
Developer Guide

AWS X-Ray

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS X-Ray Developer Guide

AWS X-Ray: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS X-Ray Developer Guide

Table of Contents

What is AWS X-Ray? .. 1
How X-Ray works ... 1

How X-Ray interacts with your instrumented application .. 2
Concepts ... 6

Segments .. 6
Subsegments .. 7
Service graph ... 11
Traces ... 12
Sampling ... 14
Tracing header ... 14
Filter expressions .. 15
Groups ... 16
Annotations and metadata ... 17
Errors, faults, and exceptions ... 17

Get started ... 18
Choose an interface ... 20

Use an AWS Management Console .. 21
Use the Amazon CloudWatch console .. 22
Use the X-Ray console ... 23
Explore the X-Ray console .. 23

Use an SDK .. 93
Use the ADOT SDK ... 94
Use the X-Ray SDK ... 95

Use the X-Ray API .. 97
X-Ray API .. 98

X-Ray daemon .. 153
Downloading the daemon ... 153
Verifying the daemon archive's signature .. 155
Running the daemon .. 156
Giving the daemon permission to send data to X-Ray .. 156
X-Ray daemon logs ... 157
Configuration .. 158

Supported environment variables ... 158
Using command line options ... 159

iii

AWS X-Ray Developer Guide

Using a configuration file ... 160
Run the daemon locally ... 161

Running the X-Ray daemon on Linux .. 162
Running the X-Ray daemon in a Docker container ... 162
Running the X-Ray daemon on Windows .. 164
Running the X-Ray daemon on OS X ... 164

On Elastic Beanstalk .. 165
Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemon 165
Downloading and running the X-Ray daemon manually (advanced) 167

On Amazon EC2 ... 169
On Amazon ECS ... 170

Using the official Docker image .. 171
Create and build a Docker image ... 171
Configure command line options in the Amazon ECS console ... 174

Instrument your application ... 176
Instrumenting your application with the AWS Distro for OpenTelemetry 177
Instrumenting your application with AWS X-Ray SDKs ... 178
Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs 179
Instrument with Go ... 180

AWS Distro for OpenTelemetry Go .. 180
X-Ray SDK for Go ... 181

Instrument with Java .. 197
AWS Distro for OpenTelemetry Java .. 198
X-Ray SDK for Java .. 198

Instrument with Node.js ... 252
AWS Distro for OpenTelemetry JavaScript ... 252
X-Ray SDK for Node.js ... 253

Instrument with Python ... 278
AWS Distro for OpenTelemetry Python ... 278
X-Ray SDK for Python ... 279

Instrument with .NET .. 310
AWS Distro for OpenTelemetry .NET .. 310
X-Ray SDK for .NET .. 311

Instrument with Ruby ... 336
AWS Distro for OpenTelemetry Ruby ... 337
X-Ray SDK for Ruby ... 337

iv

AWS X-Ray Developer Guide

Integrate with AWS services ... 355
AWS Distro for OpenTelemetry .. 357

AWS Distro for OpenTelemetry ... 357
API Gateway .. 358
App Mesh ... 360
App Runner ... 363
AWS AppSync ... 363
CloudTrail ... 363

X-Ray management events in CloudTrail .. 365
X-Ray data events in CloudTrail .. 365
X-Ray event examples ... 367

CloudWatch ... 370
CloudWatch RUM .. 370
CloudWatch Synthetics .. 371

AWS Config ... 380
Creating a Lambda function trigger ... 381
Creating a custom AWS Config rule for x-ray .. 382
Example results ... 383
Amazon SNS notifications .. 384

Amazon EC2 .. 384
Elastic Beanstalk .. 384
Elastic Load Balancing .. 385
EventBridge ... 385

Viewing source and targets on the X-Ray service map .. 386
Propagate the trace context to event targets .. 386

Lambda ... 392
Amazon SNS ... 394

Configure Amazon SNS active tracing ... 394
View Amazon SNS publisher and subscriber traces in the X-Ray console 396

Step Functions .. 397
Amazon SQS ... 399

Send the HTTP trace header .. 400
Retrieve the trace header and recover trace context .. 400

Amazon S3 .. 401
Configure Amazon S3 event notifications ... 402

Manage resources .. 404

v

AWS X-Ray Developer Guide

Creating X-Ray resources with CloudFormation .. 404
X-Ray and AWS CloudFormation templates ... 405
Learn more about AWS CloudFormation ... 405

Tagging ... 405
Tag restrictions .. 407
Managing tags in the console ... 407
Managing tags in the AWS CLI .. 409
Control access to X-Ray resources based on tags .. 413

Sample application .. 415
Scorekeep tutorial .. 417

Prerequisites .. 418
Install the Scorekeep application using CloudFormation ... 419
Generate trace data ... 420
View the trace map in the AWS Management Console .. 421
Configuring Amazon SNS notifications .. 429
Explore the sample application ... 430
Optional: Least privilege policy ... 435
Clean up ... 438
Next steps .. 439

AWS SDK clients ... 439
Custom subsegments .. 440
Annotations and metadata .. 440
HTTP clients .. 441
SQL clients .. 442
AWS Lambda functions .. 445

Random name ... 446
Worker ... 448

Instrumenting startup code ... 450
Instrumenting scripts .. 452
Instrumenting web clients ... 454
Worker threads ... 458

Troubleshooting ... 460
X-Ray trace map and trace details pages ... 460

I don't see all of my CloudWatch logs ... 460
I don't see all of my alarms on the X-Ray trace map ... 461
I don't see some AWS resources on the trace map ... 461

vi

AWS X-Ray Developer Guide

There are too many nodes on the trace map ... 462
X-Ray SDK for Java .. 462
X-Ray SDK for Node.js .. 462
The X-Ray daemon .. 463

Security .. 464
... 464
Data protection .. 464
Identity and access management ... 467

Audience ... 467
Authenticating with identities ... 468
Managing access using policies ... 471
How AWS X-Ray works with IAM .. 473
Identity-based policy examples ... 481
Troubleshooting .. 493

Logging and monitoring .. 495
Compliance validation .. 496
Resilience ... 497
Infrastructure security ... 498
VPC endpoints .. 498

Creating a VPC endpoint for X-Ray .. 499
Controlling access to your X-Ray VPC endpoint .. 500
Supported Regions ... 501

Document History .. 503

vii

AWS X-Ray Developer Guide

What is AWS X-Ray?

AWS X-Ray provides trace information about any received responses and calls that an instrumented
application makes, including to the following:

• Downstream AWS resources

• Microservices

• Databases

• Web APIs

Use trace data and visualizations to gain insights into your application's performance, identify
issues, and find opportunities for optimization. Use analysis tools in X-Ray to view, filter, and
investigate details for any traced request to your application.

How X-Ray works

To use X-Ray, you must first instrument your application so that X-Ray can track how your
application handles a request. Adding instrumentation to your application lets X-Ray send trace
data and metadata for incoming and outbound requests and other events within your application.
For example, you can instrument all incoming HTTP requests and downstream calls to AWS services
that your Java application makes. You can also instrument your application automatically. For more
information, see Instrumenting your application for more information.

X-Ray assigns a trace id to any request that your instrumented application receives. If your
application interacts with another component, X-Ray creates a segment. This segment is associated
with the original trace id and tracks the quality of the interaction with that component.

X-Ray tracks the trace id and segments throughout your entire application workflow. You can
analyze the entire workflow or isolate a piece for detailed analysis. For more information about
segments, see the following Concepts section.

X-Ray tracks your application as it interacts with service nodes, or components, to serve an
incoming request as follows:

1. X-Ray uses a trace id and segments to track individual interactions.

2. An AWS agent collects the trace id and associated segments, and then passes them to an SDK
or API trace framework.

How X-Ray works 1

AWS X-Ray Developer Guide

3. X-Ray also tracks interactions with any AWS services that integrate with X-Ray.

4. The agent sends data to a console GUI, where you can view information about your traces,
segments and subsegments, and how these components interact.

The previous steps are shown in the following diagram:

How X-Ray interacts with your instrumented application

When your instrumented application receives a request, X-Ray does the following:

1. After your application serves the request, the X-Ray SDK sends trace data to an AWS collector
or agent. Then, the agent collects the trace id and segments. You can choose from the
following three agents:

• AWS Distro for OpenTelemetry (ADOT) Collector – An open-source collector that is
optimized and secured by AWS, based on an open-source standardized OpenTelemetry
agent. Use the ADOT Collector if you want to use language and vendor-agnostic
standardized code to interact with an agent but still have the confidence of AWS security

How X-Ray interacts with your instrumented application 2

https://opentelemetry.io/docs/collector/deployment/agent/
https://opentelemetry.io/docs/collector/deployment/agent/

AWS X-Ray Developer Guide

and optimization built into the end product. You can also use ADOT to configure an
endpoint to different agents and backends.

• Amazon CloudWatch agent – An open-source collector that integrates logs, metrics and
traces, supports all telemetry data, and has the ADOT Collector integrated into it.

• X-Ray daemon – A collector that works with the X-Ray SDK and X-Ray APIs. Use the X-Ray
daemon if you have legacy code, or have an application that requires customized tracing and
thus must use the X-Ray APIs. The daemon is available for Linux, Microsoft Windows, and
macOS, and is included on AWS Elastic Beanstalk and AWS Lambda platforms.

2. Then, the agent sends this data to a tracing framework that consists of either an AWS API, or
an AWS SDK that is built on top of an API. This framework interacts with other AWS services.
The X-Ray API provides access to all X-Ray functionality through the AWS SDK, AWS Command
Line Interface, or directly over HTTPS. Use the X-Ray API if you are using a language or need an
operation that is not supported by an SDK.

You can use the following SDKs:

• The ADOT SDK – Use the ADOT SDK to interact with different agents from vendors that are
not affiliated with AWS. The ADOT SDK also supports multiple backend services.

• The X-Ray SDK – A classic product that is no longer adding more features or languages. Use
the X-Ray SDK if you don’t want to update your application code.

If you are using an X-Ray or ADOT SDK, you have the following options, in combination with an
agent:

• Use the X-Ray or ADOT SDK with a CloudWatch agent – recommended.

• Use the ADOT SDK with an ADOT Collector – recommended if you want to use vendor
agnostic software with AWS layers of security and optimization.

• Use the X-Ray SDK with a CloudWatch agent – The CloudWatch agent is compatible with the
X-Ray SDK.

• Use the X-Ray SDK with the X-Ray daemon – Use this if you want to continue using the X-
Ray SDK.

3. (Optional) The tracing framework can interact with other AWS services, HTTP servers,
other methods and queries. Some AWS services that integrate with X-Ray include Amazon
EC2 Amazon SNS and API Gateway. The SDK or API keeps track of trace data during these
interactions.

How X-Ray interacts with your instrumented application 3

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html

AWS X-Ray Developer Guide

AWS services that integrate with X-Ray can add tracing headers to incoming requests, send
trace data to X-Ray, or run an agent to collect trace data. For example, AWS Lambda can send
trace data about requests to your Lambda functions.

For more information about other services that work with X-Ray see Integrate AWS X-Ray with
other AWS services.

4. You can view data in the console about your traces, segments, and subsegments in a graphical
user interface (GUI). You can use the following options:

• The https://console.aws.amazon.com/cloudwatch/ – A GUI experience to view traces, logs
and metrics in one location. The X-Ray service maps and legacy CloudWatch ServiceLens
map are combined into the X-Ray trace map within the CloudWatch console.

• The https://console.aws.amazon.com/xray/home – A GUI experience where you can view
information about your traces. You can view information that includes insights about your
traces, a trace map, a service map, and analytics. AWS is no longer developing this console
experience.

X-Ray uses trace data from AWS resources that your application interacts with to generate a
detailed trace map. The trace map shows the client, your front-end service, and backend services
that your front-end service calls in a single request. Use the trace map to identity bottlenecks,
latency spikes, and other issues to solve or improve the performance of your applications.

X-Ray will also generate a service map that provides an overall view of how your application
interacts with your service nodes. Edges in the service map connect the service nodes. They show
how often the nodes communicate with each other and latency for those communications.

The following image shows an example of a service map, which displays how your application
interacts with different components. You can view a service map in the console. The image shows
an application receiving a request from a client. Then, the image shows how the application
interacts with two DynamoDB tables and Amazon SNS.

How X-Ray interacts with your instrumented application 4

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

The following image is an example of the data available in the console for a single segment in
a trace. The image shows a timeline listing several segments and the starting time and duration
that each segment ran in relation to the others. The image also shows the segment status, and the
HTTP response code.

How X-Ray interacts with your instrumented application 5

AWS X-Ray Developer Guide

Concepts

AWS X-Ray receives data from services as segments. X-Ray then groups segments that have a
common request into traces. X-Ray processes the traces to generate a service graph that provides a
visual representation of your application.

Concepts

• Segments

• Subsegments

• Service graph

• Traces

• Sampling

• Tracing header

• Filter expressions

• Groups

• Annotations and metadata

• Errors, faults, and exceptions

Segments

The compute resources running your application logic send data about their work as segments.
A segment provides the resource's name, details about the request, and details about the work
done. For example, when an HTTP request reaches your application, it can record the following
data about:

• The host – hostname, alias or IP address.

• The request – method, client address, path, user agent.

• The response – status, content.

• The work done – start and end times, subsegments.

• Issues that occur – errors, faults and exceptions, including automatic capture of exception stacks.

The following image is an example overview information returned about a segment. The image
shows information about an id, start and end time, any errors or faults, and the request and
response code from an HTTP request:

Concepts 6

https://docs.aws.amazon.com/xray/latest/api/API_Segment.html

AWS X-Ray Developer Guide

The tracing framework, which consists of SDKs or APIs, gathers information from request and
response headers, the code in your application, and metadata about the AWS resources on which
your application runs. You choose which data X-Ray collects by modifying your application
configuration or code to instrument incoming requests, downstream requests, and AWS services.

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

You can use a tracing framework such as an SDK or API to record more information including
annotations and metadata. For details about segment and subsegment structure and recorded
information, see X-Ray segment documents. Segment documents can be up to 64 kB in size.

Subsegments

You can divide a segment into subsegments. Subsegments provide more granular timing
information and details about downstream calls that your application makes to serve the original
request. A subsegment contains additional details about a call to an AWS service, an external HTTP
API, or an SQL database. You can also define subsegments to instrument specific functions or lines
of code in your application.

Subsegments 7

AWS X-Ray Developer Guide

X-Ray uses subsegments to generate inferred segments and downstream nodes on the trace map
for services that don't send their own segments, like Amazon DynamoDB. Subsegments let you
see all of your downstream dependencies, even if the dependencies don't support tracing, or are
external to AWS.

Subsegments represent your application's view of a downstream call as a client. If the downstream
service is also instrumented, its segment replaces the inferred segment from the upstream client's
subsegment. The node on the service graph uses information from the service's segment, if
available. The edge between the two nodes uses the upstream service's subsegment.

For example, when you call DynamoDB with an instrumented AWS SDK client, the X-Ray SDK
records a subsegment for that call. DynamoDB doesn't send a segment, so the subsegment
contains information about the following:

• The inferred segment in the trace.

• The DynamoDB; node on the service graph.

• The edge between your service and DynamoDB.

The following diagram shows the service map for a sample application. In the image, the client
makes a request to a sample Scorekeep application. The Scorekeep application makes two calls to
DynamoDB. An edge in the service map represents each of these calls. Select an edge to see the
health status, number, and frequency of calls made to a DynamoDB table. The following image
shows traces that correspond to an edge filtered by response time.

Subsegments 8

AWS X-Ray Developer Guide

When you call another instrumented service with an instrumented application, the downstream
service sends its own segment. This segment records its view of the same call that the upstream
service recorded in a subsegment. In the service graph, both services' nodes contain timing and
error information from their segments. The edge between them contains information from the
upstream service's subsegment. The downstream service records when it started and ended work

Subsegments 9

AWS X-Ray Developer Guide

on the request. The upstream service records the round trip latency, including time that the request
spent traveling between the two services.

The following image shows trace information filtered by response time from an edge that
corresponds to an upstream Lambda function.

Subsegments 10

AWS X-Ray Developer Guide

Service graph

X-Ray uses the data that your application sends to generate a service graph. Each AWS resource
that sends data to X-Ray appears as a service node in the graph. Edges connect the services that
work together to serve requests, connect clients to your application, and connect your application
to the downstream services and resources that it uses.

Service Names

A segment's name should match the domain name or logical name of the service that
generates the segment. However, this is not enforced. Any application that has permission
to PutTraceSegments can send segments with any name.

A service graph is a JSON document that contains information about the services and resources
that make up your application. The X-Ray console uses the service graph to generate a visualization
or service map.

The following image shows a service map. The service map displays the relationship between the
client's request to your application and the services that your application interacts with to serve
the request. In the following image, a sample Scorekeep application interacts with two DynamoDB
tables and Amazon SNS.

Service graph 11

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide

In a distributed application, X-Ray combines nodes from all services that process requests with the
same trace ID into a single service graph. The first service that the request interacts with adds a
tracing header that is propagated between the front end and services that it calls.

For example, Scorekeep runs a web API that calls an AWS Lambda function to generate a random
name. Then, the X-Ray SDK generates the trace ID and tracks calls to the Lambda function. AWS
Lambda passes tracing data and the trace ID to the Lambda function. The X-Ray SDK also uses the
same trace ID to send data to an agent or collector. As a result, nodes for the API, the AWS Lambda
service, and the Lambda function all appear as separate but connected nodes on the trace map.

Service graph data is retained for 30 days.

Traces

A trace collects all the segments generated by a single request. The trace uses a trace ID to track
the path of a request through your application. That request is usually an HTTP GET or POST
request that travels through a load balancer, interacts with your application code, and generates

Traces 12

https://docs.aws.amazon.com/xray/latest/api/API_Trace.html

AWS X-Ray Developer Guide

downstream calls to other AWS services or external web APIs. The first supported service that
the HTTP request interacts with adds a trace ID header to the request. IThe service then and
propagates trace ID downstream to track latency, disposition, and other request data.

The following image shows an example of an application serving an HTTP request. The trace
summary contains the HTTP response code, the time to serve the request, and how long ago the
application served the request. The following image also shows a timeline for each trace segment.
The timeline shows the status, HTTP response code and time that it took the segment to finish. A
chart shows the duration, start and end time of each segment in the trace with respect to the other
segments.

Traces 13

AWS X-Ray Developer Guide

For more information about how X-Ray bills trace collection, see AWS X-Ray pricing for information
about how X-Ray traces are billed. Trace data is retained for 30 days.

Sampling

The X-Ray SDK applies a sampling algorithm to ensure efficient tracing and provide a
representative sample of the requests that your application serves. This algorithm determines
which requests get traced. By default, the X-Ray SDK records the first request received at the
beginning of each second, and five percent of any additional requests.

To avoid incurring service charges when you are getting started, the default sampling rate
is conservative. You can configure X-Ray to change the default sampling rate and configure
additional rules that apply sampling based on properties of the service or request.

For example, you might want to disable sampling and trace all requests for calls that modify state
or handle users or transactions. For high-volume read-only calls, like background polling, health
checks, or connection maintenance.

For more information, see Configure sampling rules and the CreateSamplingRule API.

Tracing header

All requests are traced, up to a minimum number, which you can configure. After reaching that
minimum, X-Ray traces only a percentage of requests to avoid extra costs. X-Ray adds the sampling
decision and trace ID to HTTP requests in tracing headers that start with X-Amzn-Trace-Id. X-
Ray adds these headers when a request interacts with the first AWS service that integrates with X-
Ray. The X-Ray SDK reads these headers and includes them in the response.

Example Tracing header with root trace ID and sampling decision

X-Amzn-Trace-Id: Root=1-5759e988-bd862e3fe1be46a994272793;Sampled=1

Tracing Header Security

A tracing header can originate from the X-Ray SDK, an AWS service, or the client request.
Your application can remove X-Amzn-Trace-Id from incoming requests to avoid issues
caused by users adding trace IDs or sampling decisions to their requests.

Sampling 14

https://aws.amazon.com/xray/pricing/
https://docs.aws.amazon.com/xray/latest/api/API_CreateSamplingRule.html

AWS X-Ray Developer Guide

The tracing header can also contain a parent segment ID if the request originated from an
instrumented application. For example, if your application calls a downstream HTTP web API
with an instrumented HTTP client, the X-Ray SDK adds the segment ID for the original request
to the tracing header of the downstream request. An instrumented application that serves the
downstream request uses the parent segment ID to connect the two requests.

Example Tracing header with root trace ID, parent segment ID and sampling decision

X-Amzn-Trace-Id: Root=1-5759e988-
bd862e3fe1be46a994272793;Parent=53995c3f42cd8ad8;Sampled=1

Lambda or other AWS services might append part of a header that starts with Lineage as part of
their processing mechanisms. You should not directly use the appended part of the trace header.

Example Tracing header with Lineage

X-Amzn-Trace-Id: Root=1-5759e988-bd862e3fe1be46a994272793;Sampled=1;Lineage=a87bd80c:1|
68fd508a:5|c512fbe3:2

Filter expressions

Even if you sample a small subset of data, a complex application can generate a lot of trace data.
Use filter expressions to be able to find specific traces including those for individual requests,
specific paths or users.

The following image shows a text box in the X-Ray console that you can use to filter by a group
that you define. For more information about groups, see the following section Groups.

Filter expressions 15

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html#API_GetTraceSummaries_RequestSyntax

AWS X-Ray Developer Guide

Groups

You can use a group inside a filter expression to reduce the amount of trace data and focus on data
that fit the group criteria.

Use a group to generate service graphs, trace summaries and CloudWatch metrics that are specific
to that group. You can call by name or by Amazon Resource Name (ARN). X-Ray checks incoming
traces against the group filter expression as they are stored in the X-Ray service. CloudWatch
publishes metrics for traces that match the group criteria every minute.

Updating a group's filter expression doesn't change data that's already recorded. The update
applies only to subsequent traces. This can result in a merged graph of the new and old
expressions. To avoid merging unconnected groups inside a single graph, delete the current group
and https://docs.aws.amazon.com/xray/latest/api/API_CreateGroup.htmlcreate a new one.

Note

The billing for groups is based on the number of retrieved traces that match the filter
expression. For more information, see AWS X-Ray pricing.

For more information about groups, see Configure groups.

Groups 16

https://docs.aws.amazon.com/xray/latest/api/API_CreateGroup.html
https://aws.amazon.com/xray/pricing/

AWS X-Ray Developer Guide

Annotations and metadata

When you instrument your application, the X-Ray SDK records information about incoming and
outgoing requests. The SDK also records information about the AWS resources used, and the
application itself. You can add other information to the segment document as annotations and
metadata. Annotations and metadata are combined at the trace level. They can be added to any
segment or subsegment.

