
AWS Whitepaper

Optimizing PostgreSQL Running on
Amazon EC2 Using Amazon EBS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS:
AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Table of Contents

Abstract and introduction .. i
Introduction ... 1
Terminology ... 1
PostgreSQL on AWS deployment options ... 2

Amazon EBS block-level storage options .. 4
Amazon EC2 instance store .. 4
Amazon EBS ... 4

Amazon EBS volume features ... 6
Amazon EBS monitoring ... 6
Amazon EBS durability and availability ... 6
Amazon EBS snapshots ... 6
Amazon EBS security ... 7
Elastic volumes .. 8
Amazon EBS–optimized instances .. 8

Amazon EBS volume types ... 10
General purpose SSD volumes .. 10

gp2 ... 10
gp3 ... 10

Provisioned IOPS SSD volumes ... 11
PostgreSQL considerations ... 13

Caching ... 13
Database writes .. 13
PostgreSQL read replica configuration .. 14
PostgreSQL replication considerations .. 16
Migrating PostgreSQL from on-premises to Amazon EC2 ... 17

PostgreSQL backups .. 19
Backup methodologies .. 19
Multi-Volume Crash-Consistent Snapshots ... 24
Throughput .. 24
Latency ... 25

PostgreSQL benchmark observations and considerations .. 28
The test environment .. 28
Results ... 30

Conclusion .. 33

iii

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Contributors ... 34
Further reading .. 35
Document history .. 36
AWS Glossary ... 37

iv

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Optimizing PostgreSQL Running on Amazon EC2 Using
Amazon EBS

Publication date: October 19, 2023 (Document history)

This whitepaper is intended for Amazon Web Services (AWS) customers who are considering
deploying their PostgreSQL database on Amazon Elastic Compute Cloud (Amazon EC2) using
Amazon Elastic Block Store (Amazon EBS) volumes. This whitepaper describes the features of EBS
volumes and how they can affect the security, availability, durability, cost, and performance of
PostgreSQL databases. There are many deployment options and configurations for PostgreSQL on
Amazon EC2. This whitepaper provides performance benchmark metrics and general guidance so
AWS customers can make an informed decision about deploying their PostgreSQL workloads on
Amazon EC2.

Introduction

PostgreSQL is an advanced, enterprise class open-source relational database that supports storing
and querying relational and non-relational data. It is a highly stable database management system,
backed by over 25 years of community development which has contributed to its high levels
of resiliency, integrity, and performance. PostgreSQL is used as the primary data store or data
warehouse for many web, mobile, geospatial, and analytics applications. It supports variety of data
types including geographic data, key-value, one-dimensional arrays, geolocation-based data and
multidimensional points. PostgreSQL also supports full-text search and vector similarity search.
It's Multi version Concurrency Control (MVCC) architecture allows multiple transactions to read and
write to the database concurrently without interfering each other. Apart from the robustness of the
database engine, another benefit of PostgreSQL is that the total cost of ownership is low compared
to commercial database engines. Several organizations are moving their PostgreSQL workloads
into the cloud to extend its cost and performance benefits. AWS offers many compute and storage
options that can help optimize PostgreSQL deployments.

Terminology

The following definitions are for the common terms that will be referenced throughout this paper:

• IOPS — Input/output (I/O) operations per second (IOPS)

Introduction 1

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

• Throughput — Read/write transfer rate to storage (MB/s).

• Latency — Delay between sending an I/O request and receiving an acknowledgment (ms).

• Block size — Size of each I/O (KB).

• Page size — Internal basic structure to organize the data in the database files (KB).

• Amazon Elastic Block Store (Amazon EBS) volume — Persistent block-level storage devices
for use with Amazon Elastic Compute Cloud (Amazon EC2) instances. This whitepaper focuses
on solid state drive (SSD) EBS volume types optimized for transactional workloads involving
frequent read/write operations with small I/O size, where the dominant performance attribute is
IOPS.

• Amazon EBS General Purpose SSD volume — General Purpose SSD volumes provide a
balance of price and performance. AWS recommends these volumes for most workloads.
Currently, AWS offer two types of General Purpose SSD volumes: gp2 and gp3.

• Amazon EBS Provisioned IOPS SSD volume — Highest performance SSD volume designed for
high performance for mission-critical, low-latency, or high-throughput workloads. Currently
AWS offers three types of Provisioned IOPS SSD volumes: io1, io2 and io2 Block Express (bx).

• Amazon EBS Throughput Optimized hard disk drive (HDD) volume — Low-cost HDD volume
designed for frequently accessed, throughput-intensive workloads: st1, sc1.

PostgreSQL on AWS deployment options

AWS provides various options to deploy fully managed PostgreSQL database service. Amazon
Aurora for PostgreSQL database engine is designed to be wire-compatible with PostgreSQL
versions. Amazon Aurora is a fully managed MySQL and PostgreSQL compatible service that has
several times faster performance than the typical high-end implementations in those community
editions. Moreover, it's durable, performant, and available as the commercial-grade databases,
but at one tenth of the cost. Alternatively, customers can choose Amazon RDS for PostgreSQL as
it gives them access to capabilities of the familiar PostgreSQL database engine. You can also host
PostgreSQL on Amazon EC2 and self-manage the database, or browse the third-party PostgreSQL
offerings on the AWS Marketplace. This whitepaper explores the implementation and deployment
considerations for PostgreSQL on Amazon EC2 using Amazon EBS for storage.

Although Amazon RDS and Amazon Aurora with PostgreSQL compatibility is a good choice for
most of the use cases on AWS, deployment on Amazon EC2 might be more appropriate for certain
PostgreSQL workloads. With Amazon RDS, you can connect to the database itself using SQL
interface and it gives you access to the familiar capabilities and configurations in PostgreSQL.

PostgreSQL on AWS deployment options 2

https://aws.amazon.com/ebs/
https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/marketplace

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

However, with managed database models, access to the operating system (OS) and certain
system catalogs aren't available. This is an issue when you need OS-level access due to specialized
configurations that rely on low-level OS settings, such as when using PostgreSQL extensions. For
example, enabling PostgreSQL extension pg_top requires OS-level access to gather monitoring
information. As another example, Slony-I an asynchronous replication system for PostgreSQL that
provides support for cascading and failover requires access to rdsadmin owned system catalogs. In
such cases, running PostgreSQL on Amazon EC2 is a better alternative.

