, and the advent of .NET 5 has helped turn .NET into a truly diverse
cross-platform application framework.

This paper serves as a starting point for developing and deploying .NET applications on AWS; the
real value of running .NET applications on AWS is in integrating them with the growing platform of
innovative AWS Services.

39

https://dotnet.microsoft.com/apps/xamarin

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Contributors

Contributors to this document include:

• Sepehr Samiei, Principal Solutions Architect, Amazon Web Services

• Mark Easton, Senior Solutions Architect, Amazon Web Services

• Taz Hussein, Senior Solutions Architect, Amazon Web Services

• Steve Roberts, Developer Advocate, Amazon Web Services

• Aaron Schwam, Senior Manager, Amazon Web Services

• Kirk Davis, Senior Specialist Solution Architect, Amazon Web Services

• Sai Prashant Vajja, Specialist Solutions Architect, Amazon Web Services

• Ryan Pothecary, Partner Trainer, Amazon Web Services

• Brajendra Singh, Partner Solutions Architect, Amazon Web Services

• Immaya Kumar Jaganathan, Senior Solutions Architect, Amazon Web Services

• Christian Siegers, Senior Solutions Architect, Amazon Web Services

• Sriwantha Attanayake, Solutions Architect, Amazon Web Services

• Purvi Goyal, Senior Product Manager, Amazon Web Services

• Fatai Amoranbini, Cloud Application Architect, Amazon Web Services

• Tayo Olabumuyi, Principal Sales Leader, Amazon Web Services

40

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Document Revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Updated Updated with new services
and features

February 25, 2021

Updated Updated with new services
and features

July 1, 2020

Initial publication Whitepaper first published October 1, 2019

41

Developing and Deploying .NET Applications on AWS AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

42

	Developing and Deploying .NET Applications on AWS
	Table of Contents
	Developing and Deploying .NET Applications on AWS
	Abstract

	Introduction
	Working with .NET
	.NET Core / .NET 5

	Running .NET Applications in the AWS Cloud
	Choosing a Host Operating System
	Building Monoliths or Microservices
	Migrating and Rehosting .NET Applications
	AWS Elastic Beanstalk
	Amazon Elastic Compute Cloud (EC2) Instances
	AWS Systems Manager

	Modernizing and Re-platforming .NET Applications
	Running Applications in Containers
	Amazon Elastic Container Service
	Amazon Elastic Kubernetes Service
	Amazon Elastic Container Registry
	AWS Fargate

	Creating Serverless Applications with AWS Lambda

	Storage Solutions for .NET Applications on AWS
	Artificial Intelligence and Machine Learning with .NET

	Developing .NET Applications
	AWS .NET SDKs
	AWS Toolkit for Visual Studio
	AWS Toolkit for Visual Studio Code
	AWS Toolkit for Rider
	AWS Tools for PowerShell
	Test Tools

	Continuous Integration and Continuous Delivery
	Infrastructure as Code
	AWS CloudFormation
	AWS Cloud Development Kit (AWS CDK)

	Using AWS Developer Tools
	Version Control
	Build and Package Applications
	Application Deployment
	Building a CI/CD Pipeline

	Seamless Integration with Azure DevOps
	AWS Tools for Azure DevOps
	Custom Scripts

	Security and Operations
	Application Security
	Programmatic Authentication and Authorization
	Runtime Access Control
	Runtime Access Control with Temporary Credentials

	Active Directory
	User Identity Management
	Storing and Retrieving Secrets

	Monitoring
	Amazon CloudWatch
	Amazon CloudWatch Application Insights for .NET and SQL Server
	Auditability and Change Tracking
	AWS X-Ray
	Additional AWS Service Logs

	Conclusion
	Contributors
	Document Revisions
	Notices