Annotations are key-value pairs that are indexed for use with filter expressions. Use annotations
to record data that you want to use to group traces in the console, or when calling the
GetTraceSummaries API.

X-Ray indexes up to 50 annotations per trace.

Metadata are key-value pairs with values of any type, including objects and lists, that are not
indexed. Use metadata to record data you want to store in the trace but don't need to use for
searching traces.

You can view annotations and metadata in the segment or subsegment details window, within the
Trace details page in the CloudWatch console. For more information, see View traces and trace
details in Explore the X-Ray console.

Errors, faults, and exceptions

X-Ray tracks errors in your application code and those returned by downstream services.X-Ray
tracks the following HTTP response codes from requests:

• Error – Client errors (400 series errors) indicate that the server could not understand or process
the request from the client because the request itself contained an error. These errors can be
caused by syntax errors, missing information or a bad request body.

• Fault – Server faults (500 series errors) indicate that the server could not process a valid request
because of an issue with the server itself. These errors can be caused by issues that include
failures in software or hardware, or resource limitations of the server.

• Throttle – Throttling errors (429 Too Many Requests) are a specific type of client error that
occurs when a client sends too many requests to a server or API over a period of time.

If an exception occurs while your application is serving an instrumented request, the X-Ray
SDK records details about the exception, including the stack trace id, if available. You can view
exceptions under segment details in the X-Ray console.

Annotations and metadata 17

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Get started with X-Ray

To use X-Ray, you must do the following:

1. Instrument your application, which allows X-Ray to track how your application processes a
request.

• Use the X-Ray SDKs, X-Ray APIs, ADOT or CloudWatch Application Signals to send trace data
to X-Ray. For more information about which interface to use, see Choose an interface.

For more information about instrumentation, see Instrument your application for AWS X-Ray.

2. (Optional) Configure X-Ray to work with other AWS services that integrate with X-Ray. You
can sample traces and add headers to incoming requests, run an agent or collector, and
automatically send trace data to X-Ray. For more information, see Integrate AWS X-Ray with
other AWS services.

3. Deploy your instrumented application. As your application receives requests, the X-Ray SDK
will record trace, segment and subsegment data. In this step, you might also have to set up an
IAM policy and deploy an agent or collector.

• For example scripts to deploy an application using the AWS Distro for OpenTelemetry
(ADOT) SDK and the CloudWatch agent on different platforms, see Application Signals
Demo Scripts.

• For an example script to deploy an application using the X-Ray SDK and the X-Ray daemon,
see AWS X-Ray sample application.

4. (Optional) Open a console to view and analyze the data. You can see a GUI representation of a
trace map, service map, and more to inspect how your application functions. Use the graphical
information in the console to optimize, debug and understand your application. For more
information about choosing a console, see Use an AWS Management Console.

The following diagram shows how to get started using X-Ray:

18

https://github.com/aws-observability/application-signals-demo/tree/main/scripts
https://github.com/aws-observability/application-signals-demo/tree/main/scripts

AWS X-Ray Developer Guide

For an example of the data and maps that are available in the console, launch a sample application
that is already instrumented to generate trace data. In a few minutes, you can generate traffic,
send segments to X-Ray, and view a trace and service map.

19

AWS X-Ray Developer Guide

Choose an interface

AWS X-Ray can provide insights into how your application works and how well it interacts
with other services and resources. After you instrument or configure your application, X-Ray
collects trace data as your application serves requests. You can analyze this trace data to identify
performance issues, troubleshoot errors, and optimization your resources. This guide shows you
how to interact with X-Ray with the following guidelines:

• Use an AWS Management Console if you want to get started quickly or can use pre-built
visualizations to perform basic tasks.

• Choose the Amazon CloudWatch console for the most updated user experience that contains
all of the X-Ray console’s functionality.

• Use the X-Ray console if you want a simpler interface or don’t want to change how you
interact with X-Ray.

• Use an SDK if you need more custom tracing, monitoring or logging capabilities than an AWS
Management Console can provide.

• Choose the ADOT SDK if you want a vendor-agnostic SDK based on the open source
OpenTelemetry SDK with added layers of AWS security and optimization.

• Choose the X-Ray SDK if you want a simpler SDK or don’t want to update your application
code.

• Use X-Ray API operations if an SDK does not support your application’s programming language.

The following diagram helps you choose how to interact with X-Ray:

20

AWS X-Ray Developer Guide

Explore the interface types

• Use an AWS Management Console

• Use an SDK

• Use the X-Ray API

Use an AWS Management Console

Use an AWS Management Console if you want a graphical user interface (GUI) that requires
minimal coding. Users that are new to X-Ray can get started quickly using pre-built visualizations,
and performing basic tasks. You can do the following directly from the console:

Use an AWS Management Console 21

AWS X-Ray Developer Guide

• Enable X-Ray.

• View high-level summaries of your application's performance.

• Check the health status of your applications.

• Identify high-level errors.

• View basic trace summaries.

You can use either the Amazon CloudWatch console at https://console.aws.amazon.com/
cloudwatch/ or the X-Ray console at https://console.aws.amazon.com/xray/home to interact with
X-Ray.

Use the Amazon CloudWatch console

The CloudWatch console includes new X-Ray functionality that is redesigned from the X-Ray
console to make it easier to use. If you use the CloudWatch console, you can view CloudWatch logs
and metrics along with X-Ray trace data. Use the CloudWatch console to view and analyze data
including the following:

• X-Ray traces – View, analyze and filter traces associated with your application as it serves a
request. Use these traces to find high latencies, debug errors, and optimize your application
workflow. View a trace map and service map to see visual representations of your application
workflow.

• Logs – View, analyze and filter logs that your application produces. Use logs to troubleshoot
errors and set up monitoring based on specific log values.

• Metrics – Measure and monitor your application performance using metrics that your resources
emit or create your own metrics. View these metrics in graphs and charts.

• Monitoring networks and infrastructure – Monitor major networks for outages and the health
and performance of your infrastructure including containerized applications, other AWS services,
and clients.

• All of the functionality from the X-Ray console listed in the following Use the X-Ray console
section.

For more information about the CloudWatch console, see Getting started with Amazon
CloudWatch.

Login the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Use the Amazon CloudWatch console 22

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingStarted.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingStarted.html
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

Use the X-Ray console

The X-Ray console offers distributed tracing for application requests. Use the X-Ray console if you
want a simpler console experience or don’t want to update your application code. AWS is no longer
developing the X-Ray console. The X-Ray console contains the following features for instrumented
applications:

• Insights – Automatically detect anomalies in your application’s performance and find the
underlying causes. Insights are included in the CloudWatch console under Insights. For more
information, see the Use X-Ray Insights in Explore the X-Ray console.

• Service map – View a graphical structure of your application and its connections with clients,
resources, services, and dependencies.

• Traces – See an overview of traces that are generated by your application as it serves a request.
Use trace data to understand how your application performs against basic metrics including
HTTP response and response time.

• Analytics – Interpret, explore and analyze trace data using graphs for response time distribution.

• Configuration – Create customized traces to change the default configurations for the following:

• Sampling – Create a rule that defines how often to sample your application for trace
information. For more information, see Configure sampling rules in Explore the X-Ray
console .

• Encryption – Encrypt data at rest using a key that you can audit or disable using AWS Key
Management Service.

• Groups – Use a filter expression to define a group of traces with a common feature such as the
name of a url or a response time. For more information, see Configure groups.

Login the X-Ray console at https://console.aws.amazon.com/xray/home.

Explore the X-Ray console

Use the X-Ray console to view a map of services and associated traces for requests that your
applications serve, and to configure groups and sampling rules which affect how traces are sent to
X-Ray.

Use the X-Ray console 23

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-groups
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Note

The X-Ray Service map and CloudWatch ServiceLens map have been combined into the X-
Ray trace map within the Amazon CloudWatch console. Open the CloudWatch console and
choose Trace Map under X-Ray traces from the left navigation pane.
CloudWatch now includes Application Signals, which can discover and monitor your
application services, clients, Synthetics canaries, and service dependencies. Use Application
Signals to see a list or visual map of your services, view health metrics based on your
service level objectives (SLOs), and drill down to see correlated X-Ray traces for more
detailed troubleshooting.

The primary X-Ray console page is the trace map, which is a visual representation of the JSON
service graph that X-Ray generates from the trace data generated by your applications. The map
consists of service nodes for each application in your account that serves requests, upstream client
nodes that represent the origins of the requests, and downstream service nodes that represent
web services and resources used by an application while processing a request. There are additional
pages for viewing traces and trace details, and configuring groups and sampling rules.

View the console experience for X-Ray and compare with the CloudWatch console in the following
sections.

Use the X-Ray trace map

View the X-Ray trace map to identify services where errors are occurring, connections with high
latency, or traces for requests that were unsuccessful.

Note

CloudWatch now includes Application Signals, which can discover and monitor your
application services, clients, synthetics canaries, and service dependencies. Use Application
Signals to see a list or visual map of your services, view health metrics based on your
service level objectives (SLOs), and drill down to see correlated X-Ray traces for more
detailed troubleshooting.
The X-Ray service map and CloudWatch ServiceLens map are combined into the X-Ray trace
map within the Amazon CloudWatch console. Open the CloudWatch console and choose
Trace Map under X-Ray traces from the left navigation pane.

Explore the X-Ray console 24

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

Viewing the trace map

The trace map is a visual representation of the trace data that's generated by your applications.
The map shows service nodes that serve requests, upstream client nodes that represent the origins
of the requests, and downstream service nodes that represent web services and resources that are
used by an application while processing a request.

The trace map displays a connected view of traces across event-driven applications that use
Amazon SQS and Lambda. For more information, see the following Trace event-driven applications
section. The trace map also supports Cross-account tracing, displaying nodes from multiple
accounts in a single map.

CloudWatch console

To view the trace map in the CloudWatch console

1. Open the CloudWatch console. Choose Trace Map under the X-Ray Traces section in the
left navigation pane.

2. Choose a service node to view requests for that node, or an edge between two nodes to
view requests that traveled that connection.

3. Additional information is displayed below the trace map, including tabs for metrics, alerts,
and response time distribution. On the Metrics tab, select a range within each graph to
drill down to view more detail, or choose Faults or Errors options to filter traces. On the
Response time distribution tab, select a range within the graph to filter traces by response
time.

Explore the X-Ray console 25

https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

4. View traces by choosing View traces, or if a filter has been applied, choose View filtered
traces.

5. Choose View logs to see CloudWatch logs associated with the selected node. Not all
trace map nodes support viewing logs. See troubleshooting CloudWatch logs for more
information.

The trace map indicates issues within each node by outlining it with colors:

• Red for server faults (500 series errors)

• Yellow for client errors (400 series errors)

• Purple for throttling errors (429 Too Many Requests)

If your trace map is large, use the on-screen controls or mouse to zoom in and out and move
the map around.

X-Ray console

To view the Service map

1. Open the X-Ray console. The service map is displayed by default. You can also choose
Service Map from the left navigation pane.

Explore the X-Ray console 26

https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

2. Choose a service node to view requests for that node, or an edge between two nodes to
view requests that traveled that connection.

3. Use a response distribution histogram to filter traces by duration, and select status codes
for which you want to view traces. Then choose View traces to open the trace list with the
filter expression applied. For more information on distribution histograms, see ???.

Explore the X-Ray console 27

AWS X-Ray Developer Guide

Explore the X-Ray console 28

AWS X-Ray Developer Guide

The service map indicates the health of each node by coloring it based on the ratio of successful
calls to errors and faults:

• Green for successful calls

• Red for server faults (500 series errors)

• Yellow for client errors (400 series errors)

• Purple for throttling errors (429 Too Many Requests)

If your service map is large, use the on-screen controls or mouse to zoom in and out and move
the map around.

Note

The X-Ray trace map can display up to 10,000 nodes. In rare scenarios where the total
number of service nodes exceeds this limit, you may receive an error and be unable to
display a complete trace map in the console.

Filtering the trace map by group

Using a filter expression, you can define criteria by which to include traces within a group. For more
information about filter expressions, see Use filter expressions. Next, use the following steps to
then display that specific group in the trace map.

CloudWatch console

Choose a group name from the group filter on the top-left of the trace map.

X-Ray console

Choose a group name from the drop-down menu to the left of the search bar.

Explore the X-Ray console 29

AWS X-Ray Developer Guide

The service map will now be filtered to display traces that match the filter expression of the
selected group.

Trace map legend and options

The trace map includes a legend and several options for customizing the map display.

CloudWatch console

Choose the Legend and options drop-down at the top-right of the map. Choose what is
displayed within nodes, including:

• Metrics displays the average response time and number of traces sent per minute during the
chosen time range.

• Nodes displays the service icon within each node.

Choose additional map settings from the Preferences pane, which can be accessed via the
gear icon at the top-right of the map. These settings include selecting which metric is used to
determine the size of each node, and which canaries should be displayed on the map.

X-Ray console

Display the service map legend by choosing the Map legend link at the top-right of the map.
Service map options can be chosen at the bottom-right of the trace map, including:

• Service Icons toggles what is displayed within each node, displaying either the service icon,
or the average response time and number of traces sent per minute during the chosen time
range.

• Node sizing: None sets all nodes to the same size.

Explore the X-Ray console 30

AWS X-Ray Developer Guide

• Node sizing: Health sizes nodes by the number of impacted requests including errors, faults,
or throttled requests.

• Node sizing: Traffic sizes nodes by the total number of requests.

View traces and trace details

Use the Traces page in the X-Ray console to find traces by URL, response code, or other data from
the trace summary. After selecting a trace from the trace list, the Trace details page displays a map
of service nodes that are associated with the selected trace and a timeline of trace segments.

Viewing traces

CloudWatch console

To view traces in the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. In the left navigation pane, choose X-Ray traces, then choose Traces. You can filter by
group or enter a filter expression, which filters the traces that are displayed in the Traces
section at the bottom of the page. For more information, see Use filter expressions.

Alternatively, you can use the service map to navigate to a specific service node, and then
view traces. This opens the Traces page with a query already applied.

3. Refine your query in the Query refiners section. To filter traces by a common attribute,
choose an option from the down arrow next to Refine query by. The options include the
following:

• Node – Filter traces by service node.

• Resource ARN – Filter traces by a resource associated with a trace. Examples of these
resources include Amazon Elastic Compute Cloud (Amazon EC2) instance, an AWS
Lambda function, or an Amazon DynamoDB table.

• User – Filter traces with a user ID.

• Error root cause message – Filter traces by error root cause.

• URL – Filter traces by a URL path used by your application.

• HTTP status code – Filter traces by the HTTP status code returned by your application.
You can specify a custom response code or select from the following:

Explore the X-Ray console 31

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-filters

AWS X-Ray Developer Guide

• 200 – The request was successful.

• 401 – The request lacked valid authentication credentials.

• 403 – The request lacked valid permissions.

• 404 – The server could not find the requested resource.

• 500 – The server encountered an unexpected condition and generated an internal
error.

Choose one or more entries and then choose Add to query to add to the filter expression at
the top of the page.

4. To find a single trace, enter a trace ID directly into the query field. You can use X-Ray
format or World Wide Web Consortium (W3C) format. For example, a trace that's created
using the AWS Distro for OpenTelemetry is in W3C format.

Note

When you query traces that are created with a W3C-format trace ID, the console
displays the matching trace in X-Ray format. For example, if you query for
4efaaf4d1e8720b39541901950019ee5 in W3C format, the console displays the
X-Ray equivalent: 1-4efaaf4d-1e8720b39541901950019ee5.

5. Choose Run query at any time to display a list of matching traces within the Traces section
at the bottom of the page.

6. To display the Trace details page for a single trace, select a trace ID from the list.

The following image shows a Trace map containing service nodes associated with the trace
and edges between the nodes representing the path taken by segments that compose the
trace. A Trace summary follows the Trace Map. The summary contains information about a
sample GET operation, its Response Code, the Duration that the trace took to run, and the
Age of the request. The Segments Timeline follows the Trace Summary that shows the
duration of trace segments and subsegments.

Explore the X-Ray console 32

AWS X-Ray Developer Guide

If you have an event-driven application that uses Amazon SQS and Lambda, you can see
a connected view of traces for each request in the Trace map. In the map, traces from
message producers are linked to traces from AWS Lambda consumers and are displayed as
a dashed-line edge. For more information about event-driven applications, see Trace event-
driven applications.

The Traces and Trace details pages also support cross-account tracing, which can list traces
from multiple accounts in the trace list and inside a single trace map. For more information,
see Cross-account tracing.

Explore the X-Ray console 33

AWS X-Ray Developer Guide

X-Ray console

To view traces in the X-Ray console

1. Open the Traces page in the X-Ray console. The Trace overview panel shows a list of traces
that are grouped by common features including Error root causes, ResourceARN, and
InstanceId.

2. To select a common feature to view a grouped set of traces, expand the down arrow next to
Group by. The following illustration shows a trace overview of traces that are grouped by
URL for the AWS X-Ray sample application, and a list of associated traces.

3. Choose the ID of a trace to view it under the Trace list. You can also choose Service map in
the navigation pane to view traces for a specific service node. Then you can view traces that
are associated with that node.

The Timeline tab shows the request flow for the trace, and includes the following:

• A map of the path for each segment in the trace.

• How long it took for the segment to reach a node in the trace map.

Explore the X-Ray console 34

https://console.aws.amazon.com/xray/home#/traces

AWS X-Ray Developer Guide

• How many requests were made to the node in the trace map.

The following illustration shows an example Trace Map associated with a GET request
made to a sample application. The arrows show the path that each segment took to
complete the request. The service nodes show the number of requests made during the
GET request.

For more information about the Timeline tab, see the following Exploring the trace
timeline section.

The Raw data tab shows information about the trace, and the segments and subsegments
that compose the trace, in JSON format. This information may include the following:

Explore the X-Ray console 35

AWS X-Ray Developer Guide

• Timestamps

• Unique IDs

• Resources associated with the segment or subsegment

• The source, or origin, of the segment or subsegment

• Additional information about the request to your application such as the response from
an HTTP request

Exploring the trace timeline

The Timeline section shows a hierarchy of segments and subsegments next to a horizontal bar that
corresponds to time they used to complete their tasks. The first entry in the list is the segment,
which represents all data recorded by the service for a single request. Subsegments are indented
and listed following the segment. Columns contain information about each segment.

CloudWatch console

In the CloudWatch console, the Segments Timeline provides the following information:

• The first column: Lists the segments and subsegments in the selected trace.

• The Segment status column: Lists the status outcome of each segment and subsegment.

• The Response code column: Lists an HTTP response status code to a browser request made
by the segment or subsegment, when available.

• The Duration column: Lists how long the segment or subsegment ran.

• The Hosted in column: Lists the namespace or environment where the segment or
subsegment is ran, if applicable. For more information, see https://docs.aws.amazon.com/
AmazonCloudWatch/latest/monitoring/AppSignals-StandardMetrics.html#AppSignals-
StandardMetrics-Dimensions.

• The last column: Displays horizontal bars that correspond to the duration that the segment or
subsegment ran, in relation to the other segments or subsegments in the timeline.

To group the list of segments and subsegments by service node, turn on Group by nodes.

X-Ray console

In the trace details page, choose the Timeline tab to see the timeline for each segment and
subsegment that makes up a trace.

Explore the X-Ray console 36

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AppSignals-StandardMetrics.html#AppSignals-StandardMetrics-Dimensions
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AppSignals-StandardMetrics.html#AppSignals-StandardMetrics-Dimensions
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AppSignals-StandardMetrics.html#AppSignals-StandardMetrics-Dimensions

AWS X-Ray Developer Guide

In the X-Ray console, the Timeline provides the following information:

• The Name column: Lists the names of the segments and subsegments in the trace.

• The Res. column: Lists an HTTP response status code to a browser request made by the
segment or subsegment, when available.

• The Duration column: Lists how long the segment or subsegment ran.

• The Status column: Lists the outcome of the segment or subsegment status.

• The last column: Displays horizontal bars that correspond to the duration that the segment or
subsegment ran, in relation to the other segments or subsegments in the timeline.

To see the raw trace data that the console uses to generate the timeline, choose the Raw data
tab. The raw data shows you information about the trace, and the segments and subsegments
that compose the trace in JSON format. This information may include the following:

• Timestamps

• Unique IDs

• Resources associated with the segment or subsegment

• The source, or origin, of the segment or subsegment

• Additional information about the request to your application such as the response from an
HTTP request.

When you use an instrumented AWS SDK, HTTP, or SQL client to make calls to external resources,
the X-Ray SDK records subsegments automatically. You can also use the X-Ray SDK to record
custom subsegments for any function or block of code. Additional subsegments that are recorded
while a custom subsegment are open become children of the custom subsegment.

Viewing segment details

From the trace Timeline, choose the name of a segment to view its details.

The Segment details panel shows the Overview, Resources, Annotations, Metadata, Exceptions,
and SQL tabs. The following apply:

• The Overview tab shows information about the request and response. Information includes the
name, start time, end time, duration, the request URL, request operation, request response code,
and any errors and faults.

Explore the X-Ray console 37

AWS X-Ray Developer Guide

• The Resources tab for a segment shows information from the X-Ray SDK and about the AWS
resources running your application. Use the Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS
plugins for the X-Ray SDK to record service-specific resource information. For more information
about plugins, see the Service plugins section in Configuring the X-Ray SDK for Java.

• The remaining tabs show Annotations, Metadata, and Exceptions that are recorded for the
segment. Exceptions are captured automatically when they are generated from an instrumented
request. Annotations and metadata contain additional information that you record by using the
operations that the X-Ray SDK provides. To add annotations or metadata to your segments, use
the X-Ray SDK. For more information, see the language-specific link listed under Instrumenting
your application with AWS X-Ray SDKs in Instrument your application for AWS X-Ray.

Viewing subsegment details

From the trace timeline, choose the name of a subsegment to view its details:

• The Overview tab contains information about the request and response. This includes the name,
start time, end time, duration, the request URL, request operation, request response code, and
any errors and faults. For subsegments generated with instrumented clients, the Overview tab
contains information about the request and response from your application's point of view.

• The Resources tab for a subsegment shows details about the AWS resources that were used to
run the subsegment. For example, the resources tab may include an AWS Lambda function ARN,
information about a DynamoDB table, any operation that is called, and request ID.

• The remaining tabs show Annotations, Metadata, and Exceptions recorded on the subsegment.
Exceptions are captured automatically when they are generated from an instrumented request.
Annotations and metadata contain additional information that you record by using the
operations that the X-Ray SDK provides. Use the X-Ray SDK to add annotations or metadata to
your segments. For more information, see the language-specific link listed under Instrumenting
your application with AWS X-Ray SDKs in Instrument your application for AWS X-Ray.