PostgreSQL can be scaled vertically by adding additional hardware resources (CPU, memory, disk,
network) to the same server. For both Amazon RDS and Amazon EC2, you can change the EC2
instance type to match the resources required by PostgreSQL database. Amazon Aurora provides
a Serverless PostgreSQL Compatible Edition that allows compute capacity to be auto scaled on
demand based on application needs. Both Amazon RDS and Amazon EC2 have an option to use
EBS General Purpose SSD and EBS Provisioned IOPS volumes. The maximum provisioned storage
limit for Amazon RDS database (DB) instances running PostgreSQL is 64 TB. The EBS volume for
PostgreSQL on Amazon EC2, conversely, supports up to 16 TB per volume for General Purpose
(gp2, gp3) and Provisioned IOPS volumes (io1, io2). EBS also offers io2 Block Express volumes
which are suited for workloads that benefit from a single volume that provides sub-millisecond
latency, and supports higher IOPS, higher throughput, and larger capacity than io2 volumes.
io2bx volumes can support up to 64 TiB.

Horizontal scaling is also an option in PostgreSQL, where you can add PostgreSQL read replicas
to accommodate additional read traffic to separate database instance. With Amazon RDS, you can
easily enable this option through the AWS Management Console with click of a button, Command
Line Interface (CLI), or REST API. Amazon RDS for PostgreSQL allows up to fifteen read replicas. It
also supports cascading replication, a series of up to three read replicas in a chain from a source
database instance. There are certain cases where you might need to enable specific PostgreSQL
replication features. Some of these features such as delayed replication and streaming replication
outside of RDS may require OS access to PostgreSQL or advanced privileges to access certain
system procedures and tables. Delayed replication is the concept of applying time-delayed changes
from the WAL. That is, a transaction that is committed at physical time X is only going to be visible
on a standby with delay d at time X + d. This is useful for disaster recovery.

PostgreSQL on Amazon EC2 is an alternative to Amazon RDS and Aurora for certain use cases. It
allows you to migrate new or existing databases that have very specific requirements for workloads
and business needs. Choosing the right compute, network, and storage configurations plays a
crucial role in achieving good performance at an optimal cost for PostgreSQL workloads.

PostgreSQL on AWS deployment options 3

https://aws.amazon.com/rds/aurora/serverless/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/provisioned-iops.html#io2-block-express

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Amazon EBS block-level storage options

Amazon EBS provides flexible, cost effective, and easy-to-use data storage options for Amazon
EC2 instances. Each option has a unique combination of performance and durability. These storage
options can be used independently or in combination to suit workloads' requirements.

There are two primary block-level storage options for Amazon EC2 instances.

• Amazon EC2 instance store

• Amazon Elastic Block Store

Amazon EC2 instance store

The instance store volume consists of one or more storage volumes exposed as block I/O devices.
It provides temporary block-level storage for instances. An instance store volume is a disk that is
physically attached to the Amazon EC2 instance. You must specify instance store volumes when
you launch the Amazon EC2 instance. Data on instance store volumes does not persist if the
instance stops, hibernates, or terminates; or if the underlying disk drive fails.

Amazon Elastic Block Store

Amazon EBS provides durable, block-level storage volumes that can be attached to a running
instance. An Amazon EBS volume behaves like a raw, unformatted, external block device that
you can attach to an instance. The volume persists independently from the running life of an
instance. The data on the Amazon EBS volume persists even if the associated Amazon EC2 instance
shuts down or goes through a hardware failure. The data persists on the volume until the volume is
explicitly deleted. Refer to Solid state drives (SSD) in the AWS documentation for the details about
SSD-backed Amazon EBS volumes.

Due to the immediate proximity of the instance to the instance store volume, the I/O latency
to an instance store volume tends to be lower than to an Amazon EBS volume. Use cases for
instance store volumes include acting as a layer of cache or buffer, storing temporary database
tables or logs, or providing storage for read replicas. For a list of the instance types that support
instance store volumes, refer to Amazon EC2 instance store within the Amazon EC2 User Guide
for Linux instances. Unlike Amazon EBS volumes, you can't detach an instance store volume from
one instance and attach it to a different instance. An instance store volume exists only during the

Amazon EC2 instance store 4

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#solid-state-drives
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

lifetime of the instance to which it is attached. You can't configure an instance store volume to
persist beyond the lifetime of its associated instance.

The remainder of this paper focuses on Amazon EBS SSD volumes:

• General Purpose (gp2, gp3)

• Provisioned IOPS (io1, io2, io2bx)

Amazon EBS 5

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Amazon EBS volume features

Amazon EBS monitoring

Amazon EC2 allows different types of metrics and logs to be collected, viewed, and analyzed. The
metrics deal with the Amazon EC2 instance, storage, network and application level. Amazon EBS
automatically sends data points to Amazon CloudWatch for one-minute intervals at no charge.
Amazon CloudWatch metrics are statistical data to view, analyze, and set alarms on the operational
behavior of storage volumes. The Amazon EBS metrics can be viewed by selecting the monitoring
tab of the volume in the Amazon EC2 console. For more information about the Amazon EBS
metrics collected by CloudWatch, refer to the Amazon CloudWatch metrics for Amazon EBS.

Amazon EBS durability and availability

Amazon EBS general purpose volumes are designed for reliability with a 0.1 percent to 0.2
percent annual failure rate (AFR) compared to the typical 2% of commodity disk drives. These
storage volumes are backed by multiple physical drives for redundancy that is replicated within an
Availability Zone to protect database workload from component failure. Amazon EBS also offers
a higher durability volume (io2), that is designed to provide 99.999% durability with an annual
failure rate (AFR) of 0.001%, where failure refers to a complete or partial loss of the volume. For
example, if you have 100,000 Amazon EBS io2 volumes running for one year, you should expect
only one io2 volume to experience a failure. This makes io2 ideal for business-critical PostgreSQL
applications. For more details, see the Amazon EBS Service Level Agreement.

Amazon EBS snapshots

Amazon EBS snapshots back up the data on Amazon EBS volumes by taking point-in-time
snapshots to Amazon Simple Storage Service (Amazon S3) which is designed for 99.999999999%
(11 nines) of durability. Apart from providing backup, other reasons for creating Amazon EBS
snapshots include:

• Set up a non-production or test environment — You can share the Amazon EBS snapshot to
duplicate the installation of PostgreSQL in different environments. You can also share Amazon
EBS snapshots among different AWS accounts within the same AWS Region. For example, you
can restore a snapshot of your PostgreSQL database that's in a production environment to a test
environment to duplicate and troubleshoot production issues.

Amazon EBS monitoring 6

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cloudwatch_ebs.html
https://aws.amazon.com/ebs/features/
https://aws.amazon.com/ebs/sla/

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

• Disaster recovery — Amazon EBS's ability to copy snapshots across AWS Regions makes it easier
to leverage multiple AWS Regions for geographical expansion, data center migration and disaster
recovery. Amazon EBS Snapshots can be copied from one AWS Region to another for site disaster
recovery.

• Meet compliance and regulatory obligations - Certain industries require periodic archival of key
data including PostgreSQL databases. Amazon EBS Snapshots enable you to leverage Amazon
EBS Snapshots archive which is a lower storage cost tier that stores a full copy of your point-in-
time Amazon EBS Snapshots, and can be restored as needed.

In addition, you can also leverage Data Lifecycle Manager (DLM) which provides a mechanism to
automate creation, retention, archival and deletion of Amazon EBS Snapshots. This facilitates
simple and automated way to manage backup of PostgreSQL data stored on Amazon EBS volumes.
You can define backup and retention schedules for Amazon EBS snapshots by creating lifecycle
policies based on tags. With this feature, there are no dependencies to rely on custom scripts to
create and manage your backups.

Also, note that a volume that is restored from a snapshot is lazily loaded in the background, which
means that you can start using PostgreSQL database right away. When you perform a query on a
PostgreSQL data that has not been downloaded yet, the data will be downloaded from Amazon S3
directly. You also have the option of enabling Amazon EBS fast snapshot restore to create a volume
from a snapshot that is fully initialized at creation. For an additional hourly charge, you can enable
Fast Snapshot Restore (FSR) capability for low latency access to data restored from snapshots. You
can enable FSR on snapshots you own or those shared with you. Amazon EBS volumes restored
from FSR-enabled snapshots instantly receive their full performance. Refer to Amazon EBS fast
snapshot restore for more information.

Amazon EBS security

Amazon EBS encryption offers seamless encryption of Amazon EBS data volumes, boot
volumes and snapshots, eliminating the need to build and manage a secure key management
infrastructure. Amazon EBS supports several security features to use from volume creation to
utilization. These features prevent unauthorized access to PostgreSQL databases. You can use
tags and resource-level permissions to enforce security on volumes upon creation. These tags are
typically used to track resources, control cost, implement compliance protocols, and control access
to resources through AWS Identity and Access Management (IAM) policies. Tags can be assigned on
Amazon EBS volumes during creation time for efficient volume management. After the volume is
created, you can use the IAM resource-level permissions for Amazon EC2 API actions where only

Amazon EBS security 7

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-fast-snapshot-restore.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-fast-snapshot-restore.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-iam-actions-resources.html

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

authorized IAM users; or groups who can attach, delete, or detach Amazon EBS volumes to Amazon
EC2 instances.

Protection of data in transit and at rest is crucial in most PostgreSQL implementations. You can use
Secure Sockets Layer (SSL) to encrypt the connection from application to PostgreSQL database.
To encrypt data at rest, Amazon EBS volumes should have encryption enabled at the time of
creation. The new volume gets an unique 256-bit AES key, which is protected by the fully managed
AWS Key Management Service. Amazon EBS snapshots created from the encrypted volumes
are automatically encrypted. Encryption operations occur on the servers that host Amazon EC2
instances, ensuring the security of both data-at-rest and data-in-transit between an instance and
its attached Amazon EBS storage. The Amazon EBS encryption feature is available on all current
generation instance types. For more information on the supported instance types, refer to the
Amazon EBS Encryption documentation.

Elastic volumes

Elastic volumes is a feature that allows to easily adapt Amazon EBS volumes as per the needs of
application's requirements. The elastic feature of Amazon EBS SSD volumes allows dynamically
change the size, performance, and type of Amazon EBS volume in a single API call or within the
AWS Management Console without any interruption of PostgreSQL operations. This simplifies
some of the administration and maintenance activities of PostgreSQL workloads running on
current generation Amazon EC2 instances.

You can call the ModifyVolume API to dynamically increase the size of the Amazon EBS volume if
the PostgreSQL database is running low on usable storage capacity. Note that decreasing the size
of the Amazon EBS volume isn't supported, so AWS recommends not to over-allocate the Amazon
EBS volume size any more than necessary to avoid paying for extra resources that you do not use.

In situations where there is a planned increase in your PostgreSQL utilization, you can either
change your volume type or add additional IOPS. The time it takes to complete these changes
depends on the size of Amazon EBS volume. The progress of the volume modification can
be monitored by either through the AWS Management Console or CLI. You can also create
CloudWatch Events to send alerts after the changes are complete.

Amazon EBS–optimized instances

Amazon EBS-optimized instances deliver dedicated throughput between Amazon EC2 and Amazon
EBS. The dedicated throughput minimizes contention between Amazon EBS I/O and other traffic

Elastic volumes 8

https://aws.amazon.com/kms/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_supported_instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#current-gen-instances
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ModifyVolume.html

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

from Amazon EC2 instance, providing the best performance for PostgreSQL workloads. It is
recommended to choose an Amazon EBS–optimized instance that provides more dedicated
Amazon EBS throughput than application needs; otherwise, the connection between Amazon EBS
and Amazon EC2 can become a performance bottleneck. For more information about the instance
types that can be launched as Amazon EBS-Optimized instances, see Amazon EC2 Instance Types.

Amazon EBS–optimized instances 9

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSOptimized.html

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Amazon EBS volume types

General purpose SSD volumes

General purpose SSD (gp2 and gp3) volumes are backed by solid-state drives (SSDs). These storge
options balance price and performance for a wide variety of database workloads. Both gp2 and
gp3 volumes provide single-digit millisecond latency and 99.8 percent to 99.9 percent volume
durability with an annual failure rate (AFR) no higher than 0.2 percent, which translates to a
maximum of two volume failures per 1,000 running volumes over a one-year period.

gp2

The general purpose SSD (gp2) volume offers balanced price and performance. To maximize the
performance of the gp2 volume, you need to know how the burst capability works. The size of
the gp2 volume determines the baseline performance level of the volume and how quickly it can
accumulate I/O credits. Depending on the volume size, baseline performance ranges between a
minimum of 100 IOPS up to a maximum of 16,000 IOPS per volume. Volumes earn I/O credits at
the baseline performance rate of 3 IOPS/GiB of volume size. The larger the volume size, the higher
the baseline performance and the faster I/O credits accumulate. Refer to General purpose SSD
volumes (gp2) for more information related to I/O characteristics and burstable performance of
gp2 volumes.