For custom subsegments, the Overview tab shows the name of the subsegment, which you can set
to specify the area of the code or function that it records. For more information, see the language-
specific link listed under Instrumenting your application with AWS X-Ray SDKs in Generating
custom subsegments with the X-Ray SDK for Java.

The following image shows the Overview tab for a custom subsegment. The overview contains the
subsegment ID, parent ID, Name, start and end times, duration, status and errors or faults.

Explore the X-Ray console 38

AWS X-Ray Developer Guide

The Metadata tab for a custom subsegment contains information in JSON format about resources
used by that subsegment.

Use filter expressions

Use filter expressions to view a trace map or traces for a specific request, service, connection
between two services (an edge), or requests that satisfy a condition. X-Ray provides a filter
expression language for filtering requests, services, and edges based on data in request headers,
response status, and indexed fields on the original segments.

When you choose a time period of traces to view in the X-Ray console, you might get more results
than the console can display. In the upper-right corner, the console shows the number of traces
that it scanned and whether there are more traces available. You can use a filter expression to
narrow the results to just the traces that you want to find.

Explore the X-Ray console 39

AWS X-Ray Developer Guide

Filter expression details

When you choose a node in the trace map, the console constructs a filter expression based on the
service name of the node, and the types of error present based on your selection. To find traces
that show performance issues or that relate to specific requests, you can adjust the expression that
the console provides or create your own. If you add annotations with the X-Ray SDK, you can also
filter based on the presence of an annotation key or the value of a key.

Note

If you choose a relative time range in the trace map and choose a node, the console
converts the time range to an absolute start and end time. To ensure that the traces for the
node appear in the search results, and avoid scanning times when the node wasn't active,
the time range only includes times when the node sent traces. To search relative to the
current time, you can switch back to a relative time range in the traces page and scan again.

If there are still more results available than the console can show, the console shows you how many
traces matched and the number of traces scanned. The percentage shown is the percentage of the
selected time frame that was scanned. To ensure that you see all matching traces represented in
the results, narrow your filter expression further, or choose a shorter time frame.

To get the freshest results first, the console starts scanning at the end of the time range and works
backward. If there are a large number of traces, but few results, the console splits the time range
into chunks and scans them in parallel. The progress bar shows the parts of the time range that
have been scanned.

Explore the X-Ray console 40

AWS X-Ray Developer Guide

Use filter expressions with groups

Groups are a collection of traces that are defined by a filter expression. You can use groups to
generate additional service graphs and supply Amazon CloudWatch metrics.

Groups are identified by their name or an Amazon Resource Name (ARN), and contain a filter
expression. The service compares incoming traces to the expression and stores them accordingly.

You can create and modify groups by using the dropdown menu to the left of the filter expression
search bar.

Note

If the service encounters an error in qualifying a group, that group is no longer included in
processing incoming traces and an error metric is recorded.

For more information about groups, see Configure groups.

Filter expression syntax

Filter expressions can contain a keyword, a unary or binary operator, and a value for comparison.

keyword operator value

Different operators are available for different types of keyword. For example, responsetime is a
number keyword and can be compared with operators related to numbers.

Example – requests where response time was greater than 5 seconds

responsetime > 5

You can combine multiple expressions in a compound expression by using the AND or OR operators.

Example – requests where the total duration was 5–8 seconds

duration >= 5 AND duration <= 8

Simple keywords and operators find issues only at the trace level. If an error occurs downstream,
but is handled by your application and not returned to the user, a search for error will not find it.

Explore the X-Ray console 41

AWS X-Ray Developer Guide

To find traces with downstream issues, you can use the complex keywords service() and
edge(). These keywords let you apply a filter expression to all downstream nodes, a single
downstream node, or an edge between two nodes. For more about these keywords, see the
following Complex keywords section. For more granularity, you can filter services and edges by
type with the id() function. For more information see the following id function section.

Boolean keywords

Boolean keyword values are either true or false. Use these keywords to find traces that resulted in
errors.

Boolean keywords

• ok – Response status code was 2XX Success.

• error – Response status code was 4XX Client Error.

• throttle – Response status code was 429 Too Many Requests.

• fault – Response status code was 5XX Server Error.

• partial – Request has incomplete segments.

• inferred – Request has inferred segments.

• first – Element is the first of an enumerated list.

• last – Element is the last of an enumerated list.

• remote – Root cause entity is remote.

• root – Service is the entry point or root segment of a trace.

Boolean operators find segments where the specified key is true or false.

Boolean operators

• none – The expression is true if the keyword is true.

• ! – The expression is true if the keyword is false.

• =,!= – Compare the value of the keyword to the string true or false. These operators act the
same as the other operators but are more explicit.

Example – response status is 2XX OK

ok

Explore the X-Ray console 42

AWS X-Ray Developer Guide

Example – response status is not 2XX OK

!ok

Example – response status is not 2XX OK

ok = false

Example – last enumerated fault trace has error name "deserialize"

rootcause.fault.entity { last and name = "deserialize" }

Example – requests with remote segments where coverage is greater than 0.7 and the service
name is "traces"

rootcause.responsetime.entity { remote and coverage > 0.7 and name = "traces" }

Example – requests with inferred segments where the service type is "AWS:DynamoDB"

rootcause.fault.service { inferred and name = traces and type = "AWS::DynamoDB" }

Example – requests that have a segment with the name "data-plane" as the root

service("data-plane") {root = true and fault = true}

Number keywords

Use number keywords to search for requests with a specific response time, duration, or response
status.

Number keywords

• responsetime – Time that the server took to send a response.

• duration – Total request duration, including all downstream calls.

• http.status – Response status code.

• index – Position of an element in an enumerated list.

Explore the X-Ray console 43

AWS X-Ray Developer Guide

• coverage – Decimal percentage of entity response time over root segment response time.
Applicable only for response time root cause entities.

Number operators

Number keywords use standard equality and comparison operators.

• =,!= – The keyword is equal to or not equal to a number value.

• <,<=, >,>= – The keyword is less than or greater than a number value.

Example – response status is not 200 OK

http.status != 200

Example – request where the total duration was 5–8 seconds

duration >= 5 AND duration <= 8

Example – requests that completed successfully in less than 3 seconds, including all
downstream calls

ok !partial duration <3

Example – enumerated list entity that has an index greater than 5

rootcause.fault.service { index > 5 }

Example – requests where the last entity that has coverage greater than 0.8

rootcause.responsetime.entity { last and coverage > 0.8 }

String keywords

Use string keywords to find traces with specific text in the request headers, or specific user IDs.

String keywords

• http.url – Request URL.

Explore the X-Ray console 44

AWS X-Ray Developer Guide

• http.method – Request method.

• http.useragent – Request user agent string.

• http.clientip – Requestor's IP address.

• user – Value of the user field on any segment in the trace.

• name – The name of a service or exception.

• type – Service type.

• message – Exception message.

• availabilityzone – Value of the availabilityzone field on any segment in the trace.

• instance.id – Value of the instance ID field on any segment in the trace.

• resource.arn – Value of the resource ARN field on any segment in the trace.

String operators find values that are equal to or contain specific text. Values must always be
specified in quotation marks.

String operators

• =,!= – The keyword is equal to or not equal to a number value.

• CONTAINS – The keyword contains a specific string.

• BEGINSWITH , ENDSWITH – The keyword begins or ends with a specific string.

Example – http.url filter

http.url CONTAINS "/api/game/"

To test if a field exists on a trace, regardless of its value, check to see if it contains the empty string.

Example – user filter

Find all traces with user IDs.

user CONTAINS ""

Example – select traces with a fault root cause that includes a service named "Auth"

rootcause.fault.service { name = "Auth" }

Explore the X-Ray console 45

AWS X-Ray Developer Guide

Example – select traces with a response time root cause whose last service has a type of
DynamoDB

rootcause.responsetime.service { last and type = "AWS::DynamoDB" }

Example – select traces with a fault root cause whose last exception has the message "access
denied for account_id: 1234567890"

rootcause.fault.exception { last and message = "Access Denied for account_id:
 1234567890"

Complex keywords

Use complex keywords to find requests based on service name, edge name, or annotation value.
For services and edges, you can specify an additional filter expression that applies to the service
or edge. For annotations, you can filter on the value of an annotation with a specific key using
Boolean, number, or string operators.

Complex keywords

• annotation.key – Value of an annotation with field key. The value of an annotation can be a
Boolean, number, or string, so you can use any of the comparison operators of those types. You
can use this keyword in combination with the service or edge keyword.

• edge(source, destination) {filter} – Connection between services source and
destination. Optional curly braces can contain a filter expression that applies to segments on
this connection.

• group.name / group.arn – The value of a group's filter expression, referenced by group
name or group ARN.

• json – JSON root cause object. See Getting data from AWS X-Ray for steps to create JSON
entities programmatically.

• service(name) {filter} – Service with name name. Optional curly braces can contain a
filter expression that applies to segments created by the service.

Use the service keyword to find traces for requests that hit a certain node on your trace map.

Complex keyword operators find segments where the specified key has been set, or not set.

Explore the X-Ray console 46

AWS X-Ray Developer Guide

Complex keyword operators

• none – The expression is true if the keyword is set. If the keyword is of boolean type, it will
evaluate to the boolean value.

• ! – The expression is true if the keyword is not set. If the keyword is of boolean type, it will
evaluate to the boolean value.

• =,!= – Compare the value of the keyword.

• edge(source, destination) {filter} – Connection between services source and
destination. Optional curly braces can contain a filter expression that applies to segments on
this connection.

• annotation.key – Value of an annotation with field key. The value of an annotation can be a
Boolean, number, or string, so you can use any of the comparison operators of those types. You
can use this keyword in combination with the service or edge keyword.

• json – JSON root cause object. See Getting data from AWS X-Ray for steps to create JSON
entities programmatically.

Use the service keyword to find traces for requests that hit a certain node on your trace map.

Example – Service filter

Requests that included a call to api.example.com with a fault (500 series error).

service("api.example.com") { fault }

You can exclude the service name to apply a filter expression to all nodes on your service map.

Example – service filter

Requests that caused a fault anywhere on your trace map.

service() { fault }

The edge keyword applies a filter expression to a connection between two nodes.

Example – edge filter

Request where the service api.example.com made a call to backend.example.com that failed
with an error.

Explore the X-Ray console 47

AWS X-Ray Developer Guide

edge("api.example.com", "backend.example.com") { error }

You can also use the ! operator with service and edge keywords to exclude a service or edge from
the results of another filter expression.

Example – service and request filter

Request where the URL begins with http://api.example.com/ and contains /v2/ but does not
reach a service named api.example.com.

http.url BEGINSWITH "http://api.example.com/" AND http.url CONTAINS "/v2/" AND !
service("api.example.com")

Example – service and response time filter

Find traces where http url is set and response time is greater than 2 seconds.

http.url AND responseTime > 2

For annotations, you can call all traces where annotation.key is set, or use the comparison
operators that correspond to the type of value.

Example – annotation with string value

Requests with an annotation named gameid with string value "817DL6VO".

annotation.gameid = "817DL6VO"

Example – annotation is set

Requests with an annotation named age set.

annotation.age

Example – annotation is not set

Requests without an annotation named age set.

!annotation.age

Explore the X-Ray console 48

AWS X-Ray Developer Guide

Example – annotation with number value

Requests with annotation age with numerical value greater than 29.

annotation.age > 29

Example – annotation in combination with service or edge

service { annotation.request_id = "917DL6VO" }

edge { source.annotation.request_id = "916DL6VO" }

edge { destination.annotation.request_id = "918DL6VO" }

Example – group with user

Requests where traces meet the high_response_time group filter (e.g. responseTime > 3),
and the user is named Alice.

group.name = "high_response_time" AND user = "alice"

Example – JSON with root cause entity

Requests with matching root cause entities.

rootcause.json = #[{ "Services": [{ "Name": "GetWeatherData", "EntityPath": [{ "Name":
 "GetWeatherData" }, { "Name": "get_temperature" }] }, { "Name": "GetTemperature",
 "EntityPath": [{ "Name": "GetTemperature" }] }] }]

id function

When you provide a service name to the service or edge keyword, you get results for all nodes
that have that name. For more precise filtering, you can use the id function to specify a service
type in addition to a name to distinguish between nodes with the same name.

Use the account.id function to specify a particular account for the service, when viewing traces
from multiple accounts in a monitoring account.

Explore the X-Ray console 49

AWS X-Ray Developer Guide

id(name: "service-name", type:"service::type", account.id:"account-ID")

You can use the id function in place of a service name in service and edge filters.

service(id(name: "service-name", type:"service::type")) { filter }

edge(id(name: "service-one", type:"service::type"), id(name: "service-two",
 type:"service::type")) { filter }

For example, AWS Lambda functions result in two nodes in the trace map; one for the function
invocation, and one for the Lambda service. The two nodes have the same name but different
types. A standard service filter will find traces for both.

Example – service filter

Requests that include an error on any service named random-name.

service("function-name") { error }

Use the id function to narrow the search to errors on the function itself, excluding errors from the
service.

Example – service filter with id function

Requests that include an error on a service named random-name with type
AWS::Lambda::Function.

service(id(name: "random-name", type: "AWS::Lambda::Function")) { error }

To search for nodes by type, you can also exclude the name entirely.

Example – service filter with id function and service type

Requests that include an error on a service with type AWS::Lambda::Function.

service(id(type: "AWS::Lambda::Function")) { error }

To search for nodes for a particular AWS account, specify an account ID.

Explore the X-Ray console 50

AWS X-Ray Developer Guide

Example – service filter with id function and account ID

Requests that include a service within a specific account ID AWS::Lambda::Function.

service(id(account.id: "account-id"))

Cross-account tracing

AWS X-Ray supports cross-account observability, enabling you to monitor and troubleshoot
applications that span multiple accounts within an AWS Region. You can seamlessly search,
visualize, and analyze your metrics, logs, and traces in any of the linked accounts as if you were
operating in a single account. This provides a complete view of requests that travel across multiple
accounts. You can view cross-account traces in the X-Ray trace map and traces pages within the
CloudWatch console.

The shared observability data can include any of the following types of telemetry:

• Metrics in Amazon CloudWatch

• Log groups in Amazon CloudWatch Logs

• Traces in AWS X-Ray

• Applications in Amazon CloudWatch Application Insights

Configure cross-account observability

To turn on cross-account observability, set up one or more AWS monitoring accounts and link them
with multiple source accounts. A monitoring account is a central AWS account that can view and
interact with observability data that's generated from source accounts. A source account is an
individual AWS account that generates observability data for the resources that it contains.

Source accounts share their observability data with monitoring accounts. Traces are copied from
each source account to up to five monitoring accounts. Copies of traces from source accounts to
the first monitoring account are free. Copies of traces sent to additional monitoring accounts are
charged to each source account, based on standard pricing. For more information, see AWS X-Ray
pricing and Amazon CloudWatch pricing.

To create links between monitoring accounts and source accounts, use the CloudWatch console or
the new Observability Access Manager commands in the AWS CLI and API. For more information,
see CloudWatch cross-account observability.

Explore the X-Ray console 51

https://console.aws.amazon.com/cloudwatch/
https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

Note

X-Ray traces are billed to the AWS account where they're received. If a sampled request
spans services across more than one AWS account, each account records a separate trace,
and all traces share the same trace ID. To learn more about cross-account observability
pricing, see AWS X-Ray pricing and Amazon CloudWatch pricing.

Viewing cross-account traces

Cross-account traces are displayed in the monitoring account. Each source account displays only
local traces for that specific account. The following sections assume that you're signed in to the
monitoring account and have opened the Amazon CloudWatch console. On both the trace map and
traces pages, a monitoring account badge is displayed in the upper-right corner.

Trace map

In the CloudWatch console, choose Trace Map under X-Ray traces from the left navigation pane.
By default, the trace map displays nodes for all source accounts that send traces to the monitoring
account, and nodes for the monitoring account itself. On the trace map, choose Filters from the
upper left to filter the trace map using the Accounts drop-down. After an account filter is applied,
service nodes from accounts that don't match the current filter are grayed out.

Explore the X-Ray console 52

https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/cloudwatch/pricing/

AWS X-Ray Developer Guide

When you choose a service node, the node details pane includes the service's account ID and label.

In the upper-right corner of the trace map, choose List view to see a list of service nodes. The list
of service nodes includes services from the monitoring account and all configured source accounts.
Filter the list of nodes by Account label or Account id by choosing them from the Nodes filter.

Explore the X-Ray console 53

AWS X-Ray Developer Guide

Traces

View trace details for traces that span multiple accounts by opening the CloudWatch console from
the monitoring account, and choosing Traces under X-Ray traces in the left navigation pane. You
can also open this page by choosing a node in the X-Ray Trace Map, and then choosing View traces
from the node details pane.

The Traces page supports querying by account ID. To get started, enter a query that includes one
or more account IDs. For more information about queries, see Use filter expressions. The following
example queries for traces that have passed through account ID X or Y:

service(id(account.id:"X")) OR service(id(account.id:"Y"))

Refine your query by Account. Select one or more accounts from the list, and choose Add to query.

Trace details

View details for a trace by choosing it from the Traces list at the bottom of the Traces page. The
Trace details displays, including a trace details map with service nodes from across all accounts
that the trace passed through. Choose a specific service node to see its corresponding account.

The Segments timeline section displays the account details for each segment in the timeline.

Explore the X-Ray console 54

AWS X-Ray Developer Guide

Trace event-driven applications

AWS X-Ray supports tracing event-driven applications using Amazon SQS and AWS Lambda. Use
the CloudWatch console to see a connected view of each request as it's queued with Amazon SQS
and processed by one or more Lambda functions. Traces from upstream message producers are
automatically linked to traces from downstream Lambda consumer nodes, creating an end-to-end
view of the application.

Note

Each trace segment can be linked to up to 20 traces, while a trace can include a maximum
of 100 links. In certain scenarios, linking additional traces may result in exceeding the
maximum trace document size, causing a potentially incomplete trace. This can happen,
for example, when a Lambda function with tracing enabled sends many SQS messages to
a queue in a single invocation. If you encounter this issue, a mitigation is available which
uses the X-Ray SDKs. See the X-Ray SDK for Java, Node.js, Python, Go, or .NET for more
information.

View linked traces in the trace map

Use the Trace Map page within the CloudWatch console to view a trace map with traces from
message producers that are linked to traces from Lambda consumers. These links are displayed
with a dashed-line edge that connects the Amazon SQS node and downstream Lambda consumer
nodes.

Explore the X-Ray console 55

https://docs.aws.amazon.com/general/latest/gr/xray.html#limits_xray
https://github.com/aws/aws-xray-sdk-java#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-node/tree/master/packages/core#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-python#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-go#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-dotnet#oversampling-mitigation
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

Select a dashed-line edge to display a received event age histogram, which maps the spread of
event age when it's received by consumers. The age is calculated each time an event is received.

View linked trace details

View trace details sent from a message producer, Amazon SQS queue, or Lambda consumer:

1. Use the Trace Map to select a message producer, Amazon SQS, or Lambda consumer node.

2. Choose View traces from the node details pane to display a list of traces. You can also navigate
directly to the Traces page within the CloudWatch console.

3. Choose a specific trace from the list to open the trace details page. The trace details page
displays a message when the selected trace is part of a linked set of traces.

Explore the X-Ray console 56

AWS X-Ray Developer Guide

The trace details map displays the current trace, along with upstream and downstream linked
traces, each of which are contained within a box that indicates the bounds of each trace. If the
currently selected trace is linked to multiple upstream or downstream traces, the nodes within the
upstream or downstream linked traces are stacked, and a Select trace button is displayed.

Beneath the trace details map, a timeline of trace segments displays, including upstream and
downstream linked traces. If there are multiple upstream or downstream linked traces, their
segment details can't be displayed. To view segment details for a single trace within a set of linked
traces, select a single trace as described in the following section.

Explore the X-Ray console 57

AWS X-Ray Developer Guide

Select a single trace within a set of linked traces

Filter a linked set of traces to a single trace, to see segment details in the timeline.

1. Choose Select trace underneath the linked traces on the trace details map. A list of traces
displays.

2. Select the radio button next to a trace to view it within the trace details map.

3. Choose Cancel trace selection to view the entire set of linked traces.

Use latency histograms

When you select a node or edge on an trace map, the X-Ray console shows a latency distribution
histogram.

Latency

Latency is the amount of time between when a request starts and when it completes. A histogram
shows a distribution of latencies. It shows duration on the x-axis, and the percentage of requests
that match each duration on the y-axis.

Explore the X-Ray console 58

AWS X-Ray Developer Guide

This histogram shows a service that completes most requests in less than 300 ms. A small
percentage of requests take up to 2 seconds, and a few outliers take more time.

Interpreting service details

Service histograms and edge histograms provide a visual representation of latency from the
viewpoint of a service or requester.

• Choose a service node by clicking the circle. X-Ray shows a histogram for requests served by the
service. The latencies are those recorded by the service, and don't include any network latency
between the service and the requester.

• Choose an edge by clicking the line or arrow tip of the edge between two services. X-Ray shows
a histogram for requests from the requester that were served by the downstream service. The
latencies are those recorded by the requester, and include latency in the network connection
between the two services.

To interpret the Service details panel histogram, you can look for values that differ the most
from the majority of values in the histogram. These outliers can be seen as peaks or spikes in the
histogram, and you can view the traces for a specific area to investigate what's going on.

To view traces filtered by latency, select a range on the histogram. Click where you want to start
the selection and drag from left to right to highlight a range of latencies to include in the trace
filter.

Explore the X-Ray console 59

AWS X-Ray Developer Guide

After selecting a range, you can choose Zoom to view just that portion of the histogram and refine
your selection.

Explore the X-Ray console 60

AWS X-Ray Developer Guide

Once you have the focus set to the area you're interested in, choose View traces.

Use X-Ray Insights

AWS X-Ray continuously analyzes trace data in your account to identify emergent issues in your
applications. When fault rates exceed the expected range, it creates an insight that records the
issue and tracks its impact until it's resolved. With Insights, you can:

• Identify where in your application issues are occurring, the root cause of the issue, and associated
impact. The impact analysis provided by Insights enables you to derive the severity and priority
of an issue.

Explore the X-Ray console 61

AWS X-Ray Developer Guide

• Receive notifications as the issue changes over time. Insights notifications can be integrated with
your monitoring and alerting solution using Amazon EventBridge. This integration enables you
to send automated emails or alerts based on the severity of the issue.

The X-Ray console identifies nodes with ongoing incidents in the trace map. To see a summary of
the insight, choose the affected node. You can also view and filter Insights by choosing Insights
from the navigation pane on the left.

X-Ray creates an insight when it detects an anomaly in one or more nodes of the service map. The
service uses statistical modeling to predict the expected fault rates of services in your application.
In the preceding example, the anomaly is an increase in faults from AWS Elastic Beanstalk.
The Elastic Beanstalk server experienced multiple API call timeouts, causing an anomaly in the
downstream nodes.