gp3

These volumes deliver a consistent baseline rate of 3,000 IOPS and 125 MiB/s, included with the
price of storage. You can provision additional IOPS (up to 16,000) and throughput (up to 1,000
MiB/s) for an additional cost. The maximum ratio of Provisioned IOPS to provisioned volume size
is 500 IOPS per GiB. The maximum ratio of provisioned throughput to Provisioned IOPS is .25 MiB/
s per IOPS. The following volume configurations support provisioning either maximum IOPS or
maximum throughput:

• 32 GiB or larger: 500 IOPS/GiB x 32 GiB = 16,000 IOPS

• 8 GiB or larger and 4,000 IOPS or higher: 4,000 IOPS x 0.25 MiB/s/IOPS = 1,000 MiB/s

In addition to change the volume type, size and provisioned throughput (for gp3 only); you
can also use RAID 0 to stripe multiple gp2 or gp3 volumes together to achieve greater I/O

General purpose SSD volumes 10

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#IOcredit
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#EBSVolumeTypes_gp2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#EBSVolumeTypes_gp2

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

performance. The I/O is striped across volumes in the RAID 0 configuration. The throughput of
your PostgreSQL database also rises with the addition of an extra volume. The read/write transfer
rate, or throughput, is calculated by multiplying the I/O block size by the IOPS rate that is carried
out on the disk. Since the performance of the stripe is only as good as the lowest performing
volume in the set, AWS advises adding the same volume size to the stripe set. Think about RAID
0's failure tolerance as well as a single volume loss results in a total loss of data for the array.
If possible, use RAID 0 in a PostgreSQL primary/secondary environment where data is already
replicated in multiple secondary nodes.

Provisioned IOPS SSD volumes

Provisioned IOPS SSD (io1, io2, io2 Block Express) volumes are designed to meet the needs of I/
O-intensive workloads, particularly database workloads that are sensitive to storage performance
and consistency. Provisioned IOPS SSD volumes use a consistent IOPS rate, which you specify when
you create the volume. Amazon EBS delivers the provisioned performance 99.9 percent of the time.

• io1 volumes are designed to provide 99.8 to 99.9 percent volume durability with an annual
failure rate (AFR) no higher than 0.2 percent, which translates to a maximum of two volume
failures per 1,000 running volumes over a one-year period.

• io2 and io2 Block Express volumes are designed to provide 99.999 percent volume durability
with an AFR no higher than 0.001 percent, which translates to a single volume failure per
100,000 running volumes over a one-year period.

Provisioned IOPS SSD io1 and io2 volumes are available for all Amazon EC2 instance types.
Provisioned IOPS SSD io2 volumes attached to c6in, c7g, m6in, m6idn, r5b, r6in, r6idn, trn1,
x2idn, and x2iedn instances run on Amazon EBS Block Express.

Provisioned IOPS SSD volumes can range in size from 4 GiB to 16 TiB, and you can provision from
100 IOPS up to 64,000 IOPS per volume. You can achieve up to 64,000 IOPS only on Instances
built on the Nitro System. This provides dedicated throughput between Amazon EBS volume and
Amazon EC2 instance. On other instance families you can achieve performance up to 32,000 IOPS.
The maximum ratio of provisioned IOPS to requested volume size (in GiB) is 50:1 for io1 volumes,
and 500:1 for io2 volumes.

io2 Block Express volumes is the next generation of Amazon EBS storage server architecture. It has
been built for the purpose of meeting the performance requirements of the most demanding I/O
intensive applications that run on Nitro-based Amazon EC2 instances. You can provision IOPS up to

Provisioned IOPS SSD volumes 11

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#EBSVolumeTypes_piops
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#ec2-nitro-instances

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

256,000, with an IOPS:GiB ratio of 1,000:1. Maximum IOPS can be provisioned with volumes 256
GiB in size and larger (1,000 IOPS × 256 GiB = 256,000 IOPS) while volume throughput can go up
to 4,000 MiB/s.

Provisioned IOPS SSD volumes 12

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

PostgreSQL considerations

PostgreSQL offers many settings that can be tuned to obtain optimal performance for every type
of workload. This section focuses on the PostgreSQL database engine settings. It also looks at the
PostgreSQL parameters that can be optimized to improve performance related to Amazon EBS
volumes I/Os.

Caching

PostgreSQL tracks the access patterns of data and keeps frequently accessed data in cache. While
PostgreSQL does have a few parameter settings that directly affect memory allocation
for the purposes of caching, most of the cache that PostgreSQL uses is provided by the
underlying operating system. PostgreSQL also utilizes caching of its data in a space called
shared_buffers. Knowing when PostgreSQL will perform a disk I/O instead of accessing the
cache helps performance tuning. While reading data, shared_buffers caches recent accessed
data. While writing, shared_buffers hosts dirty pages. This in-memory area resides between
read/write operations and the Amazon EBS volumes. Disk I/O occurs if the data is not in the cache
for read requests, or when the data from dirty pages are flushed to disk.

The shared_buffers uses the Least Recently Used (LRU) algorithm for cached pages. When
the size of shared_buffers is too small, it could result frequent Read IOs to get data from
storage and the buffer pages may have to be constantly flushed to and from the disk. This affects
performance and lowers the query concurrency. The default size of the shared buffers is 128
MB. Increasing the size of the shared_buffers works well when the dataset and queries take
advantage of it. For example, if you have 1 GiB of data and the shared_buffers is configured
at 5 GiB, then increasing the shared_buffers size to 10 GiB doesn't make database faster. A
good rule of thumb is that the shared_buffers should be large enough to hold working data-
set, which is composed of the rows and indexes that are used by the queries. For most PostgreSQL
workloads, 20%-25% of total RAM as shared_buffers is a good practice. While modifying
shared_buffers parameter, you should consider that enough memory is left for other database
operations such as sorting, hashing, auto-vacuum, temp_buffers, and wal_buffers.

Database writes

PostgreSQL does not write directly to disk. Instead, PostgreSQL writes all modifications into
a persistent storage to prepare for failures. In PostgreSQL, Write Ahead Logging (WAL) is the

Caching 13

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

standard method for ensuring data integrity. It makes sure that changes to data files must be
written only after those changes have been logged, that is, after log records describing the changes
have been flushed to permanent storage. WAL data records are written into the in-memory WAL
buffer by change operations such as insertion, deletion, or commit actions. Then, they are written
into WAL segment files on the storage when a transaction commits or aborts. Now, background
writer process keeps flushing modified data pages to Amazon EBS volumes permanent storage.
Checkpoints make sure that all modified data pages have been flushed to storage after point of
time.

Frequent checkpoints can cause high IOs, high commit latency and low throughput. In practice,
checkpoints should happen infrequently not to affect the users, but frequently enough to
reasonably limit time for recovery and disk space requirements. A checkpoint begins after every
checkpoint_timeout seconds, or if max_wal_size is about to be exceeded, whichever comes first.
The default settings are 5 minutes and 1 GB respectively. Reducing these parameters allows faster
after-crash recovery, since less work will need to be redone. However, this could increase the cost
of flushing modified data pages more often. Checkpoint_completion_target parameter specifies
the target of checkpoint completion, as a fraction of total time between checkpoints. Reducing
this parameter is not recommended because it causes the checkpoint to complete faster. This
results in a higher rate of I/O during the checkpoint followed by a period of less I/O between the
checkpoint completion and the next scheduled checkpoint.

PostgreSQL read replica configuration

PostgreSQL allows to replicate data so you can scale out read-heavy workloads with source/replica
configuration. You can create multiple copies of PostgreSQL databases into one or more replica
instances to increase the read throughput for application. The availability of PostgreSQL database
can be increased with the replicated instances. When a source instance fails, one of the replica
instances servers can be promoted, reducing the recovery time.

In PostgreSQL, there are two types of replication methods: Physical replication that
collectively replicates a database cluster, and logical replication that replicates given
database objects such as tables, schemas and databases. PostgreSQL built-in streaming
replication (physical replication) continuously sends data changes from primary instance
to secondary instance. In cascaded replication, secondary instances can also be senders
as well as receivers. max_wal_senders, max_replication_slots, wal_keep_size,
max_slot_wal_keep_size, wal_sender_timeout are some of the parameters that can
be set at primary server to send replication data to one or more secondary instances. The

PostgreSQL read replica configuration 14

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

max_wal_senders parameter specifies the maximum number of concurrent connections
from secondary instances. The default is 10. The value 0 means replication is disabled. The
wal_keep_size parameter specifies the minimum size of WAL segments kept in the pg_wal
directory, in case a standby server needs to fetch them for streaming replication. If a secondary
instance connected to the sending server falls behind by more than wal_keep_size megabytes,
the sending server might remove a WAL segment still needed by the standby, in which case the
replication connection will be terminated. However, the standby server can recover by fetching
the segment from archive, if WAL archiving is in use. wal_keep_size should be set high enough
that spiky write workloads don't terminate replication. The following diagram illustrates how
PostgreSQL performs streaming replication:

PostgreSQL streaming replication

In PostgreSQL, logical replication is a method of replicating data objects and their changes, based
upon their replication identity, usually a primary key. Unlike physical replication which uses exact
block addresses and byte-by-byte replication, logical replication uses a publish and subscribe
model with one or more subscribers subscribing to one or more publications on a publisher node.

PostgreSQL read replica configuration 15

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Subscribers pull data from the publications they subscribe to and may subsequently re-publish
data to allow cascading replication or more complex configurations. Logical replication of a table
typically starts with taking a snapshot of the data on the publisher database and copying that
to the subscriber. Once that is done, the changes on the publisher are sent to the subscriber as
they occur in real-time. The subscriber applies the data in the same order as the publisher so that
transactional consistency is guaranteed for publications within a single subscription. This method
of data replication is sometimes referred to as transactional replication. The following diagram
represents the data flow for initial data copy and synchronization.

Data flow for initial data copy and sychronization

PostgreSQL logical replication

PostgreSQL replication considerations

PostgreSQL has single process for replaying Write Ahead Logs (WAL) file. Running out of IOs can
cause replication lag. To obtain larger I/O throughput, storage volume requires a larger queue
depth. An Amazon EBS io1 or io2 can provide up to 64,000 IOPS/volume, which, in turn, means
it has a larger queue depth. An Amazon EBS io2 Block Express SSD volumes can provide up to
256,000 IOPS/volume. AWS recommends using this volume type on workloads that require heavy
replication.

PostgreSQL replication considerations 16

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

As mentioned in the Provisioned IOPS SSD volumes section of this document, RAID 0 increases the
performance and throughput of Amazon EBS volumes for your PostgreSQL database. You can join
several volumes together in a RAID 0 configuration to use the available bandwidth of the Amazon
EBS-optimized instances to deliver the additional network throughput dedicated to Amazon EBS.

There are the sequential writes for the WAL shipment from the primary server and sequential
reads of the WAL. Additionally, there is the traffic of regular random updates to your data files.
Using RAID 0 in this case improves the parallel workloads since it spreads the data across the disks
and their queues. However, you must be aware of the penalty from the sequential and single-
threaded workloads because extra synchronization is needed to wait for the acknowledgments
from all members in the stripe. Only use RAID 0 if you need more throughput than that which the
single Amazon EBS volume can provide. As RAID0 has no data redundancy, for high read and write
throughput, RAID10 (mirrored striped sets) should be considered.

Migrating PostgreSQL from on-premises to Amazon EC2

Migrating databases requires strategy, resources, and downtime maintenance. If you have already
running PostgreSQL databases out of AWS, you have several options to migrate to Amazon EC2
hosted PostgreSQL. If downtime is affordaable, you can use pg_dump/ pg_restore to migrate
PostgreSQL databases from on-premises to Amazon EC2.

Single database backup:

pg_dump —host <hostname> —format=directory —create —jobs 5 —dbname <database name> —
username <username> —file /home/db11.dump
pg_restore —host <hostname> —format=directory —create –-jobs 5 —dbname <database name>
 —username <username> —file /home/ec2-user/db11.dump

pg_dumpall can be used for migrating all databases along with globals.