Enable Insights in the X-Ray console

Insights must be enabled for each group you want to use insights features with. You can enable
insights from the Groups page.

1. Open the X-Ray console.

Explore the X-Ray console 62

https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

2. Select an existing group or create a new one by choosing Create group, and then select
Enable Insights. For more information about configuring groups in the X-Ray console, see
Configure groups.

3. In the navigation pane on the left, choose Insights, and then choose an insight to view.

Note

X-Ray uses GetInsightSummaries, GetInsight, GetInsightEvents, and GetInsightImpactGraph
API operations to retrieve data from insights. To view insights, use the
AWSXrayReadOnlyAccess IAM managed policy or add the following custom policy to your
IAM role:

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:GetInsightSummaries",
 "xray:GetInsight",
 "xray:GetInsightEvents",
 "xray:GetInsightImpactGraph"
],
 "Resource": [
 "*"
]
 }
]
 }

For more information, see How AWS X-Ray works with IAM.

Explore the X-Ray console 63

AWS X-Ray Developer Guide

Enable insights notifications

With insights notifications, a notification is created for each insight event, such as when an insight
is created, changes significantly, or is closed. Customers can receive these notifications through
Amazon EventBridge events, and use conditional rules to take actions such as SNS notification,
Lambda invocation, posting messages to an SQS queue, or any of the targets EventBridge
supports. Insights notifications are emitted on a best-effort basis but are not guaranteed. For more
information about targets, see Amazon EventBridge Targets.

You can enable insights notifications for any insights enabled group from the Groups page.

To enable notifications for an X-Ray group

1. Open the X-Ray console.

2. Select an existing group or create a new one by choosing Create group, ensure that Enable
Insights is selected, and then select Enable Notifications. For more information about
configuring groups in the X-Ray console, see Configure groups.

To configure Amazon EventBridge conditional rules

1. Open the Amazon EventBridge console.

2. Navigate to Rules in the left navigation bar, and choose Create rule.

3. Provide a name and description for the rule.

4. Choose Event pattern, and then choose Custom pattern. Provide a pattern containing
"source": ["aws.xray"] and "detail-type": ["AWS X-Ray Insight
Update"]. The following are some examples of possible patterns.

• Event pattern to match all incoming events from X-Ray insights:

{
"source": ["aws.xray"],
"detail-type": ["AWS X-Ray Insight Update"]
}

• Event pattern to match a specified state and category:

{
"source": ["aws.xray"],

Explore the X-Ray console 64

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-targets.html
https://console.aws.amazon.com/xray/home#
https://console.aws.amazon.com/events/home

AWS X-Ray Developer Guide

"detail-type": ["AWS X-Ray Insight Update"],
"detail": {
 "State": ["ACTIVE"],
 "Category": ["FAULT"]
 }
}

5. Select and configure the targets that you would like to invoke when an event matches this
rule.

6. (Optional) Provide tags to more easily identify and select this rule.

7. Choose Create.

Note

X-Ray insights notifications sends events to Amazon EventBridge, which does not currently
support customer managed keys. For more information, see Data protection in AWS X-Ray.

Insight overview

The overview page for an insight attempts to answer three key questions:

• What is the underlying issue?

• What is the root cause?

• What is the impact?

The Anomalous services section shows a timeline for each service that illustrates the change in
fault rates during the incident. The timeline shows the number of traces with faults overlaid on a
solid band that indicates the expected number of faults based on the amount of traffic recorded.
The duration of the insight is visualized by the Incident window. The incident window begins when
X-Ray observes the metric becoming anomalous and persists while the insight is active.

The following example shows an increase in faults that caused an incident:

Explore the X-Ray console 65

AWS X-Ray Developer Guide

The Root cause section shows a trace map focused on the root cause service and the impacted
path. You may hide the unaffected nodes by selecting the eye icon in the top right of the Root
cause map. The root cause service is the farthest downstream node where X-Ray identified
an anomaly. It can represent a service that you instrumented or an external service that your
service called with an instrumented client. For example, if you call Amazon DynamoDB with an
instrumented AWS SDK client, an increase in faults from DynamoDB results in an insight with
DynamoDB as the root cause.

To further investigate the root cause, select View root cause details on the root cause graph.
You can use the Analytics page to investigate the root cause and related messages. For more
information, see Interact with the Analytics console.

Explore the X-Ray console 66

AWS X-Ray Developer Guide

Faults that continue upstream in the map can impact multiple nodes and cause multiple anomalies.
If a fault is passed all the way back to the user that made the request, the result is a client fault.
This is a fault in the root node of the trace map. The Impact graph provides a timeline of the
client experience for the entire group. This experience is calculated based on percentages of the
following states: Fault, Error, Throttle, and Okay.

This example shows an increase in traces with a fault at the root node during the time of an
incident. Incidents in downstream services don't always correspond to an increase in client errors.

Choosing Analyze insight opens the X-Ray Analytics console in a window where you can dive deep
into the set of traces causing the insight. For more information, see Interact with the Analytics
console.

Understanding impact

AWS X-Ray measures the impact caused by an ongoing issue as part of generating insights and
notifications. The impact is measured in two ways:

• Impact to the X-Ray group. For more information, see Configure groups

• Impact on the root cause service

This impact is determined by the percentage of request that are failing or causing an error within
a given time period. This impact analysis allows you to derive the severity and priority of the issue
based on your particular scenario. This impact is available as part of the console experience in
addition to insights notifications.

Deduplication

AWS X-Ray insights de-duplicates issues across multiple microservices. It uses anomaly detection
to determine the service that is the root cause of an issue, determines if other related services
are exhibiting anomalous behavior due to the same root cause, and records the result as a single
insight.

Explore the X-Ray console 67

AWS X-Ray Developer Guide

Review an insight's progress

X-Ray re-evaluates insights periodically until they are resolved, and records each notable
intermediate change as a notification, which can be sent as an Amazon EventBridge event. This
enables you to build processes and workflows to determine how the issue has changed over time,
and take appropriate actions such as sending an email or integrating with an alerting system using
EventBridge.

You can review incident events in the Impact Timeline on the Inspect page. By default the timeline
displays the most impacted service until you choose a different service.

To see a trace map and graphs for an event, choose it from the impact timeline. The trace map
shows services in your application that are affected by the incident. Under Impact analysis, graphs
show fault timelines for the selected node and for clients in the group.

Explore the X-Ray console 68

AWS X-Ray Developer Guide

To take a deeper look at the traces involved in an incident, choose Analyze event on the Inspect
page. You can use the Analytics page to refine the list of traces and identify affected users. For
more information, see Interact with the Analytics console.

Interact with the Analytics console

The AWS X-Ray Analytics console is an interactive tool for interpreting trace data to quickly
understand how your application and its underlying services are performing. The console enables
you to explore, analyze, and visualize traces through interactive response time and time-series
graphs.

When making selections in the Analytics console, the console constructs filters to reflect the
selected subset of all traces. You can refine the active dataset with increasingly granular filters by
clicking the graphs and the panels of metrics and fields that are associated with the current trace
set.

Console features

The X-Ray Analytics console uses the following key features for grouping, filtering, comparing, and
quantifying trace data.

Features

Feature Description

Groups The initial selected group is Default. To
change the retrieved group, select a different
group from the menu to the right of the main
filter expression search bar. To learn more
about groups see Configure groups.

Explore the X-Ray console 69

AWS X-Ray Developer Guide

Feature Description

Retrieved traces By default, the Analytics console generates
graphs based on all traces in the selected
group. Retrieved traces represent all traces
in your working set. You can find the trace
count in this tile. Filter expressions you apply
to the main search bar refine and update the
retrieved traces.

Show in charts/Hide from charts A toggle to compare the active group against
the retrieved traces. To compare the data
related to the group against any active filters,
choose Show in charts. To remove this view
from the charts, choose Hide from charts.

Filtered trace set A Through interactions with the graphs and
tables, apply filters to create the criteria for
Filtered trace set A. As the filters are applied,
the number of applicable traces and the
percentage of traces from the total that are
retrieved are calculated within this tile. Filters
populate as tags within the Filtered trace set
A tile and can also be removed from the tile.

Refine This function updates the set of retrieved
traces based on the filters applied to trace set
A. Refining the retrieved trace set refreshes
the working set of all traces retrieved based
on the filters for trace set A. The working set
of retrieved traces is a sampled subset of all
traces in the group.

Explore the X-Ray console 70

AWS X-Ray Developer Guide

Feature Description

Filtered trace set B When created, Filtered trace set B is a copy
of Filtered trace set A. To compare the two
trace sets, make new filter selections that will
apply to trace set B, while trace set A remains
fixed. As the filters are applied, the number
of applicable traces and the percentage of
traces from the total retrieved are calculated
within this tile. Filters populate as tags within
the Filtered trace set B tile and can also be
removed from the tile.

Response time root cause entity paths A table of recorded entity paths. X-Ray
determines which path in your trace is the
most likely cause for the response time.
The format indicates a hierarchy of entities
that are encountered, ending in a response
time root cause. Use these rows to filter for
recurring response time faults. For more
information about customizing a root cause
filter and getting data through the API,
see the Retrieving and refining root cause
analytics section in Getting data from X-Ray.

Delta (�) A column that is added to the metrics tables
when both trace set A and trace set B are
active. The Delta column calculates the
difference in percentage of traces between
trace set A and trace set B.

Response time distribution

The X-Ray Analytics console generates two primary graphs to help you visualize traces: Response
Time Distribution and Time Series Activity. This section and the following provide examples of
each, and explain the basics of how to read the graphs.

Explore the X-Ray console 71

AWS X-Ray Developer Guide

The following are the colors associated with the response time line graph (the time series graph
uses the same color scheme):

• All traces in the group – gray

• Retrieved traces – orange

• Filtered trace set A – green

• Filtered trace set B – blue

Example – Response time distribution

The response time distribution is a chart that shows the number of traces with a given response
time. Click and drag to make selections within the response time distribution. This selects and
creates a filter on the working trace set named responseTime for all traces within a specific
response time.

Time series activity

The time series activity chart shows the number of traces at a given time period. The color
indicators mirror the line graph colors of the response time distribution. The darker and fuller the
color block within the activity series, the more traces are represented at the given time.

Example – Time series activity

Click and drag to make selections within the time series activity graph. This selects and creates a
filter named timerange on the working trace set for all traces within a specific range of time.

Explore the X-Ray console 72

AWS X-Ray Developer Guide

Workflow examples

The following examples show common use cases for the X-Ray Analytics console. Each example
demonstrates a key function of the console experience. As a group, the examples follow a basic
troubleshooting workflow. The steps walk through how to first spot unhealthy nodes, and then
how to interact with the Analytics console to automatically generate comparative queries. Once
you have narrowed the scope through queries, you will finally look at the details of traces of
interest to determine what is damaging the health of your service.

Observe faults on the service graph

The trace map indicates the health of each node by coloring it based on the ratio of successful calls
to errors and faults. When you see a percentage of red on your node, it signals a fault. Use the X-
Ray Analytics console to investigate it.

For more information about how to read the trace map, see Use the X-Ray trace map.

Explore the X-Ray console 73

AWS X-Ray Developer Guide

Identify response time peaks

Using the response time distribution, you can observe peaks in response time. By selecting the
peak in response time, the tables below the graphs will update to expose all associated metrics,
such as status codes.

When you click and drag, X-Ray selects and creates a filter. It's shown in a gray shadow on top of
the graphed lines. You can now drag that shadow left and right along the distribution to update
your selection and filter.

Explore the X-Ray console 74

AWS X-Ray Developer Guide

View all traces marked with a status code

You can drill into traces within the selected peak by using the metrics tables below the graphs. By
clicking a row in the HTTP STATUS CODE table, you automatically create a filter on the working
dataset. For example, you could view all traces of status code 500. This creates a filter tag in the
trace set tile named http.status.

View all items in a subgroup and associated to a user

Drill into the error set based on user, URL, response time root cause, or other predefined attributes.
For example, to additionally filter the set of traces with a 500 status code, select a row from the
USERS table. This results in two filter tags in the trace set tile: http.status, as designated
previously, and user.

Compare two sets of traces with different criteria

Compare across various users and their POST requests to find other discrepancies and correlations.
Apply your first set of filters. They are defined by a blue line in the response time distribution. Then
select Compare. Initially, this creates a copy of the filters on trace set A.

To proceed, define a new set of filters to apply to trace set B. This second set is represented by
a green line. The following example shows different lines according to the blue and green color
scheme.

Explore the X-Ray console 75

AWS X-Ray Developer Guide

Identify a trace of interest and view its details

As you narrow your scope using the console filters, the trace list below the metrics tables becomes
more meaningful. The trace list table combines information about URL, USER, and STATUS CODE
into one view. For more insights, select a row from this table to open the trace's detail page and
view its timeline and raw data.

Configure groups

Groups are a collection of traces that are defined by a filter expression. You can use groups to
generate additional service graphs and supply Amazon CloudWatch metrics. You can use the AWS
X-Ray console or X-Ray API to create and manage groups for your services. This topic describes how
to create and manage groups by using the X-Ray console. For information about how to manage
groups by using the X-Ray API, see Configuring sampling, groups, and encryption settings with the
X-Ray API.

You can create groups of traces for trace maps, traces, or analytics. When you create a group, the
group becomes available as a filter on the group dropdown menu on all three pages: Trace Map,
Traces, and Analytics.

Explore the X-Ray console 76

AWS X-Ray Developer Guide

Groups are identified by their name or an Amazon Resource Name (ARN), and contain a filter
expression. The service compares incoming traces to the expression and stores them accordingly.
For more information about how to build a filter expression, see Use filter expressions.

Updating a group's filter expression doesn't change data that's already recorded. The update
applies only to subsequent traces. This can result in a merged graph of the new and old
expressions. To avoid this, delete a current group and create a new one.

Note

Groups are billed by the number of retrieved traces that match the filter expression. For
more information, see AWS X-Ray pricing.

Create a group

Note

You can now configure X-Ray groups from within the Amazon CloudWatch console. You can
also continue to use the X-Ray console.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

Explore the X-Ray console 77

https://aws.amazon.com/xray/pricing/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

2. Choose Settings in the left navigation pane.

3. Choose View settings under Groups within the X-Ray traces section.

4. Choose Create group above the list of groups.

5. On the Create group page, enter a name for the group. A group name can have a maximum
of 32 characters, and contain alphanumeric characters and dashes. Group names are case
sensitive.

6. Enter a filter expression. For more information about how to build a filter expression, see
Use filter expressions. In the following example, the group filters for fault traces from
the service api.example.com. and requests to the service where the response time was
greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

7. In Insights, enable or disable insights access for the group. For more information about
insights, see Use X-Ray Insights.

8. In Tags, choose Add new tag to enter a tag key, and optionally, a tag value. Continue to
add additional tags as desired. Tag keys must be unique. To delete a tag, choose Remove
underneath each tag. For more information about tags, see Tagging X-Ray sampling rules
and groups.

9. Choose Create group.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

Explore the X-Ray console 78

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

2. Open the Create group page from the Groups page in the left navigation pane, or from the
group menu on one of the following pages: Trace Map, Traces, and Analytics.

3. On the Create group page, enter a name for the group. A group name can have a maximum
of 32 characters, and contain alphanumeric characters and dashes. Group names are case
sensitive.

4. Enter a filter expression. For more information about how to build a filter expression, see
Use filter expressions. In the following example, the group filters for fault traces from
the service api.example.com. and requests to the service where the response time was
greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

5. In Insights, enable or disable insights access for the group. For more information about
insights, see Use X-Ray Insights.

6. In Tags, enter a tag key, and optionally, a tag value. As you add a tag, a new line appears
for you to enter another tag. Tag keys must be unique. To delete a tag, choose X at the end
of the tag's row. For more information about tags, see Tagging X-Ray sampling rules and
groups.

7. Choose Create group.

Apply a group

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Open one of the following pages from the navigation pane under X-Ray traces:

Explore the X-Ray console 79

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

• Trace Map

• Traces

3. Enter a group name into the Filter by X-Ray group filter. The data shown on the page
changes to match the filter expression set in the group.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open one of the following pages from the navigation pane:

• Trace Map

• Traces

• Analytics

3. On the group menu, choose the group that you created in the section called “Create a
group”. The data shown on the page changes to match the filter expression set in the
group.

Edit a group

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Groups within the X-Ray traces section.

4. Choose a group from the Groups section and then choose Edit.

5. Although you can't rename a group, you can update the filter expression. For more
information about how to build a filter expression, see Use filter expressions. In the
following example, the group filters for fault traces from the service api.example.com,
where the request URL address contains example/game, and response time for requests
was greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

Explore the X-Ray console 80

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

6. In Insights, enable or disable insights access for the group. For more information about
insights, see Use X-Ray Insights.

7. In Tags, choose Add new tag to enter a tag key, and optionally, a tag value. Continue to
add additional tags as desired. Tag keys must be unique. To delete a tag, choose Remove
underneath each tag. For more information about tags, see Tagging X-Ray sampling rules
and groups.

8. When you're finished updating the group, choose Update group.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Do one of the following to open the Edit group page.

a. On the Groups page, choose the name of a group to edit it.

b. On the group menu on one of the following pages, point to a group, and then choose
Edit.

• Trace Map

• Traces

• Analytics

3. Although you can't rename a group, you can update the filter expression. For more
information about how to build a filter expression, see Use filter expressions. In the
following example, the group filters for fault traces from the service api.example.com,

Explore the X-Ray console 81

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

where the request URL address contains example/game, and response time for requests
was greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

4. In Insights, enable or disable insights and insights notifications for the group. For more
information about insights, see Use X-Ray Insights.

5. In Tags, edit tag keys and values. Tag keys must be unique. Tag values are optional; you can
delete values, if you want. To delete a tag, choose X at the end of the tag's row. For more
information about tags, see Tagging X-Ray sampling rules and groups.

6. When you're finished updating the group, choose Update group.

Clone a group

Cloning a group creates a new group that has the filter expression and tags of an existing group.
When you clone a group, the new group has the same name as the group from which it's cloned,
with -clone appended to the name.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Groups within the X-Ray traces section.

4. Choose a group from the Groups section and then choose Clone.

5. On the Create group page, the name of the group is group-name-clone. Optionally,
enter a new name for the group. A group name can have a maximum of 32 characters, and
contain alphanumeric characters and dashes. Group names are case sensitive.

Explore the X-Ray console 82

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

6. You can keep the filter expression from the existing group, or optionally, enter a new filter
expression. For more information about how to build a filter expression, see Use filter
expressions. In the following example, the group filters for fault traces from the service
api.example.com. and requests to the service where the response time was greater than
or equal to five seconds.

service("api.example.com") { fault = true OR responsetime >= 5 }

7. In Tags, edit tag keys and values, if needed. Tag keys must be unique. Tag values are
optional; you can delete values if you want. To delete a tag, choose X at the end of the tag's
row. For more information about tags, see Tagging X-Ray sampling rules and groups.

8. Choose Create group.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Groups page from the left navigation pane, and the choose the name of a group
that you want to clone.

3. Choose Clone group from the Actions menu.

4. On the Create group page, the name of the group is group-name-clone. Optionally,
enter a new name for the group. A group name can have a maximum of 32 characters, and
contain alphanumeric characters and dashes. Group names are case sensitive.

5. You can keep the filter expression from the existing group, or optionally, enter a new filter
expression. For more information about how to build a filter expression, see Use filter
expressions. In the following example, the group filters for fault traces from the service
api.example.com. and requests to the service where the response time was greater than
or equal to five seconds.

service("api.example.com") { fault = true OR responsetime >= 5 }

6. In Tags, edit tag keys and values, if needed. Tag keys must be unique. Tag values are
optional; you can delete values if you want. To delete a tag, choose X at the end of the tag's
row. For more information about tags, see Tagging X-Ray sampling rules and groups.

7. Choose Create group.

Explore the X-Ray console 83

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Delete a group

Follow steps in this section to delete a group. You can't delete the Default group.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Groups within the X-Ray traces section.

4. Choose a group from the Groups section and then choose Delete.

5. When you're prompted to confirm, choose Delete.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Groups page from the left navigation pane, and the choose the name of a group
that you want to delete.

3. On the Actions menu, choose Delete group.

4. When you're prompted to confirm, choose Delete.

View group metrics in Amazon CloudWatch

After a group is created, incoming traces are checked against the group’s filter expression as they're
stored in the X-Ray service. Metrics for the number of traces matching each criteria are published
to Amazon CloudWatch every minute. Choosing View metric on the Edit group page opens the
CloudWatch console to the Metric page. For more information about how to use CloudWatch
metrics, see Using Amazon CloudWatch Metrics in the Amazon CloudWatch User Guide.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Groups within the X-Ray traces section.

Explore the X-Ray console 84

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

4. Choose a group from the Groups section and then choose Edit.

5. On the Edit group page, choose View metric.

The CloudWatch console Metrics page opens in a new tab.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Groups page from the left navigation pane, and the choose the name of a group
that you want to view metrics for.

3. On the Edit group page, choose View metric.

The CloudWatch console Metrics page opens in a new tab.

Configure sampling rules

You can use the AWS X-Ray console to configure sampling rules for your services. The X-Ray SDK
and AWS services that support active tracing with sampling configuration use sampling rules to
determine which requests to record.

Configure sampling rules

You can configure sampling for the following use cases:

• API Gateway Entrypoint – API Gateway supports sampling and active tracing. To enable active
tracing on an API stage, see Amazon API Gateway active tracing support for AWS X-Ray.

• AWS AppSync – AWS AppSync supports sampling and active tracing. To enable active tracing on
AWS AppSync requests, see Tracing with AWS X-Ray.

• Instrument X-Ray SDK on compute platforms – When using compute platforms such as
Amazon EC2, Amazon ECS, or AWS Elastic Beanstalk, sampling is supported when the application
has been instrumented with the latest X-Ray SDK.

Customizing sampling rules

By customizing sampling rules, you can control the amount of data that you record. You can also
modify sampling behavior without modifying or redeploying your code. Sampling rules tell the X-

Explore the X-Ray console 85

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://docs.aws.amazon.com/appsync/latest/devguide/x-ray-tracing.html

AWS X-Ray Developer Guide

Ray SDK how many requests to record for a set of criteria. By default, the X-Ray SDK records the
first request received at the beginning of each second, and five percent of any additional requests.
One request per second is the reservoir. This ensures that at least one trace is recorded each second
as long as the service is serving requests. Five percent is the rate at which additional requests
beyond the reservoir size are sampled.

You can configure the X-Ray SDK to read sampling rules from a JSON document that you include
with your code. However, when you run multiple instances of your service, each instance performs
sampling independently. This causes the overall percentage of requests sampled to increase
because the reservoirs of all of the instances are effectively added together. Additionally, to update
local sampling rules, you must redeploy your code.