Backup all databases:

pg_dumpall > alldb.dump

Restore all databases:

psql -f alldb.dump postgres

If downtime is not permissible, you can setup physical replication between on-prem PostgreSQL
and Amazon EC2 hosted PostgreSQL. Once data is in sync with no replica lag, you can promote

Migrating PostgreSQL from on-premises to Amazon EC2 17

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Amazon EC2 PostgreSQL and set it up as new primary. For setting up physical replication,
customers need to do these changes:

On the on-prem PostgreSQL side:

echo "listen_addresses = * >> $PGDATA/postgresql.conf
echo "wal_level = replica" >> $PGDATA/postgresql.conf
systemctl restart postgresql
postgres=# CREATE USER migration_replication WITH REPLICATION ENCRYPTED PASSWORD
 'secret';
echo "host replication migration_replication 192.1111.11.11/32 md5" >> $PGDATA/
pg_hba.conf
psql -c "select pg_reload_conf()"

On the EC2 PostgreSQL side:

pg_ctl -D $PGDATA start
pg_basebackup -h <primary IP> -U migration_replication -p 5432 -D $PGDATA -Fp -Xs -R

Migrating PostgreSQL from on-premises to Amazon EC2 18

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

PostgreSQL backups

Backup methodologies

There are several approaches to protect PostgreSQL data depending on recovery time objective
(RTO) and recovery point objective (RPO) requirements. PostgreSQL production databases should
be backed up regularly. There are three fundamentally different approaches to back up PostgreSQL
data:

• SQL dump

This is the method to generate a file with SQL commands that, when fed back to the server, will
recreate the database in the same state as it was at the time of the backup. PostgreSQL provides
the utility program pg_dump for this purpose. The basic usage of this command is:

pg_dump dbname > dumpfile

pg_dump is a PostgreSQL client application that perform backup procedure from any remote
host that has access to the database. The user running pg_dump command should have
read access to the objects being backed up. pg_dump can be used to back up given tables,
schemas or databases. The pg_dump file can be restored by using psql client or pg_restore
utility. pg_dumpall backs up all databases in the given cluster, and also preserves cluster-wide
data such as roles and tablespace definitions. The basic usage of this command is:

 pg_dumpall > dumpfile

The resulting dump can be restored with psql:

psql -f dumpfile postgres

• File system level backup:

An alternative backup strategy is to directly copy the files that PostgreSQL uses to store the data
in the database. You can use your preferred method for file system backups. For example:

Backup methodologies 19

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions, however, which make this method impractical, or at least inferior to
the pg_dump method.

• The database server must be shut down in order to get a usable backup. Half-way measures
such as disallowing all connections will not work.

• File system backups only work for complete backup and restoration of an entire database
cluster.

Unlike pg_dump, it can't be used to back up given tables, schemas or databases. Alternatively,
you can use pg_basebackup, a PostgreSQL native utility to take a base backup of a PostgreSQL
cluster. The following is the basic command to use pg_basebackup:

pg_basebackup -h <host> -D <PostgreSQL data directory>

• Continuous archiving

The WAL log records every change made to the database's data files. This log exists on primarily
for crash-safety purposes. If the system crashes, the database can be restored to consistency
by "replaying" the log entries made since the last checkpoint. However, the existence of the log
makes it possible to use a third strategy for backing up databases. We can combine a file-system-
level backup with backup of the WAL files. If recovery is needed, we restore the file system
backup and then replay from the backed-up WAL files to bring the system to a current state. This
PostgreSQL document discusses about setting up continuous archiving.

If the primary database server exhibits performance issues during a backup, a replicated secondary
database server can be used for the backups to alleviate the backup load from the primary
database server. One approach can be to back up from a secondary server's SSD data volume to
a backup server's Throughput Optimized HDD (st1) volume. The high throughput of 500 MiB/s
per volume and large 1 MiB I/O block size make it an ideal volume type for sequential backups
meaning it can use the larger I/O blocks. The following diagram shows a backup server using the
PostgreSQL secondary server to read the backup data.

Backup methodologies 20

https://www.postgresql.org/docs/current/continuous-archiving.html

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

PostgreSQL backup using secondary server

Regarding file system level backup, pg_basebackup is a widely used PostgreSQL backup tool that
allows us to take an online and consistent file system level backup. These backups can be used for
point-in-time-recovery or to set up a secondary PostgreSQL server. The following image shows
PostgreSQL files system backup using pg_basebackup and streaming the write-ahead logs from a
running PostgreSQL cluster:

Backup methodologies 21

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

PostgreSQL files system backup using pg_basebackup and streaming the WAL

Another option is to have the PostgreSQL secondary server back up the database files directly to
Amazon Elastic File System (Amazon EFS) or Amazon S3. Amazon EFS stores its data redundantly
across multiple Availability Zones. Both the primary and the secondary instances can attach to
Amazon EFS. The secondary instance can initiate a backup to Amazon EFS from where the primary
instance can do a restore. Amazon S3 can also be used as a backup target. Amazon S3 can be used
in a manner similar to Amazon EFS except that Amazon S3 is object-based storage rather than
a file system. The following diagram depicts the option of using Amazon EFS or Amazon S3 as a
backup target.

Backup methodologies 22

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Using Amazon EFS or Amazon S3 as a backup target for PostgreSQL database

Second approach of backing up PostgreSQL database is to use volume-level EBS snapshots.
Snapshots are incremental backups, which means that only the blocks on the device that have
changed after your most recent snapshot are saved. This minimizes the time required to create the
snapshot and saves on storage costs. When you delete a snapshot, only the data unique to that
snapshot is removed. Active snapshots contain all the information needed to restore your data to a
new Amazon EBS volume.

One consideration when utilizing Amazon EBS snapshots for backups is to make sure the
PostgreSQL data remains consistent. During an Amazon EBS snapshot, any data not flushed from
cache to disk will not be captured. There is a PostgreSQL command CHECKPOINT that flushes all
the modified data pages from buffers to the disk. The snapshot takes a point-in-time capture of all
the content within that volume. The database lock needs to be active until the snapshot process
starts, but it doesn't have to wait for the snapshot to complete before releasing the lock. You can
use Amazon Data Lifecycle Manager to automate the creation, retention, and deletion of Amazon
EBS snapshots and Amazon EBS-backed AMIs.

Backup methodologies 23

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

You can also combine these approaches for an effective backup strategy. You can use database-
level backups for more granular objects, such as databases or tables. You can leverage Amazon EBS
snapshots for large scale operations such as recreating the database server, restoring the entire
volume or migrating a database server to another Availability Zone or another Region for disaster
recovery (DR).

Multi-Volume Crash-Consistent Snapshots

Amazon Elastic Block Store (Amazon EBS) enables to back up volumes at any time using Amazon
EBS snapshots. Snapshots retain the data from all completed I/O operations, allowing you
to restore the volume to its exact state at the moment before backup (referred to as crash-
consistency). There is a one-click solution to take backups across multiple Amazon EBS volumes
while ensuring that the data on each volume is in sync. Refer to this user guide for details.

Additionally, you can use AWS Backup, which creates crash-consistent backups of Amazon EBS
volumes that are attached to an Amazon EC2 instance. Crash consistency means that the snapshots
for every Amazon EBS volume attached to the same Amazon EC2 instance are taken at the exact
same moment. You no longer have to stop your instances or coordinate between multiple Amazon
EBS volumes to ensure crash-consistency of your application state.