By defining sampling rules in the X-Ray console, and configuring the SDK to read rules from the
X-Ray service, you can avoid both of these issues. The service manages the reservoir for each rule,
and assigns quotas to each instance of your service to distribute the reservoir evenly, based on
the number of instances that are running. The reservoir limit is calculated according to the rules
you set. Because the rules are configured in the service, you can manage rules without making
additional deployments. For more informaiton about the AWS SDK, see Use an SDK.

Note

X-Ray uses a best-effort approach in applying sampling rules, and in some cases the
effective sampling rate may not exactly match the configured sampling rules. However,
over time the number of requests sampled should be close to the configured percentage.

You can now configure X-Ray sampling rules from within the Amazon CloudWatch console. You can
also continue to use the X-Ray console.

CloudWatch console

To configure sampling rules in the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Sampling rules within the X-Ray traces section.

4. To create a rule, choose Create sampling rule.

Explore the X-Ray console 86

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

To edit a rule, choose a rule and choose Edit to edit it.

To delete a rule, choose a rule and choose Delete to delete it.

X-Ray console

To configure sampling rules in the X-Ray console

1. Open the X-Ray console.

2. Choose Sampling in the left navigation pane.

3. To create a rule, choose Create sampling rule.

To edit a rule, choose a rule's name.

To delete a rule, choose a rule and use the Actions menu to delete it.

Sampling rule options

The following options are available for each rule. String values can use wildcards to match a single
character (?) or zero or more characters (*).

Sampling rule options

• Rule name (string) – A unique name for the rule.

• Priority (integer between 1 and 9999) – The priority of the sampling rule. Services evaluate rules
in ascending order of priority, and make a sampling decision with the first rule that matches.

• Reservoir (non-negative integer) – A fixed number of matching requests to instrument per
second, before applying the fixed rate. The reservoir is not used directly by services, but applies
to all services using the rule collectively.

• Rate (integer between 0 and 100) – The percentage of matching requests to instrument, after
the reservoir is exhausted. When configuring a sampling rule in the console, choose a percentage
between 0 and 100. When configuring a sampling rule in a client SDK using a JSON document,
provide a percentage value between 0 and 1.

• Service name (string) – The name of the instrumented service, as it appears in the trace map.

• X-Ray SDK – The service name that you configure on the recorder.

• Amazon API Gateway – api-name/stage.

Explore the X-Ray console 87

https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

• Service type (string) – The service type, as it appears in the trace map. For the X-Ray SDK, set the
service type by applying the appropriate plugin:

• AWS::ElasticBeanstalk::Environment – An AWS Elastic Beanstalk environment (plugin).

• AWS::EC2::Instance – An Amazon EC2 instance (plugin).

• AWS::ECS::Container – An Amazon ECS container (plugin).

• AWS::APIGateway::Stage – An Amazon API Gateway stage.

• AWS::AppSync::GraphQLAPI – An AWS AppSync API request.

• Host (string) – The hostname from the HTTP host header.

• HTTP method (string) – The method of the HTTP request.

• URL path (string) – The URL path of the request.

• X-Ray SDK – The path portion of the HTTP request URL.

• Resource ARN (string) – The ARN of the AWS resource running the service.

• X-Ray SDK – Not supported. The SDK can only use rules with Resource ARN set to *.

• Amazon API Gateway – The stage ARN.

• (Optional) Attributes (key and value) – Segment attributes that are known when the sampling
decision is made.

• X-Ray SDK – Not supported. The SDK ignores rules that specify attributes.

• Amazon API Gateway – Headers from the original HTTP request.

Sampling rule examples

Example – Default rule with no reservoir and a low rate

You can modify the default rule's reservoir and rate. The default rule applies to requests that don't
match any other rule.

• Reservoir: 0

• Rate: 5 (0.05 if configured using a JSON document)

Example – Debugging rule to trace all requests for a problematic route

A high-priority rule applied temporarily for debugging.

• Rule name: DEBUG – history updates
Explore the X-Ray console 88

AWS X-Ray Developer Guide

• Priority: 1

• Reservoir: 1

• Rate: 100 (1 if configured using a JSON document)

• Service name: Scorekeep

• Service type: *

• Host: *

• HTTP method: PUT

• URL path: /history/*

• Resource ARN: *

Example – Higher minimum rate for POSTs

• Rule name: POST minimum

• Priority: 100

• Reservoir: 10

• Rate: 10 (.1 if configured using a JSON document)

• Service name: *

• Service type: *

• Host: *

• HTTP method: POST

• URL path: *

• Resource ARN: *

Configure your service to use sampling rules

The X-Ray SDK requires additional configuration to use sampling rules that you configure in the
console. See the configuration topic for your language for details on configuring a sampling
strategy:

• Java: Sampling rules

• Go: Sampling rules

• Node.js: Sampling rules

Explore the X-Ray console 89

AWS X-Ray Developer Guide

• Python: Sampling rules

• Ruby: Sampling rules

• .NET: Sampling rules

For API Gateway, see Amazon API Gateway active tracing support for AWS X-Ray.

Viewing sampling results

The X-Ray console Sampling page shows detailed information about how your services use each
sampling rule.

The Trend column shows how the rule has been used in the last few minutes. Each column shows
statistics for a 10-second window.

Sampling statistics

• Total matched rule: The number of requests that matched this rule. This number doesn't include
requests that could have matched this rule, but matched a higher-priority rule first.

• Total sampled: The number of requests recorded.

• Sampled with fixed rate: The number of requests sampled by applying the rule's fixed rate.

• Sampled with reservoir limit: The number of requests sampled using a quota assigned by X-Ray.

• Borrowed from reservoir: The number of requests sampled by borrowing from the reservoir.
The first time a service matches a request to a rule, it has not yet been assigned a quota by X-
Ray. However, if the reservoir is at least 1, the service borrows one trace per second until X-Ray
assigns a quota.

For more information about sampling statistics and how services use sampling rules, see Using
sampling rules with the X-Ray API.

Next steps

You can use the X-Ray API to manage sampling rules. With the API, you can create and update
rules programmatically on a schedule, or in response to alarms or notifications. See Configuring
sampling, groups, and encryption settings with the X-Ray API for instructions and additional rule
examples.

The X-Ray SDK and AWS services also use the X-Ray API to read sampling rules, report sampling
results, and get sampling targets. Services must keep track of how often they apply each rule,

Explore the X-Ray console 90

AWS X-Ray Developer Guide

evaluate rules based on priority, and borrow from the reservoir when a request matches a rule for
which X-Ray has not yet assigned the service a quota. For more details about how a service uses the
API for sampling, see Using sampling rules with the X-Ray API.

When the X-Ray SDK calls sampling APIs, it uses the X-Ray daemon as a proxy. If you already use
TCP port 2000, you can configure the daemon to run the proxy on a different port. See Configuring
the AWS X-Ray daemon for details.

Console deep linking

You can use routes and queries to deep link into specific traces, or filtered views of traces and the
trace map.

Console pages

• Welcome page – xray/home#/welcome

• Getting started – xray/home#/getting-started

• Trace map – xray/home#/service-map

• Traces – xray/home#/traces

Traces

You can generate links for timeline, raw, and map views of individual traces.

Trace timeline – xray/home#/traces/trace-id

Raw trace data – xray/home#/traces/trace-id/raw

Example – raw trace data

https://console.aws.amazon.com/xray/home#/traces/1-57f5498f-d91047849216d0f2ea3b6442/
raw

Filter expressions

Link to a filtered list of traces.

Filtered traces view – xray/home#/traces?filter=filter-expression

Explore the X-Ray console 91

https://console.aws.amazon.com/xray/home#/welcome
https://console.aws.amazon.com/xray/home#/getting-started
https://console.aws.amazon.com/xray/home#/service-map
https://console.aws.amazon.com/xray/home#/traces

AWS X-Ray Developer Guide

Example – filter expression

https://console.aws.amazon.com/xray/home#/traces?filter=service("api.amazon.com")
 { fault = true OR responsetime > 2.5 } AND annotation.foo = "bar"

Example – filter expression (URL encoded)

https://console.aws.amazon.com/xray/home#/traces?filter=service(%22api.amazon.com
%22)%20%7B%20fault%20%3D%20true%20OR%20responsetime%20%3E%202.5%20%7D%20AND
%20annotation.foo%20%3D%20%22bar%22

For more information about filter expressions, see Use filter expressions.

Time range

Specify a length of time or start and end time in ISO8601 format. Time ranges are in UTC and can
be up to 6 hours long.

Length of time – xray/home#/page?timeRange=range-in-minutes

Example – trace map for the last hour

https://console.aws.amazon.com/xray/home#/service-map?timeRange=PT1H

Start and end time – xray/home#/page?timeRange=start~end

Example – time range accurate to seconds

https://console.aws.amazon.com/xray/home#/traces?
timeRange=2023-7-01T16:00:00~2023-7-01T22:00:00

Example – time range accurate to minutes

https://console.aws.amazon.com/xray/home#/traces?
timeRange=2023-7-01T16:00~2023-7-01T22:00

Region

Specify an AWS Region to link to pages in that Region. If you don't specify a Region, the console
redirects you to the last visited Region.

Region – xray/home?region=region#/page

Explore the X-Ray console 92

AWS X-Ray Developer Guide

Example – trace map in US West (Oregon) (us-west-2)

https://console.aws.amazon.com/xray/home?region=us-west-2#/service-map

When you include a Region with other query parameters, the Region query goes before the hash,
and the X-Ray-specific queries go after the page name.

Example – trace map for the last hour in US West (Oregon) (us-west-2)

https://console.aws.amazon.com/xray/home?region=us-west-2#/service-map?timeRange=PT1H

Combined

Example – recent traces with a duration filter

https://console.aws.amazon.com/xray/home#/traces?timeRange=PT15M&filter=duration%20%3E
%3D%205%20AND%20duration%20%3C%3D%208

Output

• Page – Traces

• Time Range – Last 15 minutes

• Filter – duration >= 5 AND duration <= 8

Use an SDK

Use an SDK if you want to use a command line interface or need more custom tracing, monitoring,
or logging capabilities than what is available in an AWS Management Console. You can also use
an AWS SDK to develop programs that use the X-Ray APIs. You can use either the AWS Distro for
OpenTelemetry (ADOT) SDK or the X-Ray SDK.

If you use an SDK, you can add customizations to your workflow both when you instrument
your application and when you configure your collector or agent. You can use an SDK to do the
following tasks that you can’t do using an AWS Management Console:

• Publish custom metrics – Sample metrics at high resolutions down to 1 second, use multiple
dimensions to add information about a metric, and aggregate data points into a statistic set.

• Customize your collector – Customize the configuration for any portion of a collector including
the receiver, processor, exporter, and connector.

Use an SDK 93

AWS X-Ray Developer Guide

• Customize your instrumentation – Customize segments and subsegments, add custom key-value
pairs as attributes, and create custom metrics.

• Create and update sampling rules programmatically.

Use the ADOT SDK if you want the flexibility of using a standardized OpenTelemetry SDK with
added layers of AWS security and optimization. The AWS Distro for OpenTelemetry (ADOT) SDK is
a vendor-agnostic package that allows for integration with back ends from other vendors and non-
AWS services without having to reinstrument your code.

Use the X-Ray SDK if you are already using the X-Ray SDK, only integrate with AWS backends, and
don’t want to change the way you interact with X-Ray or your application code.

For more information about each feature, see Choosing between the AWS Distro for
OpenTelemetry and X-Ray SDKs.

Use the ADOT SDK

The ADOT SDK is a set of open source APIs, libraries and agents that send data to backend services.
ADOT is supported by AWS, integrates with multiple backends and agents, and provides a large
number of open source libraries maintained by the OpenTelemetry community. Use the ADOT SDK
to instrument your application and collect logs, metadata, metrics and traces. You can also use
ADOT to monitor services and set an alarm based on your metrics in CloudWatch.

If you are using the ADOT SDK, you have the following options, in combination with an agent:

• Use the ADOT SDK with the CloudWatch agent – recommended.

• Use the ADOT SDK with the ADOT Collector – recommended if you want to use vendor agnostic
software with AWS layers of security and optimization.

To use the ADOT SDK, do the following:

• Instrument your application using the ADOT SDK. For more information, see the documentation
for your programming language in the ADOT technical documentation.

• Configure an ADOT collector to tell it where to send data that it collects.

After the ADOT collector receives your data, it sends it to the backend that you specify in the ADOT
configuration. ADOT can send data to multiple backends, including to vendors outside of AWS, as
shown in the following diagram:

Use the ADOT SDK 94

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/introduction

AWS X-Ray Developer Guide

AWS regularly updates ADOT to add functionality and align with the OpenTelemetry framework.
Updates and future plans for developing ADOT are part of a roadmap that is available to the
public. ADOT supports several programming languages which include the following:

• Go

• Java

• JavaScript

• Python

• .NET

• Ruby

• PHP

If you are using Python, ADOT can automatically instrument your application. To get started using
ADOT, see Introduction and Getting Started with the AWS Distro for OpenTelemetry Collector.

Use the X-Ray SDK

The X-Ray SDK is a set of AWS APIs and libraries that send data to AWS backend services. Use the
X-Ray SDK to instrument your application and collect trace data. You cannot use the X-Ray SDK to
collect log or metric data.

If you are using the X-Ray SDK, you have the following options, in combination with an agent:

Use the X-Ray SDK 95

https://opentelemetry.io/docs/
https://github.com/orgs/aws-observability/projects/4
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/getting-started/collector

AWS X-Ray Developer Guide

• Use the X-Ray SDK with the AWS X-Ray daemon – Use this if you don't want to update your
application code.

• Use the X-Ray SDK with the CloudWatch agent – (recommended) The CloudWatch agent is
compatible with the X-Ray SDK.

To use the X-Ray SDK, do the following:

• Instrument your application using the X-Ray SDK.

• Configure a collector to tell it where to send data that it collects. You can use either the
CloudWatch agent or the X-Ray daemon to collect your trace information.

After the collector or agent receives your data, it sends it to an AWS backend that you specify in
the agent configuration. The X-Ray SDK can only send data to an AWS backend as shown in the
following diagram:

If you are using Java, you can use the X-Ray SDK to automatically instrument your application.
To get started using the X-Ray SDK, see the libraries associated with the following programming
languages:

• Go

• Java

• Node.js

Use the X-Ray SDK 96

AWS X-Ray Developer Guide

• Python

• .NET

• Ruby

Use the X-Ray API

If the X-Ray SDK doesn’t support your programming language, you can use either the X-Ray APIs
directly or the AWS Command Line Interface (AWS CLI) to call X-Ray API commands. Use the
following guidance to choose how you interact with the API:

• Use the AWS CLI for simpler syntax using pre-formatted commands or with options inside your
request.

• Use the X-Ray API directly for maximum flexibility and customization for requests that you make
to X-Ray.

If you use the X-Ray API directly instead of the AWS CLI, you must parametrize your request in the
correct data format and may also have to configure authentication and error handling.

The following diagram shows guidance to choose how to interact with the X-Ray API:

Use the X-Ray API 97

https://docs.aws.amazon.com/xray/latest/devguide/xray-api.html

AWS X-Ray Developer Guide

Use the X-Ray API to send trace data to directly to X-Ray. The X-Ray API supports all functions
available in the X-Ray SDK including the following common actions:

• PutTraceSegments – Uploads segment documents to X-Ray.

• BatchGetTraces – Retrieves a list of traces in a list of trace IDs. Each retrieved trace is a collection
of segment documents from a single request.

• GetTraceSummaries – Retrieves IDs and annotations for traces. You can specify a
FilterExpression to retrieve a subset of trace summaries.

• GetTraceGraph – Retrieves a service graph for a specific trace ID.

• GetServiceGraph – Retrieves a JSON formatted document that describes services that process
incoming requests and call downstream requests.

You can also use the AWS Command Line Interface (AWS CLI) inside your application code to
programmatically interact with X-Ray. The AWS CLI supports all functions available in the X-
Ray SDK including those for other AWS services. The following functions are versions of the API
operations listed previously with a simpler format:

• put-trace-segments – Uploads segment documents to X-Ray.

• batch-get-traces – Retrieves a list of traces in a list of trace IDs. Each retrieved trace is a
collection of segment documents from a single request.

• get-trace-summaries – Retrieves IDs and annotations for traces. You can specify a
FilterExpression to retrieve a subset of trace summaries.

• get-trace-graph – Retrieves a service graph for a specific trace ID.

• get-service-graph – Retrieves a JSON formatted document that describes services that process
incoming requests and call downstream requests.

To get started, you must install the AWS CLI for your operating system. AWS supports Linux,
macOS and Windows operating systems. For more information about the list of X-Ray commands,
see the AWS CLI Command Reference guide for X-Ray.

Explore the X-Ray API

The X-Ray API provides access to all X-Ray functionality through the AWS SDK, AWS Command Line
Interface, or directly over HTTPS. The X-Ray API Reference documents input parameters for each
API action, and the fields and data types that they return.

X-Ray API 98

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceGraph.html
https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/index.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/batch-get-traces.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/get-trace-summaries.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/get-trace-graph.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/get-service-graph.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/index.html
https://docs.aws.amazon.com//xray/latest/api/Welcome.html

AWS X-Ray Developer Guide

You can use the AWS SDK to develop programs that use the X-Ray API. The X-Ray console and X-
Ray daemon both use the AWS SDK to communicate with X-Ray. The AWS SDK for each language
has a reference document for classes and methods that map to X-Ray API actions and types.

AWS SDK References

• Java – AWS SDK for Java

• JavaScript – AWS SDK for JavaScript

• .NET – AWS SDK for .NET

• Ruby – AWS SDK for Ruby

• Go – AWS SDK for Go

• PHP – AWS SDK for PHP

• Python – AWS SDK for Python (Boto)

The AWS Command Line Interface is a command line tool that uses the SDK for Python to call AWS
APIs. When you are first learning an AWS API, the AWS CLI provides an easy way to explore the
available parameters and view the service output in JSON or text form.

See the AWS CLI Command Reference for details on aws xray subcommands.

Using the X-Ray API with the AWS CLI

The AWS CLI lets your access the X-Ray service directly and use the same APIs that the X-Ray
console uses to retrieve the service graph and raw traces data. The sample application includes
scripts that show how to use these APIs with the AWS CLI.

Prerequisites

This tutorial uses the Scorekeep sample application and included scripts to generate tracing
data and a service map. Follow the instructions in the sample application tutorial to launch the
application.

This tutorial uses the AWS CLI to show basic use of the X-Ray API. The AWS CLI, available for
Windows, Linux, and OS-X, provides command line access to the public APIs for all AWS services.

X-Ray API 99

https://docs.aws.amazon.com/sdk-for-java/latest/reference/software/amazon/awssdk/services/xray/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/xray/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/XRay/NXRay.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/XRay.html
https://aws.github.io/aws-sdk-go-v2/docs/
https://docs.aws.amazon.com/aws-sdk-php/v3/api/namespace-Aws.XRay.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/xray.html
https://docs.aws.amazon.com/cli/latest/reference/xray
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

AWS X-Ray Developer Guide

Note

You must verify that your AWS CLI is configured to the same region where your sample
application was created.

Scripts included to test the sample application uses cURL to send traffic to the API and jq to parse
the output. You can download the jq executable from stedolan.github.io, and the curl executable
from https://curl.haxx.se/download.html. Most Linux and OS X installations include cURL.

Generate trace data

The web app continues to generate traffic to the API every few seconds while the game is in-
progress, but only generates one type of request. Use the test-api.sh script to run end to end
scenarios and generate more diverse trace data while you test the API.

To use the test-api.sh script

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Copy the environment URL from the page header.

4. Open bin/test-api.sh and replace the value for API with your environment's URL.

#!/bin/bash
API=scorekeep.9hbtbm23t2.us-west-2.elasticbeanstalk.com/api

5. Run the script to generate traffic to the API.

~/debugger-tutorial$./bin/test-api.sh
Creating users,
session,
game,
configuring game,
playing game,
ending game,
game complete.
{"id":"MTBP8BAS","session":"HUF6IT64","name":"tic-tac-toe-test","users":
["QFF3HBGM","KL6JR98D"],"rules":"102","startTime":1476314241,"endTime":1476314245,"states":
["JQVLEOM2","D67QLPIC","VF9BM9NC","OEAA6GK9","2A705O73","1U2LFTLJ","HUKIDD70","BAN1C8FI","G3UDJTUF","AB70HVEV"],"moves":
["BS8F8LQ","4MTTSPKP","463OETES","SVEBCL3N","N7CQ1GHP","O84ONEPD","EG4BPROQ","V4BLIDJ3","9RL3NPMV"]}

X-Ray API 100

https://stedolan.github.io/jq/
https://curl.haxx.se/download.html
https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide

Use the X-Ray API

The AWS CLI provides commands for all of the API actions that X-Ray provides, including
GetServiceGraph and GetTraceSummaries. See the AWS X-Ray API Reference for more
information on all of the supported actions and the data types that they use.

Example bin/service-graph.sh

EPOCH=$(date +%s)
aws xray get-service-graph --start-time $(($EPOCH-600)) --end-time $EPOCH

The script retrieves a service graph for the last 10 minutes.

~/eb-java-scorekeep$./bin/service-graph.sh | less
{
 "StartTime": 1479068648.0,
 "Services": [
 {
 "StartTime": 1479068648.0,
 "ReferenceId": 0,
 "State": "unknown",
 "EndTime": 1479068651.0,
 "Type": "client",
 "Edges": [
 {
 "StartTime": 1479068648.0,
 "ReferenceId": 1,
 "SummaryStatistics": {
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "TotalCount": 0,
 "OtherCount": 0
 },
 "FaultStatistics": {
 "TotalCount": 0,
 "OtherCount": 0
 },
 "TotalCount": 2,
 "OkCount": 2,
 "TotalResponseTime": 0.054000139236450195
 },
 "EndTime": 1479068651.0,
 "Aliases": []

X-Ray API 101

https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/Welcome.html

AWS X-Ray Developer Guide

 }
]
 },
 {
 "StartTime": 1479068648.0,
 "Names": [
 "scorekeep.elasticbeanstalk.com"
],
 "ReferenceId": 1,
 "State": "active",
 "EndTime": 1479068651.0,
 "Root": true,
 "Name": "scorekeep.elasticbeanstalk.com",
...

Example bin/trace-urls.sh

EPOCH=$(date +%s)
aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time $(($EPOCH-60)) --
query 'TraceSummaries[*].Http.HttpURL'

The script retrieves the URLs of traces generated between one and two minutes ago.