Refer to the AWS Backup Developer Guide for details.

You can evaluate PostgreSQL performance related to storage by looking at latency when you run
into performance issues of transactional operations. Further, if the performance is degraded due to
PostgreSQL loading or replicating data, then throughput is evaluated. These issues are diagnosed
by looking at the Amazon EBS volume metrics collected by CloudWatch.

Throughput

Throughput is the measure of the amount of data transferred from/to a storage. It affects
PostgreSQL database workload, replication, backup, and import/export activities. When
considering which AWS storage option to use to achieve high throughput, you must also consider
that PostgreSQL has random I/O caused by small transactions that are committed to the database.
To accommodate these two different types of traffic patterns, our recommendation is to use io1,
io2/io2bx volumes on an Amazon EBS-optimized instance.

Amazon EBS calculates throughput using the equation:

Multi-Volume Crash-Consistent Snapshots 24

https://aws.amazon.com/ebs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-snapshot.html#ebs-create-snapshots
https://docs.aws.amazon.com/aws-backup/latest/devguide/multi-volume-crash-consistent.html
https://aws.amazon.com/cloudwatch/

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Throughput = Number of IOPS * size per I/O operation

Insufficient throughput to underlying Amazon EBS volumes can cause PostgreSQL secondary
servers to lag, and can also cause PostgreSQL backups to take longer to complete. To diagnose
throughput issues, CloudWatch provides the metrics Volume Read/Write Bytes (the amount of data
being transferred) and Volume Read/ Write Ops (the number of I/O operations).

You can use the CloudWatch metric to monitor the Amazon EBS volume level throughput:

 Read Bandwidth (KiB/s) = Sum(VolumeReadBytes) / Period / 1024
 Write Bandwidth (KiB/s) = Sum(VolumeWriteBytes) / Period / 1024

Latency

Latency is the round-trip time elapsed between sending a PostgreSQL I/O request to an Amazon
EBS volume and receiving an acknowledgement from the volume that the I/O read or write is
complete. Latency is experienced by slow queries, which can be diagnosed in PostgreSQL by
enabling the parameter log_min_duration_statement to log slow queries.

Latency can also occur at the disk I/O-level, which can be viewed in the "Average Read Latency
(ms/op)" and "Average Write Latency (ms/op)" in the monitoring tab of the Amazon EC2 console.

Average Read Latency (ms/op) is defined as blow:

 Avg(VolumeTotalReadTime) × 1000

For Nitro-based instances, the following formula derives Average Read Latency using CloudWatch
Metric Math:

 (Sum(VolumeTotalReadTime) / Sum(VolumeReadOps)) × 1000

The VolumeTotalReadTime and VolumeReadOps metrics are available in the Amazon EBS
CloudWatch console.

Average Write Latency (ms/op) is defined as follows:

 Avg(VolumeTotalWriteTime) × 1000

Latency 25

https://www.postgresql.org/docs/current/runtime-config-logging.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

For Nitro-based instances, the following formula derives Average Write Latency using CloudWatch
Metric Math:

 (Sum(VolumeTotalWriteTime) / Sum(VolumeWriteOps)) * 1000

The VolumeTotalWriteTime and VolumeWriteOps metrics are available in the Amazon EBS
CloudWatch console.

This section covers the factors contributing to high latency for gp2, gp3, io1, and io2 Amazon
EBS volumes. High latency can result from exhausting the baseline IOPS in Amazon EBS volumes.
However, gp2 volumes comes with burstable performance. If the workload is driving I/O traffic
beyond its baseline performance, then burst credit gets depleted. If burst credit reaches zero,
then these volume types get throttled at their baseline IOPS or throughput. The CloudWatch
metric BurstBalance indicates if you have depleted the available burstable credit for IOPS for
gp2 volumes.

Burst duration can be calculated as follows:

 (I/O credit balance)
Burst duration = ------------------------------
 (Burst IOPS) - (Baseline IOPS)

For example, for 100 GB gp2 volume, the baseline IOPS is 100*3=300 IOPS. However, any gp2
volume upto 1000 GB comes with burstable capability upto 3,000 IOPS. Hence, this particular
volume will be able to sustain a workload upto 3,000 IOPS for the burst duration of 2000 secs as
calculated from the above formula. After the burst credit are depleted, the volume performance
will be back to baseline of 300 IOPS.

Disk queue length can also contribute to high latency. Disk queue length refers to the outstanding
read/write requests that are waiting for instance and volume resources to be available. The
CloudWatch metric VolumeQueueLength shows the number of pending read/write operation
requests for the volume.

 Avg Queue Length (Operations) = Avg(VolumeQueueLength)

This metric is an important measurement to monitor if you have reached the full utilization of the
allocated IOPS on your Amazon EBS volumes. A value of average queue length greater than one for
every 1000 IOPS can cause latency.

Latency 26

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

It is recommended to monitor the CloudWatch metrics for IOPS and throughput so it that does not
go beyond the provisioned limits. If it goes beyond that limit, it causes the I/O to be queued up a
disk level which in turn increase the Round-trip time for the I/O. This increases the latency, and
thus impacts the PostgreSQL database performance.

Latency 27

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

PostgreSQL benchmark observations and considerations

Testing PostgreSQL database helps determine what type of volume is needed and ensures the
most cost-effective and performant solution. For new workload, you can do a synthetic test,
which provides the maximum number of IOPS that the new AWS infrastructure can achieve. If
you are moving your workloads to the AWS Cloud, you can run a tool such as iostat to profile
the IOPS required by your workloads. While you can use a synthetic test to estimate your storage
performance needs, the best way to quantify storage performance needs is through profiling an
existing production database if that is an option.

Performing a synthetic test on the Amazon EBS volume allows you to specify the amount of
concurrency and throughput that you want to simulate. It also helps determine the maximum
number of IOPS and throughput needed for PostgreSQL workloads. pgbench is an open-source
benchmark utility to run benchmark tests on PostgreSQL.

The test environment

To simulate the PostgreSQL client, we are using pgbench as the benchmarking tool. In this
example, we are using an r5.4xlarge instance type.

Table 1: Amazon EC2 machine specifications

Configuration Value

Instance type r5.4xlarge

Operating system Amazon Linux 6.1.41-63.114.amzn2023.x86_
64

Memory 128 GB

CPU 16 vCPUs

Root volume 100 GB gp2

PostgreSQL data volume 500 GB (gp2, gp3, io1, or io2)

The test environment 28

https://www.postgresql.org/docs/current/pgbench.html

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

As part of the testing, four Amazon EC2 instances are provisioned for each of the volume type
(gp2, gp3, io1, io2) with r5.4xlarge each having 100 GB gp2 as root volume and 500 GB data
volume.