~/eb-java-scorekeep$./bin/trace-urls.sh
[
 "http://scorekeep.elasticbeanstalk.com/api/game/6Q0UE1DG/5FGLM9U3/
endtime/1479069438",
 "http://scorekeep.elasticbeanstalk.com/api/session/KH4341QH",
 "http://scorekeep.elasticbeanstalk.com/api/game/GLQBJ3K5/153AHDIA",
 "http://scorekeep.elasticbeanstalk.com/api/game/VPDL672J/G2V41HM6/
endtime/1479069466"
]

Example bin/full-traces.sh

EPOCH=$(date +%s)
TRACEIDS=$(aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time
 $(($EPOCH-60)) --query 'TraceSummaries[*].Id' --output text)
aws xray batch-get-traces --trace-ids $TRACEIDS --query 'Traces[*]'

The script retrieves full traces generated between one and two minutes ago.

X-Ray API 102

AWS X-Ray Developer Guide

~/eb-java-scorekeep$./bin/full-traces.sh | less
[
 {
 "Segments": [
 {
 "Id": "3f212bc237bafd5d",
 "Document": "{\"id\":\"3f212bc237bafd5d\",\"name\":\"DynamoDB\",
\"trace_id\":\"1-5828d9f2-a90669393f4343211bc1cf75\",\"start_time\":1.479072242459E9,
\"end_time\":1.479072242477E9,\"parent_id\":\"72a08dcf87991ca9\",\"http\":
{\"response\":{\"content_length\":60,\"status\":200}},\"inferred\":true,\"aws\":
{\"consistent_read\":false,\"table_name\":\"scorekeep-session-xray\",\"operation\":
\"GetItem\",\"request_id\":\"QAKE0S8DD0LJM245KAOPMA746BVV4KQNSO5AEMVJF66Q9ASUAAJG\",
\"resource_names\":[\"scorekeep-session-xray\"]},\"origin\":\"AWS::DynamoDB::Table\"}"
 },
 {
 "Id": "309e355f1148347f",
 "Document": "{\"id\":\"309e355f1148347f\",\"name\":\"DynamoDB\",
\"trace_id\":\"1-5828d9f2-a90669393f4343211bc1cf75\",\"start_time\":1.479072242477E9,
\"end_time\":1.479072242494E9,\"parent_id\":\"37f14ef837f00022\",\"http\":
{\"response\":{\"content_length\":606,\"status\":200}},\"inferred\":true,\"aws\":
{\"table_name\":\"scorekeep-game-xray\",\"operation\":\"UpdateItem\",\"request_id
\":\"388GEROC4PCA6D59ED3CTI5EEJVV4KQNSO5AEMVJF66Q9ASUAAJG\",\"resource_names\":
[\"scorekeep-game-xray\"]},\"origin\":\"AWS::DynamoDB::Table\"}"
 }
],
 "Id": "1-5828d9f2-a90669393f4343211bc1cf75",
 "Duration": 0.05099987983703613
 }
...

Cleanup

Terminate your Elastic Beanstalk environment to shut down the Amazon EC2 instances, DynamoDB
tables and other resources.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Choose Actions.

4. Choose Terminate Environment.

X-Ray API 103

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide

5. Choose Terminate.

Trace data is automatically deleted from X-Ray after 30 days.

Sending trace data to X-Ray

You can send trace data to X-Ray in the form of segment documents. A segment document is
a JSON formatted string that contains information about the work that your application does
in service of a request. Your application can record data about the work that it does itself in
segments, or work that uses downstream services and resources in subsegments.

Segments record information about the work that your application does. A segment, at a
minimum, records the time spent on a task, a name, and two IDs. The trace ID tracks the request
as it travels between services. The segment ID tracks the work done for the request by a single
service.

Example Minimal complete segment

{
 "name" : "Scorekeep",
 "id" : "70de5b6f19ff9a0a",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 "end_time" : 1.478293361449E9
}

When a request is received, you can send an in-progress segment as a placeholder until the request
is completed.

Example In-progress segment

{
 "name" : "Scorekeep",
 "id" : "70de5b6f19ff9a0b",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 “in_progress”: true
}

You can send segments to X-Ray directly, with PutTraceSegments, or through the X-Ray daemon.

X-Ray API 104

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide

Most applications call other services or access resources with the AWS SDK. Record information
about downstream calls in subsegments. X-Ray uses subsegments to identify downstream services
that don't send segments and create entries for them on the service graph.

A subsegment can be embedded in a full segment document, or sent separately. Send
subsegments separately to asynchronously trace downstream calls for long-running requests, or to
avoid exceeding the maximum segment document size (64 kB).

Example Subsegment

A subsegment has a type of subsegment and a parent_id that identifies the parent segment.

{
 "name" : "www2.example.com",
 "id" : "70de5b6f19ff9a0c",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979"
 “end_time” : 1.478293361449E9,
 “type” : “subsegment”,
 “parent_id” : “70de5b6f19ff9a0b”
}

For more information on the fields and values that you can include in segments and subsegments,
see X-Ray segment documents.

Generating trace IDs

To send data to X-Ray, you must generate a unique trace ID for each request.

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

• The version number, which is 1.

• The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

• A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

X-Ray API 105

AWS X-Ray Developer Guide

Note

X-Ray now supports trace IDs that are created using OpenTelemetry and any other
framework that conforms with the W3C Trace Context specification. A W3C trace ID
must be formatted in X-Ray trace ID format when sending to X-Ray. For example,
W3C trace ID 4efaaf4d1e8720b39541901950019ee5 should be formatted as
1-4efaaf4d-1e8720b39541901950019ee5 when sending to X-Ray. X-Ray trace IDs
include the original request time stamp in Unix epoch time, but this isn't required when
sending W3C trace IDs in X-Ray format.

You can write a script to generate X-Ray trace IDs for testing. Here are two examples.

Python

import time
import os
import binascii

START_TIME = time.time()
HEX=hex(int(START_TIME))[2:]
TRACE_ID="1-{}-{}".format(HEX, binascii.hexlify(os.urandom(12)).decode('utf-8'))

Bash

START_TIME=$(date +%s)
HEX_TIME=$(printf '%x\n' $START_TIME)
GUID=$(dd if=/dev/random bs=12 count=1 2>/dev/null | od -An -tx1 | tr -d ' \t\n')
TRACE_ID="1-HEX_TIME-GUID"

See the Scorekeep sample application for scripts that create trace IDs and send segments to the X-
Ray daemon.

• Python – xray_start.py

• Bash – xray_start.sh

X-Ray API 106

https://www.w3.org/TR/trace-context/
https://github.com/awslabs/eb-java-scorekeep/blob/xray/bin/xray_start.py
https://github.com/awslabs/eb-java-scorekeep/blob/xray/bin/xray_start.sh

AWS X-Ray Developer Guide

Using PutTraceSegments

You can upload segment documents with the PutTraceSegments API. The API has a single
parameter, TraceSegmentDocuments, that takes a list of JSON segment documents.

With the AWS CLI, use the aws xray put-trace-segments command to send segment
documents directly to X-Ray.

$ DOC='{"trace_id": "1-5960082b-ab52431b496add878434aa25", "id": "6226467e3f845502",
 "start_time": 1498082657.37518, "end_time": 1498082695.4042, "name":
 "test.elasticbeanstalk.com"}'
$ aws xray put-trace-segments --trace-segment-documents "$DOC"
{
 "UnprocessedTraceSegments": []
}

Note

Windows Command Processor and Windows PowerShell have different requirements for
quoting and escaping quotes in JSON strings. See Quoting Strings in the AWS CLI User
Guide for details.

The output lists any segments that failed processing. For example, if the date in the trace ID is too
far in the past, you see an error like the following.

{
 "UnprocessedTraceSegments": [
 {
 "ErrorCode": "InvalidTraceId",
 "Message": "Invalid segment. ErrorCode: InvalidTraceId",
 "Id": "6226467e3f845502"
 }
]
}

You can pass multiple segment documents at the same time, separated by spaces.

$ aws xray put-trace-segments --trace-segment-documents "$DOC1" "$DOC2"

X-Ray API 107

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-using-param.html#quoting-strings

AWS X-Ray Developer Guide

Sending segment documents to the X-Ray daemon

Instead of sending segment documents to the X-Ray API, you can send segments and subsegments
to the X-Ray daemon, which will buffer them and upload to the X-Ray API in batches. The X-Ray
SDK sends segment documents to the daemon to avoid making calls to AWS directly.

Note

See Running the X-Ray daemon locally for instructions on running the daemon.

Send the segment in JSON over UDP port 2000, prepended by the daemon header, {"format":
"json", "version": 1}\n

{"format": "json", "version": 1}\n{"trace_id": "1-5759e988-bd862e3fe1be46a994272793",
 "id": "defdfd9912dc5a56", "start_time": 1461096053.37518, "end_time": 1461096053.4042,
 "name": "test.elasticbeanstalk.com"}

On Linux, you can send segment documents to the daemon from a Bash terminal. Save the header
and segment document to a text file and pipe it to /dev/udp with cat.

$ cat segment.txt > /dev/udp/127.0.0.1/2000

Example segment.txt

{"format": "json", "version": 1}
{"trace_id": "1-594aed87-ad72e26896b3f9d3a27054bb", "id": "6226467e3f845502",
 "start_time": 1498082657.37518, "end_time": 1498082695.4042, "name":
 "test.elasticbeanstalk.com"}

Check the daemon log to verify that it sent the segment to X-Ray.

2017-07-07T01:57:24Z [Debug] processor: sending partial batch
2017-07-07T01:57:24Z [Debug] processor: segment batch size: 1. capacity: 50
2017-07-07T01:57:24Z [Info] Successfully sent batch of 1 segments (0.020 seconds)

Getting data from X-Ray

X-Ray processes the trace data that you send to it to generate full traces, trace summaries, and
service graphs in JSON. You can retrieve the generated data directly from the API with the AWS CLI.

X-Ray API 108

AWS X-Ray Developer Guide

Retrieving the service graph

You can use the GetServiceGraph API to retrieve the JSON service graph. The API requires a start
time and end time, which you can calculate from a Linux terminal with the date command.

$ date +%s
1499394617

date +%s prints a date in seconds. Use this number as an end time and subtract time from it to
get a start time.

Example Script to retrieve a service graph for the last 10 minutes

EPOCH=$(date +%s)
aws xray get-service-graph --start-time $(($EPOCH-600)) --end-time $EPOCH

The following example shows a service graph with 4 nodes, including a client node, an EC2
instance, a DynamoDB table, and an Amazon SNS topic.

Example GetServiceGraph output

{
 "Services": [
 {
 "ReferenceId": 0,
 "Name": "xray-sample.elasticbeanstalk.com",
 "Names": [
 "xray-sample.elasticbeanstalk.com"
],
 "Type": "client",
 "State": "unknown",
 "StartTime": 1528317567.0,
 "EndTime": 1528317589.0,
 "Edges": [
 {
 "ReferenceId": 2,
 "StartTime": 1528317567.0,
 "EndTime": 1528317589.0,
 "SummaryStatistics": {
 "OkCount": 3,
 "ErrorStatistics": {
 "ThrottleCount": 0,

X-Ray API 109

https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html

AWS X-Ray Developer Guide

 "OtherCount": 1,
 "TotalCount": 1
 },
 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 4,
 "TotalResponseTime": 0.273
 },
 "ResponseTimeHistogram": [
 {
 "Value": 0.005,
 "Count": 1
 },
 {
 "Value": 0.015,
 "Count": 1
 },
 {
 "Value": 0.157,
 "Count": 1
 },
 {
 "Value": 0.096,
 "Count": 1
 }
],
 "Aliases": []
 }
]
 },
 {
 "ReferenceId": 1,
 "Name": "awseb-e-dixzws4s9p-stack-StartupSignupsTable-4IMSMHAYX2BA",
 "Names": [
 "awseb-e-dixzws4s9p-stack-StartupSignupsTable-4IMSMHAYX2BA"
],
 "Type": "AWS::DynamoDB::Table",
 "State": "unknown",
 "StartTime": 1528317583.0,
 "EndTime": 1528317589.0,
 "Edges": [],
 "SummaryStatistics": {

X-Ray API 110

AWS X-Ray Developer Guide

 "OkCount": 2,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 0,
 "TotalCount": 0
 },
 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 2,
 "TotalResponseTime": 0.12
 },
 "DurationHistogram": [
 {
 "Value": 0.076,
 "Count": 1
 },
 {
 "Value": 0.044,
 "Count": 1
 }
],
 "ResponseTimeHistogram": [
 {
 "Value": 0.076,
 "Count": 1
 },
 {
 "Value": 0.044,
 "Count": 1
 }
]
 },
 {
 "ReferenceId": 2,
 "Name": "xray-sample.elasticbeanstalk.com",
 "Names": [
 "xray-sample.elasticbeanstalk.com"
],
 "Root": true,
 "Type": "AWS::EC2::Instance",
 "State": "active",
 "StartTime": 1528317567.0,

X-Ray API 111

AWS X-Ray Developer Guide

 "EndTime": 1528317589.0,
 "Edges": [
 {
 "ReferenceId": 1,
 "StartTime": 1528317567.0,
 "EndTime": 1528317589.0,
 "SummaryStatistics": {
 "OkCount": 2,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 0,
 "TotalCount": 0
 },
 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 2,
 "TotalResponseTime": 0.12
 },
 "ResponseTimeHistogram": [
 {
 "Value": 0.076,
 "Count": 1
 },
 {
 "Value": 0.044,
 "Count": 1
 }
],
 "Aliases": []
 },
 {
 "ReferenceId": 3,
 "StartTime": 1528317567.0,
 "EndTime": 1528317589.0,
 "SummaryStatistics": {
 "OkCount": 2,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 0,
 "TotalCount": 0
 },
 "FaultStatistics": {

X-Ray API 112

AWS X-Ray Developer Guide

 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 2,
 "TotalResponseTime": 0.125
 },
 "ResponseTimeHistogram": [
 {
 "Value": 0.049,
 "Count": 1
 },
 {
 "Value": 0.076,
 "Count": 1
 }
],
 "Aliases": []
 }
],
 "SummaryStatistics": {
 "OkCount": 3,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 1,
 "TotalCount": 1
 },
 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 4,
 "TotalResponseTime": 0.273
 },
 "DurationHistogram": [
 {
 "Value": 0.005,
 "Count": 1
 },
 {
 "Value": 0.015,
 "Count": 1
 },
 {
 "Value": 0.157,

X-Ray API 113

AWS X-Ray Developer Guide

 "Count": 1
 },
 {
 "Value": 0.096,
 "Count": 1
 }
],
 "ResponseTimeHistogram": [
 {
 "Value": 0.005,
 "Count": 1
 },
 {
 "Value": 0.015,
 "Count": 1
 },
 {
 "Value": 0.157,
 "Count": 1
 },
 {
 "Value": 0.096,
 "Count": 1
 }
]
 },
 {
 "ReferenceId": 3,
 "Name": "SNS",
 "Names": [
 "SNS"
],
 "Type": "AWS::SNS",
 "State": "unknown",
 "StartTime": 1528317583.0,
 "EndTime": 1528317589.0,
 "Edges": [],
 "SummaryStatistics": {
 "OkCount": 2,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 0,
 "TotalCount": 0
 },

X-Ray API 114

AWS X-Ray Developer Guide

 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 2,
 "TotalResponseTime": 0.125
 },
 "DurationHistogram": [
 {
 "Value": 0.049,
 "Count": 1
 },
 {
 "Value": 0.076,
 "Count": 1
 }
],
 "ResponseTimeHistogram": [
 {
 "Value": 0.049,
 "Count": 1
 },
 {
 "Value": 0.076,
 "Count": 1
 }
]
 }
]
}

Retrieving the service graph by group

To call for a service graph based on the contents of a group, include a groupName or groupARN.
The following example shows a service graph call to a group named Example1.

Example Script to retrieve a service graph by name for group Example1

aws xray get-service-graph --group-name "Example1"

X-Ray API 115

AWS X-Ray Developer Guide

Retrieving traces

You can use the GetTraceSummaries API to get a list of trace summaries. Trace summaries
include information that you can use to identify traces that you want to download in full, including
annotations, request and response information, and IDs.

There are two TimeRangeType flags available when calling aws xray get-trace-summaries:

• TraceId – The default GetTraceSummaries search uses TraceID time and returns traces started
within the computed [start_time, end_time) range. This range of timestamps is calculated
based on the encoding of the timestamp within the TraceId, or can be defined manually.

• Event time – To search for events as they happen over the time, AWS X-Ray allows searching
for traces using event timestamps. Event time returns traces active during the [start_time,
end_time) range, regardless of when the trace began.

Use the aws xray get-trace-summaries command to get a list of trace summaries. The
following commands get a list of trace summaries from between 1 and 2 minutes in the past using
the default TraceId time.

Example Script to get trace summaries

EPOCH=$(date +%s)
aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time $(($EPOCH-60))

Example GetTraceSummaries output

{
 "TraceSummaries": [
 {
 "HasError": false,
 "Http": {
 "HttpStatus": 200,
 "ClientIp": "205.255.255.183",
 "HttpURL": "http://scorekeep.elasticbeanstalk.com/api/session",
 "UserAgent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
 "HttpMethod": "POST"
 },
 "Users": [],
 "HasFault": false,
 "Annotations": {},

X-Ray API 116

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

 "ResponseTime": 0.084,
 "Duration": 0.084,
 "Id": "1-59602606-a43a1ac52fc7ee0eea12a82c",
 "HasThrottle": false
 },
 {
 "HasError": false,
 "Http": {
 "HttpStatus": 200,
 "ClientIp": "205.255.255.183",
 "HttpURL": "http://scorekeep.elasticbeanstalk.com/api/user",
 "UserAgent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
 "HttpMethod": "POST"
 },
 "Users": [
 {
 "UserName": "5M388M1E"
 }
],
 "HasFault": false,
 "Annotations": {
 "UserID": [
 {
 "AnnotationValue": {
 "StringValue": "5M388M1E"
 }
 }
],
 "Name": [
 {
 "AnnotationValue": {
 "StringValue": "Ola"
 }
 }
]
 },
 "ResponseTime": 3.232,
 "Duration": 3.232,
 "Id": "1-59602603-23fc5b688855d396af79b496",
 "HasThrottle": false
 }
],
 "ApproximateTime": 1499473304.0,

X-Ray API 117

AWS X-Ray Developer Guide

 "TracesProcessedCount": 2
}

Use the trace ID from the output to retrieve a full trace with the BatchGetTraces API.

Example BatchGetTraces command

$ aws xray batch-get-traces --trace-ids 1-596025b4-7170afe49f7aa708b1dd4a6b

Example BatchGetTraces output

{
 "Traces": [
 {
 "Duration": 3.232,
 "Segments": [
 {
 "Document": "{\"id\":\"1fb07842d944e714\",\"name\":
\"random-name\",\"start_time\":1.499473411677E9,\"end_time\":1.499473414572E9,
\"parent_id\":\"0c544c1b1bbff948\",\"http\":{\"response\":{\"status\":200}},
\"aws\":{\"request_id\":\"ac086670-6373-11e7-a174-f31b3397f190\"},\"trace_id\":
\"1-59602603-23fc5b688855d396af79b496\",\"origin\":\"AWS::Lambda\",\"resource_arn\":
\"arn:aws:lambda:us-west-2:123456789012:function:random-name\"}",
 "Id": "1fb07842d944e714"
 },
 {
 "Document": "{\"id\":\"194fcc8747581230\",\"name\":\"Scorekeep
\",\"start_time\":1.499473411562E9,\"end_time\":1.499473414794E9,\"http\":{\"request
\":{\"url\":\"http://scorekeep.elasticbeanstalk.com/api/user\",\"method\":\"POST\",
\"user_agent\":\"Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/59.0.3071.115 Safari/537.36\",\"client_ip\":\"205.251.233.183\"},
\"response\":{\"status\":200}},\"aws\":{\"elastic_beanstalk\":{\"version_label\":\"app-
abb9-170708_002045\",\"deployment_id\":406,\"environment_name\":\"scorekeep-dev\"},
\"ec2\":{\"availability_zone\":\"us-west-2c\",\"instance_id\":\"i-0cd9e448944061b4a
\"},\"xray\":{\"sdk_version\":\"1.1.2\",\"sdk\":\"X-Ray for Java\"}},\"service
\":{},\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",\"user\":\"5M388M1E
\",\"origin\":\"AWS::ElasticBeanstalk::Environment\",\"subsegments\":[{\"id\":
\"0c544c1b1bbff948\",\"name\":\"Lambda\",\"start_time\":1.499473411629E9,\"end_time
\":1.499473414572E9,\"http\":{\"response\":{\"status\":200,\"content_length\":14}},
\"aws\":{\"log_type\":\"None\",\"status_code\":200,\"function_name\":\"random-name
\",\"invocation_type\":\"RequestResponse\",\"operation\":\"Invoke\",\"request_id
\":\"ac086670-6373-11e7-a174-f31b3397f190\",\"resource_names\":[\"random-name\"]},
\"namespace\":\"aws\"},{\"id\":\"071684f2e555e571\",\"name\":\"## UserModel.saveUser

X-Ray API 118

https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html

AWS X-Ray Developer Guide

\",\"start_time\":1.499473414581E9,\"end_time\":1.499473414769E9,\"metadata\":{\"debug
\":{\"test\":\"Metadata string from UserModel.saveUser\"}},\"subsegments\":[{\"id\":
\"4cd3f10b76c624b4\",\"name\":\"DynamoDB\",\"start_time\":1.49947341469E9,\"end_time
\":1.499473414769E9,\"http\":{\"response\":{\"status\":200,\"content_length\":57}},
\"aws\":{\"table_name\":\"scorekeep-user\",\"operation\":\"UpdateItem\",\"request_id
\":\"MFQ8CGJ3JTDDVVVASUAAJGQ6NJ82F738BOB4KQNSO5AEMVJF66Q9\",\"resource_names\":
[\"scorekeep-user\"]},\"namespace\":\"aws\"}]}]}",
 "Id": "194fcc8747581230"
 },
 {
 "Document": "{\"id\":\"00f91aa01f4984fd\",\"name\":
\"random-name\",\"start_time\":1.49947341283E9,\"end_time\":1.49947341457E9,
\"parent_id\":\"1fb07842d944e714\",\"aws\":{\"function_arn\":\"arn:aws:lambda:us-
west-2:123456789012:function:random-name\",\"resource_names\":[\"random-name\"],
\"account_id\":\"123456789012\"},\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",
\"origin\":\"AWS::Lambda::Function\",\"subsegments\":[{\"id\":\"e6d2fe619f827804\",
\"name\":\"annotations\",\"start_time\":1.499473413012E9,\"end_time\":1.499473413069E9,
\"annotations\":{\"UserID\":\"5M388M1E\",\"Name\":\"Ola\"}},{\"id\":\"b29b548af4d54a0f
\",\"name\":\"SNS\",\"start_time\":1.499473413112E9,\"end_time\":1.499473414071E9,
\"http\":{\"response\":{\"status\":200}},\"aws\":{\"operation\":\"Publish\",
\"region\":\"us-west-2\",\"request_id\":\"a2137970-f6fc-5029-83e8-28aadeb99198\",
\"retries\":0,\"topic_arn\":\"arn:aws:sns:us-west-2:123456789012:awseb-e-
ruag3jyweb-stack-NotificationTopic-6B829NT9V5O9\"},\"namespace\":\"aws\"},{\"id\":
\"2279c0030c955e52\",\"name\":\"Initialization\",\"start_time\":1.499473412064E9,
\"end_time\":1.499473412819E9,\"aws\":{\"function_arn\":\"arn:aws:lambda:us-
west-2:123456789012:function:random-name\"}}]}",
 "Id": "00f91aa01f4984fd"
 },
 {
 "Document": "{\"id\":\"17ba309b32c7fbaf\",\"name\":
\"DynamoDB\",\"start_time\":1.49947341469E9,\"end_time\":1.499473414769E9,
\"parent_id\":\"4cd3f10b76c624b4\",\"inferred\":true,\"http\":{\"response
\":{\"status\":200,\"content_length\":57}},\"aws\":{\"table_name
\":\"scorekeep-user\",\"operation\":\"UpdateItem\",\"request_id\":
\"MFQ8CGJ3JTDDVVVASUAAJGQ6NJ82F738BOB4KQNSO5AEMVJF66Q9\",\"resource_names\":
[\"scorekeep-user\"]},\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",\"origin\":
\"AWS::DynamoDB::Table\"}",
 "Id": "17ba309b32c7fbaf"
 },
 {
 "Document": "{\"id\":\"1ee3c4a523f89ca5\",\"name\":\"SNS
\",\"start_time\":1.499473413112E9,\"end_time\":1.499473414071E9,\"parent_id\":
\"b29b548af4d54a0f\",\"inferred\":true,\"http\":{\"response\":{\"status\":200}},\"aws
\":{\"operation\":\"Publish\",\"region\":\"us-west-2\",\"request_id\":\"a2137970-

X-Ray API 119

AWS X-Ray Developer Guide

f6fc-5029-83e8-28aadeb99198\",\"retries\":0,\"topic_arn\":\"arn:aws:sns:us-
west-2:123456789012:awseb-e-ruag3jyweb-stack-NotificationTopic-6B829NT9V5O9\"},
\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",\"origin\":\"AWS::SNS\"}",
 "Id": "1ee3c4a523f89ca5"
 }
],
 "Id": "1-59602603-23fc5b688855d396af79b496"
 }
],
 "UnprocessedTraceIds": []
}

The full trace includes a document for each segment, compiled from all of the segment documents
received with the same trace ID. These documents don't represent the data as it was sent to X-
Ray by your application. Instead, they represent the processed documents generated by the X-
Ray service. X-Ray creates the full trace document by compiling segment documents sent by your
application, and removing data that doesn't comply with the segment document schema. For more
information, see X-Ray segment documents.

X-Ray also creates inferred segments for downstream calls to services that don't send segments
themselves. For example, when you call DynamoDB with an instrumented client, the X-Ray SDK
records a subsegment with details about the call from its point of view. However, DynamoDB
doesn't send a corresponding segment. X-Ray uses the information in the subsegment to create an
inferred segment to represent the DynamoDB resource in the trace map, and adds it to the trace
document.

To get multiple traces from the API, you need a list of trace IDs, which you can extract from the
output of get-trace-summaries with an AWS CLI query. Redirect the list to the input of batch-
get-traces to get full traces for a specific time period.

Example Script to get full traces for a one minute period

EPOCH=$(date +%s)
TRACEIDS=$(aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time
 $(($EPOCH-60)) --query 'TraceSummaries[*].Id' --output text)
aws xray batch-get-traces --trace-ids $TRACEIDS --query 'Traces[*]'

X-Ray API 120

https://docs.aws.amazon.com/cli/latest/userguide/controlling-output.html#controlling-output-filter

AWS X-Ray Developer Guide

Retrieving and refining root cause analytics

Upon generating a trace summary with the GetTraceSummaries API , partial trace summaries can
be reused in their JSON format to create a refined filter expression based upon root causes. See the
examples below for a walkthrough of the refinement steps.

Example Example GetTraceSummaries output - response time root cause section

{
 "Services": [
 {
 "Name": "GetWeatherData",
 "Names": ["GetWeatherData"],
 "AccountId": 123456789012,
 "Type": null,
 "Inferred": false,
 "EntityPath": [
 {
 "Name": "GetWeatherData",
 "Coverage": 1.0,
 'Remote": false
 },
 {
 "Name": "get_temperature",
 "Coverage": 0.8,
 "Remote": false
 }
]
 },
 {
 "Name": "GetTemperature",
 "Names": ["GetTemperature"],
 "AccountId": 123456789012,
 "Type": null,
 "Inferred": false,
 "EntityPath": [
 {
 "Name": "GetTemperature",
 "Coverage": 0.7,
 "Remote": false
 }
]
 }

X-Ray API 121

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

]
}

By editing and making omissions to the above output, this JSON can become a filter for matched
root cause entities. For every field present in the JSON, any candidate match must be exact, or the
trace will not be returned. Removed fields become wildcard values, a format which is compatible
with the filter expression query structure.

Example Reformatted response time root cause

{
 "Services": [
 {
 "Name": "GetWeatherData",
 "EntityPath": [
 {
 "Name": "GetWeatherData"
 },
 {
 "Name": "get_temperature"
 }
]
 },
 {
 "Name": "GetTemperature",
 "EntityPath": [
 {
 "Name": "GetTemperature"
 }
]
 }
]
}

This JSON is then used as part of a filter expression through a call to rootcause.json = #[{}].
Refer to the Use filter expressions section in Explore the X-Ray console for more details about
querying with filter expressions.

X-Ray API 122

AWS X-Ray Developer Guide

Example Example JSON filter

rootcause.json = #[{ "Services": [{ "Name": "GetWeatherData", "EntityPath": [{ "Name":
 "GetWeatherData" }, { "Name": "get_temperature" }] }, { "Name": "GetTemperature",
 "EntityPath": [{ "Name": "GetTemperature" }] }] }]

Configuring sampling, groups, and encryption settings with the X-Ray API

X-Ray provides APIs for configuring sampling rules, group rules, and encryption settings.

Encryption settings

Use PutEncryptionConfig to specify an AWS Key Management Service (AWS KMS) key to use
for encryption.

Note

X-Ray does not support asymmetric KMS keys.

$ aws xray put-encryption-config --type KMS --key-id alias/aws/xray
{
 "EncryptionConfig": {
 "KeyId": "arn:aws:kms:us-east-2:123456789012:key/c234g4e8-39e9-4gb0-84e2-
b0ea215cbba5",
 "Status": "UPDATING",
 "Type": "KMS"
 }
}

For the key ID, you can use an alias (as shown in the example), a key ID, or an Amazon Resource
Name (ARN).

Use GetEncryptionConfig to get the current configuration. When X-Ray finishes applying your
settings, the status changes from UPDATING to ACTIVE.

$ aws xray get-encryption-config
{
 "EncryptionConfig": {
 "KeyId": "arn:aws:kms:us-east-2:123456789012:key/c234g4e8-39e9-4gb0-84e2-
b0ea215cbba5",

X-Ray API 123

https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html
https://docs.aws.amazon.com/xray/latest/api/API_GetEncryptionConfig.html

AWS X-Ray Developer Guide

 "Status": "ACTIVE",
 "Type": "KMS"
 }
}

To stop using a KMS key and use default encryption, set the encryption type to NONE.

$ aws xray put-encryption-config --type NONE
{
 "EncryptionConfig": {
 "Status": "UPDATING",
 "Type": "NONE"
 }
}

Sampling rules

You can manage the sampling rules in your account with the X-Ray API. For more information
about sampling, see Configure sampling rules. For more information about adding and managing
tags, see Tagging X-Ray sampling rules and groups.

Get all sampling rules with GetSamplingRules.

$ aws xray get-sampling-rules
{
 "SamplingRuleRecords": [
 {
 "SamplingRule": {
 "RuleName": "Default",
 "RuleARN": "arn:aws:xray:us-east-2:123456789012:sampling-rule/Default",
 "ResourceARN": "*",
 "Priority": 10000,
 "FixedRate": 0.05,
 "ReservoirSize": 1,
 "ServiceName": "*",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1,
 "Attributes": {}
 },

X-Ray API 124

https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingRules.html

AWS X-Ray Developer Guide

 "CreatedAt": 0.0,
 "ModifiedAt": 1529959993.0
 }
]
}

The default rule applies to all requests that don't match another rule. It is the lowest priority
rule and cannot be deleted. You can, however, change the rate and reservoir size with
UpdateSamplingRule.

Example API input for UpdateSamplingRule – 10000-default.json

{
 "SamplingRuleUpdate": {
 "RuleName": "Default",
 "FixedRate": 0.01,
 "ReservoirSize": 0
 }
}

The following example uses the previous file as input to change the default rule to one percent
with no reservoir. Tags are optional. If you choose to add tags, a tag key is required, and tag values
are optional. To remove existing tags from a sampling rule, use UntagResource.

$ aws xray update-sampling-rule --cli-input-json file://1000-default.json --tags
 [{"Key": "key_name","Value": "value"},{"Key": "key_name","Value": "value"}]
{
 "SamplingRuleRecords": [
 {
 "SamplingRule": {
 "RuleName": "Default",
 "RuleARN": "arn:aws:xray:us-east-2:123456789012:sampling-rule/Default",
 "ResourceARN": "*",
 "Priority": 10000,
 "FixedRate": 0.01,
 "ReservoirSize": 0,
 "ServiceName": "*",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1,

X-Ray API 125

https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_UntagResource.html

AWS X-Ray Developer Guide

 "Attributes": {}
 },
 "CreatedAt": 0.0,
 "ModifiedAt": 1529959993.0
 },

Create additional sampling rules with CreateSamplingRule. When you create a rule, most of
the rule fields are required. The following example creates two rules. This first rule sets a base rate
for the Scorekeep sample application. It matches all requests served by the API that don't match a
higher priority rule.

Example API input for UpdateSamplingRule – 9000-base-scorekeep.json

{
 "SamplingRule": {
 "RuleName": "base-scorekeep",
 "ResourceARN": "*",
 "Priority": 9000,
 "FixedRate": 0.1,
 "ReservoirSize": 5,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1
 }
}

The second rule also applies to Scorekeep, but it has a higher priority and is more specific. This rule
sets a very low sampling rate for polling requests. These are GET requests made by the client every
few seconds to check for changes to the game state.

Example API input for UpdateSamplingRule – 5000-polling-scorekeep.json

{
 "SamplingRule": {
 "RuleName": "polling-scorekeep",
 "ResourceARN": "*",
 "Priority": 5000,
 "FixedRate": 0.003,
 "ReservoirSize": 0,

X-Ray API 126

https://docs.aws.amazon.com/xray/latest/api/API_CreateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html

AWS X-Ray Developer Guide

 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "GET",
 "URLPath": "/api/state/*",
 "Version": 1
 }
}

Tags are optional. If you choose to add tags, a tag key is required, and tag values are optional.

$ aws xray create-sampling-rule --cli-input-json file://5000-polling-scorekeep.json --
tags [{"Key": "key_name","Value": "value"},{"Key": "key_name","Value": "value"}]
{
 "SamplingRuleRecord": {
 "SamplingRule": {
 "RuleName": "polling-scorekeep",
 "RuleARN": "arn:aws:xray:us-east-1:123456789012:sampling-rule/polling-
scorekeep",
 "ResourceARN": "*",
 "Priority": 5000,
 "FixedRate": 0.003,
 "ReservoirSize": 0,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "GET",
 "URLPath": "/api/state/*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 1530574399.0,
 "ModifiedAt": 1530574399.0
 }
}
$ aws xray create-sampling-rule --cli-input-json file://9000-base-scorekeep.json
{
 "SamplingRuleRecord": {
 "SamplingRule": {
 "RuleName": "base-scorekeep",
 "RuleARN": "arn:aws:xray:us-east-1:123456789012:sampling-rule/base-
scorekeep",
 "ResourceARN": "*",

X-Ray API 127

AWS X-Ray Developer Guide

 "Priority": 9000,
 "FixedRate": 0.1,
 "ReservoirSize": 5,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 1530574410.0,
 "ModifiedAt": 1530574410.0
 }
}

To delete a sampling rule, use DeleteSamplingRule.

$ aws xray delete-sampling-rule --rule-name polling-scorekeep
{
 "SamplingRuleRecord": {
 "SamplingRule": {
 "RuleName": "polling-scorekeep",
 "RuleARN": "arn:aws:xray:us-east-1:123456789012:sampling-rule/polling-
scorekeep",
 "ResourceARN": "*",
 "Priority": 5000,
 "FixedRate": 0.003,
 "ReservoirSize": 0,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "GET",
 "URLPath": "/api/state/*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 1530574399.0,
 "ModifiedAt": 1530574399.0
 }
}

X-Ray API 128

https://docs.aws.amazon.com/xray/latest/api/API_DeleteSamplingRule.html

AWS X-Ray Developer Guide

Groups

You can use the X-Ray API to manage groups in your account. Groups are a collection of traces that
are defined by a filter expression. You can use groups to generate additional service graphs and
supply Amazon CloudWatch metrics. See Getting data from X-Ray for more details about working
with service graphs and metrics through the X-Ray API. For more information about groups, see
Configure groups. For more information about adding and managing tags, see Tagging X-Ray
sampling rules and groups.

Create a group with CreateGroup. Tags are optional. If you choose to add tags, a tag key is
required, and tag values are optional.

$ aws xray create-group --group-name "TestGroup" --filter-expression
 "service(\"example.com\") {fault}" --tags [{"Key": "key_name","Value": "value"},
{"Key": "key_name","Value": "value"}]
{
 "GroupName": "TestGroup",
 "GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup/UniqueID",
 "FilterExpression": "service(\"example.com\") {fault OR error}"
}

Get all existing groups with GetGroups.

$ aws xray get-groups
{
 "Groups": [
 {
 "GroupName": "TestGroup",
 "GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup/UniqueID",
 "FilterExpression": "service(\"example.com\") {fault OR error}"
 },
 {
 "GroupName": "TestGroup2",
 "GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup2/
UniqueID",
 "FilterExpression": "responsetime > 2"
 }
],
 "NextToken": "tokenstring"
}

X-Ray API 129

AWS X-Ray Developer Guide

Update a group with UpdateGroup. Tags are optional. If you choose to add tags, a tag key is
required, and tag values are optional. To remove existing tags from a group, use UntagResource.

$ aws xray update-group --group-name "TestGroup" --group-arn "arn:aws:xray:us-
east-2:123456789012:group/TestGroup/UniqueID" --filter-expression
 "service(\"example.com\") {fault OR error}" --tags [{"Key": "Stage","Value": "Prod"},
{"Key": "Department","Value": "QA"}]
{
 "GroupName": "TestGroup",
 "GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup/UniqueID",
 "FilterExpression": "service(\"example.com\") {fault OR error}"
}

Delete a group with DeleteGroup.

$ aws xray delete-group --group-name "TestGroup" --group-arn "arn:aws:xray:us-
east-2:123456789012:group/TestGroup/UniqueID"
 {
 }

Using sampling rules with the X-Ray API

The X-Ray SDK uses the X-Ray API to get sampling rules, report sampling results, and get quotas.
You can use these APIs to get a better understanding of how sampling rules work, or to implement
sampling in a language that the X-Ray SDK doesn't support.

Start by getting all sampling rules with GetSamplingRules.

$ aws xray get-sampling-rules
{
 "SamplingRuleRecords": [
 {
 "SamplingRule": {
 "RuleName": "Default",
 "RuleARN": "arn:aws:xray:us-east-1::sampling-rule/Default",
 "ResourceARN": "*",
 "Priority": 10000,
 "FixedRate": 0.01,
 "ReservoirSize": 0,
 "ServiceName": "*",
 "ServiceType": "*",
 "Host": "*",

X-Ray API 130

https://docs.aws.amazon.com/xray/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingRules.html

AWS X-Ray Developer Guide

 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 0.0,
 "ModifiedAt": 1530558121.0
 },
 {
 "SamplingRule": {
 "RuleName": "base-scorekeep",
 "RuleARN": "arn:aws:xray:us-east-1::sampling-rule/base-scorekeep",
 "ResourceARN": "*",
 "Priority": 9000,
 "FixedRate": 0.1,
 "ReservoirSize": 2,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 1530573954.0,
 "ModifiedAt": 1530920505.0
 },
 {
 "SamplingRule": {
 "RuleName": "polling-scorekeep",
 "RuleARN": "arn:aws:xray:us-east-1::sampling-rule/polling-scorekeep",
 "ResourceARN": "*",
 "Priority": 5000,
 "FixedRate": 0.003,
 "ReservoirSize": 0,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "GET",
 "URLPath": "/api/state/*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 1530918163.0,

X-Ray API 131

AWS X-Ray Developer Guide

 "ModifiedAt": 1530918163.0
 }
]
}

The output includes the default rule and custom rules. See Configuring sampling, groups, and
encryption settings with the X-Ray API if you haven't yet created sampling rules.

Evaluate rules against incoming requests in ascending order of priority. When a rule matches, use
the fixed rate and reservoir size to make a sampling decision. Record sampled requests and ignore
(for tracing purposes) unsampled requests. Stop evaluating rules when a sampling decision is
made.

A rules reservoir size is the target number of traces to record per second before applying the fixed
rate. The reservoir applies across all services cumulatively, so you can't use it directly. However,
if it is non-zero, you can borrow one trace per second from the reservoir until X-Ray assigns a
quota. Before receiving a quota, record the first request each second, and apply the fixed rate to
additional requests. The fixed rate is a decimal between 0 and 1.00 (100%).

The following example shows a call to GetSamplingTargets with details about sampling
decisions made over the last 10 seconds.

$ aws xray get-sampling-targets --sampling-statistics-documents '[
 {
 "RuleName": "base-scorekeep",
 "ClientID": "ABCDEF1234567890ABCDEF10",
 "Timestamp": "2018-07-07T00:20:06",
 "RequestCount": 110,
 "SampledCount": 20,
 "BorrowCount": 10
 },
 {
 "RuleName": "polling-scorekeep",
 "ClientID": "ABCDEF1234567890ABCDEF10",
 "Timestamp": "2018-07-07T00:20:06",
 "RequestCount": 10500,
 "SampledCount": 31,
 "BorrowCount": 0
 }
]'
{

X-Ray API 132

https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingTargets.html

AWS X-Ray Developer Guide

 "SamplingTargetDocuments": [
 {
 "RuleName": "base-scorekeep",
 "FixedRate": 0.1,
 "ReservoirQuota": 2,
 "ReservoirQuotaTTL": 1530923107.0,
 "Interval": 10
 },
 {
 "RuleName": "polling-scorekeep",
 "FixedRate": 0.003,
 "ReservoirQuota": 0,
 "ReservoirQuotaTTL": 1530923107.0,
 "Interval": 10
 }
],
 "LastRuleModification": 1530920505.0,
 "UnprocessedStatistics": []
}

The response from X-Ray includes a quota to use instead of borrowing from the reservoir. In this
example, the service borrowed 10 traces from the reservoir over 10 seconds, and applied the fixed
rate of 10 percent to the other 100 requests, resulting in a total of 20 sampled requests. The quota
is good for five minutes (indicated by the time to live) or until a new quota is assigned. X-Ray may
also assign a longer reporting interval than the default, although it didn't here.

Note

The response from X-Ray might not include a quota the first time you call it. Continue
borrowing from the reservoir until you are assigned a quota.

The other two fields in the response might indicate issues with the input. Check
LastRuleModification against the last time you called GetSamplingRules. If it's newer, get
a new copy of the rules. UnprocessedStatistics can include errors that indicate that a rule has
been deleted, that the statistics document in the input was too old, or permissions errors.

X-Ray API 133

https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingRules.html

AWS X-Ray Developer Guide

X-Ray segment documents

A trace segment is a JSON representation of a request that your application serves. A trace
segment records information about the original request, information about the work that your
application does locally, and subsegments with information about downstream calls that your
application makes to AWS resources, HTTP APIs, and SQL databases.

A segment document conveys information about a segment to X-Ray. A segment document can
be up to 64 kB and contain a whole segment with subsegments, a fragment of a segment that
indicates that a request is in progress, or a single subsegment that is sent separately. You can send
segment documents directly to X-Ray by using the PutTraceSegments API.

X-Ray compiles and processes segment documents to generate queryable trace summaries and
full traces that you can access by using the GetTraceSummaries and BatchGetTraces APIs,
respectively. In addition to the segments and subsegments that you send to X-Ray, the service
uses information in subsegments to generate inferred segments and adds them to the full trace.
Inferred segments represent downstream services and resources in the trace map.

X-Ray provides a JSON schema for segment documents. You can download the schema here: xray-
segmentdocument-schema-v1.0.0. The fields and objects listed in the schema are described in
more detail in the following sections.

A subset of segment fields are indexed by X-Ray for use with filter expressions. For example, if you
set the user field on a segment to a unique identifier, you can search for segments associated
with specific users in the X-Ray console or by using the GetTraceSummaries API. For more
information, see Use filter expressions.

When you instrument your application with the X-Ray SDK, the SDK generates segment documents
for you. Instead of sending segment documents directly to X-Ray, the SDK transmits them over a
local UDP port to the X-Ray daemon. For more information, see Sending segment documents to
the X-Ray daemon.

Segment fields

A segment records tracing information about a request that your application serves. At a minimum,
a segment records the name, ID, start time, trace ID, and end time of the request.

Example Minimal complete segment

{
 "name" : "example.com",

X-Ray API 134

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html
samples/xray-segmentdocument-schema-v1.0.0.zip
samples/xray-segmentdocument-schema-v1.0.0.zip

AWS X-Ray Developer Guide

 "id" : "70de5b6f19ff9a0a",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 "end_time" : 1.478293361449E9
}

The following fields are required, or conditionally required, for segments.

Note

Values must be strings (up to 250 characters) unless noted otherwise.

Required Segment Fields

• name – The logical name of the service that handled the request, up to 200 characters. For
example, your application's name or domain name. Names can contain Unicode letters, numbers,
and whitespace, and the following symbols: _, ., :, /, %, &, #, =, +, \, -, @

• id – A 64-bit identifier for the segment, unique among segments in the same trace, in 16
hexadecimal digits.

• trace_id – A unique identifier that connects all segments and subsegments originating from a
single client request.

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example,
1-58406520-a006649127e371903a2de979. This includes:

• The version number, which is 1.