The below pgbench settings are used for the performance benchmarking test for each of the
Amazon EBS volumes.

Install pgbench in each of the PostgreSQL database server:

 sudo yum install postgresql15-contrib

Load test data in the each of the PostgreSQL databases:

pgbench -i —fillfactor=90 —scale=10000 postgres

bash-5.2$ pgbench -i —fillfactor=90 —scale=10000 postgres
dropping old tables...
NOTICE: table "pgbench_accounts" does not exist, skipping
NOTICE: table "pgbench_branches" does not exist, skipping
NOTICE: table "pgbench_history" does not exist, skipping
NOTICE: table "pgbench_tellers" does not exist, skipping
creating tables...
generating data (client-side)...
1000000000 of 1000000000 tuples (100%) done (elapsed 2441.43 s, remaining 0.00 s))
vacuuming...
creating primary keys...
done in 3096.86 s (drop tables 0.01 s, create tables 0.03 s, client-side generate
 2445.44 s, vacuum 0.86 s, primary keys 650.52 s).

Set the max_connection parameter to 1000 in the PostgreSQL configuration for each of the
servers:

echo "max_connections=1000">>/data/pgsql15/data/postgresql.conf
pg_ctl -D /data/pgsql15/data/ restart

Run the below command to conduct the performance testing in each of the PostgreSQL servers.
pgbench uses the -S and -N options to execute a workload comprising an equal distribution of
read and write operations, with 50% of the test involving UPDATE queries, and the remaining 50%
consisting of SELECT queries. The variables that can be adjusted to align with the available system
resources are the number of clients and threads. In this benchmarking, we used 5000 number of
worker threads, and 950 clients.

The test environment 29

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

 pgbench -U postgres -P 60 -c 950 -j 5000 -T 1800 -S -N postgres

Results

The various tests of the four different volume configurations yielded different results. The result
set we focused are: latency average and transaction per second (TPS). The workload was run for
1,800 seconds and below are the trends in our result set. After closer observation, we observe that
the minimum latency is offered by io2 volume, that is 136ms. See the following performance
analysis of same PostgreSQL workload on different Amazon EBS volume types:

pgbench
metrics

gp2 gp3 io1 io2

Initial connectio
n time(ms)

444 420 384 381

Number of
transacti
ons actually
processed

10238208 11931975 10926661 11267355

Transaction Per
Sec (TPS)

5686 6628 6748 6956

The following diagram shows the gradual increase in TPS.

Results 30

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Gradual increase in TPS

The following graph shows the gradual decrease in latency.

Results 31

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Gradual decrease in latency

Latency comparison for various Amazon EBS storage types

The below graph shows the gradual decrease in initial connection time.

Gradual decrease in initial connection time

Results 32

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Conclusion

The AWS cloud provides several options for deploying PostgreSQL and the infrastructure
supporting it. Amazon Aurora for PostgreSQL and RDS for PostgreSQL provide a platform to
operate, scale, and manage PostgreSQL database in AWS. It removes much of the complexity of
managing and maintaining databases, allowing you to focus on improving applications. However,
there are some cases where hosting PostgreSQL on Amazon EC2 and Amazon EBS brings
operational flexibility and maintenance easiness. It's important to understand PostgreSQL
workload and test it. This can help you decide which Amazon EC2 instance and storage to use for
optimal performance and cost.

For a balanced performance and cost consideration, General Purpose SSD Amazon EBS volumes
(gp2 and gp3) are good options. To maximize the benefit of gp2, you need to understand and
monitor the burst credit. This helps determine whether you should consider other volume
types. On the other hand, gp3 provides predictable 3,000 IOPS baseline performance and 125
MiB/s, regardless of volume size. With gp3 volumes, you can provision IOPS and throughput
independently, without increasing storage size, at costs up to 20 percent lower per GB compared to
gp2 volumes. If you have mission critical PostgreSQL workloads that need more consistent IOPS,
then you should use Provisioned IOPS volumes (io1, io2, io2 Block Express).

To maximize the benefit of both General Purpose and Provisioned IOPS volume types, AWS
recommends using Amazon EBS-optimized Amazon EC2 instances and tuning database parameters
to optimize storage consumption. This ensures dedicated network bandwidth for Amazon EBS
volumes. You can cost effectively operate your PostgreSQL database in AWS without sacrificing
performance by taking advantage of the durability, availability, and elasticity of the Amazon EBS
volumes.

33

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Contributors

Contributors to this document include:

• Vivek Singh, Principal Specialist Technical Account Manager - Databases, Amazon Web Services

• Arnab Saha, Senior Database Specialist Solutions Architect, Amazon Web Services

34

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Further reading

For additional information, refer to:

• AWS Architecture Center

• PostgreSQL Performance Tuning

• PostgreSQL Database Backup Methods

35

https://aws.amazon.com/architecture/
https://wiki.postgresql.org/wiki/Performance_Optimization
https://www.postgresql.org/docs/current/backup.html

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Document history

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Initial publication Whitepaper first published. October 19, 2023

Note

To subscribe to RSS updates, you must have an RSS plug-in enabled for the browser that
you are using.

36

Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

37

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS
	Table of Contents
	Optimizing PostgreSQL Running on Amazon EC2 Using Amazon EBS
	Introduction
	Terminology
	PostgreSQL on AWS deployment options

	Amazon EBS block-level storage options
	Amazon EC2 instance store
	Amazon Elastic Block Store

	Amazon EBS volume features
	Amazon EBS monitoring
	Amazon EBS durability and availability
	Amazon EBS snapshots
	Amazon EBS security
	Elastic volumes
	Amazon EBS–optimized instances

	Amazon EBS volume types
	General purpose SSD volumes
	gp2
	gp3

	Provisioned IOPS SSD volumes

	PostgreSQL considerations
	Caching
	Database writes
	PostgreSQL read replica configuration
	PostgreSQL replication considerations
	Migrating PostgreSQL from on-premises to Amazon EC2

	PostgreSQL backups
	Backup methodologies
	Multi-Volume Crash-Consistent Snapshots
	Throughput
	Latency

	PostgreSQL benchmark observations and considerations
	The test environment
	Results

	Conclusion
	Contributors
	Further reading
	Document history
	AWS Glossary