• The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

• A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

Note

X-Ray now supports trace IDs that are created using OpenTelemetry and any other
framework that conforms with the W3C Trace Context specification. A W3C trace ID
must be formatted in X-Ray trace ID format when sending to X-Ray. For example,

X-Ray API 135

https://www.w3.org/TR/trace-context/

AWS X-Ray Developer Guide

W3C trace ID 4efaaf4d1e8720b39541901950019ee5 should be formatted as
1-4efaaf4d-1e8720b39541901950019ee5 when sending to X-Ray. X-Ray trace IDs
include the original request time stamp in Unix epoch time, but this isn't required when
sending W3C trace IDs in X-Ray format.

Trace ID Security

Trace IDs are visible in response headers. Generate trace IDs with a secure random
algorithm to ensure that attackers cannot calculate future trace IDs and send requests
with those IDs to your application.

• start_time – number that is the time the segment was created, in floating point seconds
in epoch time. For example, 1480615200.010 or 1.480615200010E9. Use as many decimal
places as you need. Microsecond resolution is recommended when available.

• end_time – number that is the time the segment was closed. For example, 1480615200.090 or
1.480615200090E9. Specify either an end_time or in_progress.

• in_progress – boolean, set to true instead of specifying an end_time to record that a
segment is started, but is not complete. Send an in-progress segment when your application
receives a request that will take a long time to serve, to trace the request receipt. When the
response is sent, send the complete segment to overwrite the in-progress segment. Only send
one complete segment, and one or zero in-progress segments, per request.

Service Names

A segment's name should match the domain name or logical name of the service that
generates the segment. However, this is not enforced. Any application that has permission
to PutTraceSegments can send segments with any name.

The following fields are optional for segments.

Optional Segment Fields

• service – An object with information about your application.

• version – A string that identifies the version of your application that served the request.

X-Ray API 136

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide

• user – A string that identifies the user who sent the request.

• origin – The type of AWS resource running your application.

Supported Values

• AWS::EC2::Instance – An Amazon EC2 instance.

• AWS::ECS::Container – An Amazon ECS container.

• AWS::ElasticBeanstalk::Environment – An Elastic Beanstalk environment.

When multiple values are applicable to your application, use the one that is most specific. For
example, a Multicontainer Docker Elastic Beanstalk environment runs your application on an
Amazon ECS container, which in turn runs on an Amazon EC2 instance. In this case you would set
the origin to AWS::ElasticBeanstalk::Environment as the environment is the parent of
the other two resources.

• parent_id – A subsegment ID you specify if the request originated from an instrumented
application. The X-Ray SDK adds the parent subsegment ID to the tracing header for
downstream HTTP calls. In the case of nested subsegments, a subsegment can have a segment
or a subsegment as its parent.

• http – http objects with information about the original HTTP request.

• aws – aws object with information about the AWS resource on which your application served the
request.

• error, throttle, fault, and cause – error fields that indicate an error occurred and that
include information about the exception that caused the error.

• annotations – annotations object with key-value pairs that you want X-Ray to index for
search.

• metadata – metadata object with any additional data that you want to store in the segment.

• subsegments – array of subsegment objects.

Subsegments

You can create subsegments to record calls to AWS services and resources that you make with the
AWS SDK, calls to internal or external HTTP web APIs, or SQL database queries. You can also create
subsegments to debug or annotate blocks of code in your application. Subsegments can contain
other subsegments, so a custom subsegment that records metadata about an internal function call
can contain other custom subsegments and subsegments for downstream calls.

X-Ray API 137

AWS X-Ray Developer Guide

A subsegment records a downstream call from the point of view of the service that calls it. X-Ray
uses subsegments to identify downstream services that don't send segments and create entries for
them on the service graph.

A subsegment can be embedded in a full segment document or sent independently. Send
subsegments separately to asynchronously trace downstream calls for long-running requests, or to
avoid exceeding the maximum segment document size.

Example Segment with embedded subsegment

An independent subsegment has a type of subsegment and a parent_id that identifies the
parent segment.

{
 "trace_id" : "1-5759e988-bd862e3fe1be46a994272793",
 "id" : "defdfd9912dc5a56",
 "start_time" : 1461096053.37518,
 "end_time" : 1461096053.4042,
 "name" : "www.example.com",
 "http" : {
 "request" : {
 "url" : "https://www.example.com/health",
 "method" : "GET",
 "user_agent" : "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6)
 AppleWebKit/601.7.7",
 "client_ip" : "11.0.3.111"
 },
 "response" : {
 "status" : 200,
 "content_length" : 86
 }
 },
 "subsegments" : [
 {
 "id" : "53995c3f42cd8ad8",
 "name" : "api.example.com",
 "start_time" : 1461096053.37769,
 "end_time" : 1461096053.40379,
 "namespace" : "remote",
 "http" : {
 "request" : {
 "url" : "https://api.example.com/health",
 "method" : "POST",

X-Ray API 138

AWS X-Ray Developer Guide

 "traced" : true
 },
 "response" : {
 "status" : 200,
 "content_length" : 861
 }
 }
 }
]
}

For long-running requests, you can send an in-progress segment to notify X-Ray that the request
was received, and then send subsegments separately to trace them before completing the original
request.

Example In-progress segment

{
 "name" : "example.com",
 "id" : "70de5b6f19ff9a0b",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 "in_progress": true
}

Example Independent subsegment

An independent subsegment has a type of subsegment, a trace_id, and a parent_id that
identifies the parent segment.

{
 "name" : "api.example.com",
 "id" : "53995c3f42cd8ad8",
 "start_time" : 1.478293361271E9,
 "end_time" : 1.478293361449E9,
 "type" : "subsegment",
 "trace_id" : "1-581cf771-a006649127e371903a2de979"
 "parent_id" : "defdfd9912dc5a56",
 "namespace" : "remote",
 "http" : {
 "request" : {
 "url" : "https://api.example.com/health",

X-Ray API 139

AWS X-Ray Developer Guide

 "method" : "POST",
 "traced" : true
 },
 "response" : {
 "status" : 200,
 "content_length" : 861
 }
 }
}

When the request is complete, close the segment by resending it with an end_time. The complete
segment overwrites the in-progress segment.

You can also send subsegments separately for completed requests that triggered asynchronous
workflows. For example, a web API may return a OK 200 response immediately prior to starting
the work that the user requested. You can send a full segment to X-Ray as soon as the response is
sent, followed by subsegments for work completed later. As with segments, you can also send a
subsegment fragment to record that the subsegment has started, and then overwrite it with a full
subsegment once the downstream call is complete.

The following fields are required, or are conditionally required, for subsegments.

Note

Values are strings up to 250 characters unless noted otherwise.

Required Subsegment Fields

• id – A 64-bit identifier for the subsegment, unique among segments in the same trace, in 16
hexadecimal digits.

• name – The logical name of the subsegment. For downstream calls, name the subsegment after
the resource or service called. For custom subsegments, name the subsegment after the code
that it instruments (e.g., a function name).

• start_time – number that is the time the subsegment was created, in floating point seconds in
epoch time, accurate to milliseconds. For example, 1480615200.010 or 1.480615200010E9.

• end_time – number that is the time the subsegment was closed. For example,
1480615200.090 or 1.480615200090E9. Specify an end_time or in_progress.

X-Ray API 140

AWS X-Ray Developer Guide

• in_progress – boolean that is set to true instead of specifying an end_time to record that
a subsegment is started, but is not complete. Only send one complete subsegment, and one or
zero in-progress subsegments, per downstream request.

• trace_id – Trace ID of the subsegment's parent segment. Required only if sending a
subsegment separately.

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example,
1-58406520-a006649127e371903a2de979. This includes:

• The version number, which is 1.

• The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

• A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

Note

X-Ray now supports trace IDs that are created using OpenTelemetry and any other
framework that conforms with the W3C Trace Context specification. A W3C trace ID
must be formatted in X-Ray trace ID format when sending to X-Ray. For example,
W3C trace ID 4efaaf4d1e8720b39541901950019ee5 should be formatted as
1-4efaaf4d-1e8720b39541901950019ee5 when sending to X-Ray. X-Ray trace IDs
include the original request time stamp in Unix epoch time, but this isn't required when
sending W3C trace IDs in X-Ray format.

• parent_id – Segment ID of the subsegment's parent segment. Required only if sending a
subsegment separately. In the case of nested subsegments, a subsegment can have a segment or
a subsegment as its parent.

• type – subsegment. Required only if sending a subsegment separately.

The following fields are optional for subsegments.

Optional Subsegment Fields

• namespace – aws for AWS SDK calls; remote for other downstream calls.
X-Ray API 141

https://www.w3.org/TR/trace-context/

AWS X-Ray Developer Guide

• http – http object with information about an outgoing HTTP call.

• aws – aws object with information about the downstream AWS resource that your application
called.

• error, throttle, fault, and cause – error fields that indicate an error occurred and that
include information about the exception that caused the error.

• annotations – annotations object with key-value pairs that you want X-Ray to index for
search.

• metadata – metadata object with any additional data that you want to store in the segment.

• subsegments – array of subsegment objects.

• precursor_ids – array of subsegment IDs that identifies subsegments with the same parent
that completed prior to this subsegment.

HTTP request data

Use an HTTP block to record details about an HTTP request that your application served (in a
segment) or that your application made to a downstream HTTP API (in a subsegment). Most of the
fields in this object map to information found in an HTTP request and response.

http

All fields are optional.

• request – Information about a request.

• method – The request method. For example, GET.

• url – The full URL of the request, compiled from the protocol, hostname, and path of the
request.

• user_agent – The user agent string from the requester's client.

• client_ip – The IP address of the requester. Can be retrieved from the IP packet's Source
Address or, for forwarded requests, from an X-Forwarded-For header.

• x_forwarded_for – (segments only) boolean indicating that the client_ip was read from
an X-Forwarded-For header and is not reliable as it could have been forged.

• traced – (subsegments only) boolean indicating that the downstream call is to another
traced service. If this field is set to true, X-Ray considers the trace to be broken until the
downstream service uploads a segment with a parent_id that matches the id of the
subsegment that contains this block.

X-Ray API 142

AWS X-Ray Developer Guide

• response – Information about a response.

• status – integer indicating the HTTP status of the response.

• content_length – integer indicating the length of the response body in bytes.

When you instrument a call to a downstream web api, record a subsegment with information about
the HTTP request and response. X-Ray uses the subsegment to generate an inferred segment for
the remote API.

Example Segment for HTTP call served by an application running on Amazon EC2

{
 "id": "6b55dcc497934f1a",
 "start_time": 1484789387.126,
 "end_time": 1484789387.535,
 "trace_id": "1-5880168b-fd5158284b67678a3bb5a78c",
 "name": "www.example.com",
 "origin": "AWS::EC2::Instance",
 "aws": {
 "ec2": {
 "availability_zone": "us-west-2c",
 "instance_id": "i-0b5a4678fc325bg98"
 },
 "xray": {
 "sdk_version": "2.11.0 for Java"
 },
 },
 "http": {
 "request": {
 "method": "POST",
 "client_ip": "78.255.233.48",
 "url": "http://www.example.com/api/user",
 "user_agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:45.0) Gecko/20100101
 Firefox/45.0",
 "x_forwarded_for": true
 },
 "response": {
 "status": 200
 }
 }

X-Ray API 143

AWS X-Ray Developer Guide

Example Subsegment for a downstream HTTP call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred segment for a downstream HTTP call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-62be1272-1b71c4274f39f122afa64eab",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

X-Ray API 144

AWS X-Ray Developer Guide

Annotations

Segments and subsegments can include an annotations object containing one or more fields
that X-Ray indexes for use with filter expressions. Fields can have string, number, or Boolean values
(no objects or arrays). X-Ray indexes up to 50 annotations per trace.

Example Segment for HTTP call with annotations

{
 "id": "6b55dcc497932f1a",
 "start_time": 1484789187.126,
 "end_time": 1484789187.535,
 "trace_id": "1-5880168b-fd515828bs07678a3bb5a78c",
 "name": "www.example.com",
 "origin": "AWS::EC2::Instance",
 "aws": {
 "ec2": {
 "availability_zone": "us-west-2c",
 "instance_id": "i-0b5a4678fc325bg98"
 },
 "xray": {
 "sdk_version": "2.11.0 for Java"
 },
 },
 "annotations": {
 "customer_category" : 124,
 "zip_code" : 98101,
 "country" : "United States",
 "internal" : false
 },
 "http": {
 "request": {
 "method": "POST",
 "client_ip": "78.255.233.48",
 "url": "http://www.example.com/api/user",
 "user_agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:45.0) Gecko/20100101
 Firefox/45.0",
 "x_forwarded_for": true
 },
 "response": {
 "status": 200
 }
 }

X-Ray API 145

AWS X-Ray Developer Guide

Keys must be alphanumeric in order to work with filters. Underscore is allowed. Other symbols and
whitespace are not allowed.

Metadata

Segments and subsegments can include a metadata object containing one or more fields with
values of any type, including objects and arrays. X-Ray does not index metadata, and values can
be any size, as long as the segment document doesn't exceed the maximum size (64 kB). You can
view metadata in the full segment document returned by the BatchGetTraces API. Field keys
(debug in the following example) starting with AWS. are reserved for use by AWS-provided SDKs
and clients.

Example Custom subsegment with metadata

{
 "id": "0e58d2918e9038e8",
 "start_time": 1484789387.502,
 "end_time": 1484789387.534,
 "name": "## UserModel.saveUser",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },
 "subsegments": [
 {
 "id": "0f910026178b71eb",
 "start_time": 1484789387.502,
 "end_time": 1484789387.534,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 58,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "3AIENM5J4ELQ3SPODHKBIRVIC3VV4KQNSO5AEMVJF66Q9ASUAAJG",
 "resource_names": [
 "scorekeep-user"

X-Ray API 146

https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html

AWS X-Ray Developer Guide

]
 }
 }
]
}

AWS resource data

For segments, the aws object contains information about the resource on which your application
is running. Multiple fields can apply to a single resource. For example, an application running in a
multicontainer Docker environment on Elastic Beanstalk could have information about the Amazon
EC2 instance, the Amazon ECS container running on the instance, and the Elastic Beanstalk
environment itself.

aws (Segments)

All fields are optional.

• account_id – If your application sends segments to a different AWS account, record the ID of
the account running your application.

• cloudwatch_logs – Array of objects that describe a single CloudWatch log group.

• log_group – The CloudWatch Log Group name.

• arn – The CloudWatch Log Group ARN.

• ec2 – Information about an Amazon EC2 instance.

• instance_id – The instance ID of the EC2 instance.

• instance_size – The type of EC2 instance.

• ami_id – The Amazon Machine Image ID.

• availability_zone – The Availability Zone in which the instance is running.

• ecs – Information about an Amazon ECS container.

• container – The hostname of your container.

• container_id – The full container ID of your container.

• container_arn – The ARN of your container instance.

• eks – Information about an Amazon EKS cluster.

• pod – The hostname of your EKS pod.

• cluster_name – The EKS cluster name.
X-Ray API 147

AWS X-Ray Developer Guide

• container_id – The full container ID of your container.

• elastic_beanstalk – Information about an Elastic Beanstalk environment. You can find this
information in a file named /var/elasticbeanstalk/xray/environment.conf on the
latest Elastic Beanstalk platforms.

• environment_name – The name of the environment.

• version_label – The name of the application version that is currently deployed to the
instance that served the request.

• deployment_id – number indicating the ID of the last successful deployment to the instance
that served the request.

• xray – Metadata about the type and version of instrumentation used.

• auto_instrumentation – Boolean indicating whether auto-instrumentation was used (for
example, the Java Agent).

• sdk_version – The version of SDK or agent being used.

• sdk – The type of SDK.

Example AWS block with plugins

"aws":{
 "elastic_beanstalk":{
 "version_label":"app-5a56-170119_190650-stage-170119_190650",
 "deployment_id":32,
 "environment_name":"scorekeep"
 },
 "ec2":{
 "availability_zone":"us-west-2c",
 "instance_id":"i-075ad396f12bc325a",
 "ami_id":
 },
 "cloudwatch_logs":[
 {
 "log_group":"my-cw-log-group",
 "arn":"arn:aws:logs:us-west-2:012345678912:log-group:my-cw-log-group"
 }
],
 "xray":{
 "auto_instrumentation":false,
 "sdk":"X-Ray for Java",
 "sdk_version":"2.8.0"

X-Ray API 148

AWS X-Ray Developer Guide

 }
}

For subsegments, record information about the AWS services and resources that your application
accesses. X-Ray uses this information to create inferred segments that represent the downstream
services in your service map.

aws (Subsegments)

All fields are optional.

• operation – The name of the API action invoked against an AWS service or resource.

• account_id – If your application accesses resources in a different account, or sends segments
to a different account, record the ID of the account that owns the AWS resource that your
application accessed.

• region – If the resource is in a region different from your application, record the region. For
example, us-west-2.

• request_id – Unique identifier for the request.

• queue_url – For operations on an Amazon SQS queue, the queue's URL.

• table_name – For operations on a DynamoDB table, the name of the table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",

X-Ray API 149

AWS X-Ray Developer Guide

 }
}

Errors and exceptions

When an error occurs, you can record details about the error and exceptions that it generated.
Record errors in segments when your application returns an error to the user, and in subsegments
when a downstream call returns an error.

error types

Set one or more of the following fields to true to indicate that an error occurred. Multiple types
can apply if errors compound. For example, a 429 Too Many Requests error from a downstream
call may cause your application to return 500 Internal Server Error, in which case all three
types would apply.

• error – boolean indicating that a client error occurred (response status code was 4XX Client
Error).

• throttle – boolean indicating that a request was throttled (response status code was 429 Too
Many Requests).

• fault – boolean indicating that a server error occurred (response status code was 5XX Server
Error).

Indicate the cause of the error by including a cause object in the segment or subsegment.

cause

A cause can be either a 16 character exception ID or an object with the following fields:

• working_directory – The full path of the working directory when the exception occurred.

• paths – The array of paths to libraries or modules in use when the exception occurred.

• exceptions – The array of exception objects.

Include detailed information about the error in one or more exception objects.

exception

All fields are optional.

X-Ray API 150

AWS X-Ray Developer Guide

• id – A 64-bit identifier for the exception, unique among segments in the same trace, in 16
hexadecimal digits.

• message – The exception message.

• type – The exception type.

• remote – boolean indicating that the exception was caused by an error returned by a
downstream service.

• truncated – integer indicating the number of stack frames that are omitted from the stack.

• skipped – integer indicating the number of exceptions that were skipped between this
exception and its child, that is, the exception that it caused.

• cause – Exception ID of the exception's parent, that is, the exception that caused this exception.

• stack – array of stackFrame objects.

If available, record information about the call stack in stackFrame objects.

stackFrame

All fields are optional.

• path – The relative path to the file.

• line – The line in the file.

• label – The function or method name.

SQL queries

You can create subsegments for queries that your application makes to an SQL database.

sql

All fields are optional.

• connection_string – For SQL Server or other database connections that don't use URL
connection strings, record the connection string, excluding passwords.

• url – For a database connection that uses a URL connection string, record the URL, excluding
passwords.

• sanitized_query – The database query, with any user provided values removed or replaced by
a placeholder.

X-Ray API 151

AWS X-Ray Developer Guide

• database_type – The name of the database engine.

• database_version – The version number of the database engine.

• driver_version – The name and version number of the database engine driver that your
application uses.

• user – The database username.

• preparation – call if the query used a PreparedCall; statement if the query used a
PreparedStatement.

Example Subsegment with an SQL Query

{
 "id": "3fd8634e78ca9560",
 "start_time": 1484872218.696,
 "end_time": 1484872218.697,
 "name": "ebdb@aawijb5u25wdoy.cpamxznpdoq8.us-west-2.rds.amazonaws.com",
 "namespace": "remote",
 "sql" : {
 "url": "jdbc:postgresql://aawijb5u25wdoy.cpamxznpdoq8.us-
west-2.rds.amazonaws.com:5432/ebdb",
 "preparation": "statement",
 "database_type": "PostgreSQL",
 "database_version": "9.5.4",
 "driver_version": "PostgreSQL 9.4.1211.jre7",
 "user" : "dbuser",
 "sanitized_query" : "SELECT * FROM customers WHERE customer_id=?;"
 }
}

X-Ray API 152

AWS X-Ray Developer Guide

AWS X-Ray daemon

Note

You can now use the CloudWatch agent to collect metrics, logs and traces from Amazon
EC2 instances and on-premise servers. CloudWatch agent version 1.300025.0 and later can
collect traces from OpenTelemetry or X-Ray client SDKs, and send them to X-Ray. Using the
CloudWatch agent instead of the AWS Distro for OpenTelemetry (ADOT) Collector or X-Ray
daemon to collect traces can help you reduce the number of agents that you manage. See
the CloudWatch agent topic in the CloudWatch User Guide for more information.

The AWS X-Ray daemon is a software application that listens for traffic on UDP port 2000, gathers
raw segment data, and relays it to the AWS X-Ray API. The daemon works in conjunction with the
AWS X-Ray SDKs and must be running so that data sent by the SDKs can reach the X-Ray service.
The X-Ray daemon is an open source project. You can follow the project and submit issues and pull
requests on GitHub: github.com/aws/aws-xray-daemon

On AWS Lambda and AWS Elastic Beanstalk, use those services' integration with X-Ray to run the
daemon. Lambda runs the daemon automatically any time a function is invoked for a sampled
request. On Elastic Beanstalk, use the XRayEnabled configuration option to run the daemon on
the instances in your environment. For more information, see

To run the X-Ray daemon locally, on-premises, or on other AWS services, download it, run it, and
then give it permission to upload segment documents to X-Ray.

Downloading the daemon

You can download the daemon from Amazon S3, Amazon ECR, or Docker Hub, and then run it
locally, or install it on an Amazon EC2 instance on launch.

Amazon S3

X-Ray daemon installers and executables

• Linux (executable) – aws-xray-daemon-linux-3.x.zip (sig)

• Linux (RPM installer) – aws-xray-daemon-3.x.rpm

Downloading the daemon 153

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://github.com/aws/aws-xray-daemon
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-3.x.rpm

AWS X-Ray Developer Guide

• Linux (DEB installer) – aws-xray-daemon-3.x.deb

• Linux (ARM64, executable) – aws-xray-daemon-linux-arm64-3.x.zip (sig)

• Linux (ARM64, RPM installer) – aws-xray-daemon-arm64-3.x.rpm

• Linux (ARM64, DEB installer) – aws-xray-daemon-arm64-3.x.deb

• OS X (executable) – aws-xray-daemon-macos-3.x.zip (sig)

• Windows (executable) – aws-xray-daemon-windows-process-3.x.zip (sig)

• Windows (service) – aws-xray-daemon-windows-service-3.x.zip (sig)

These links always point to the latest 3.x release of the daemon. To download a specific release,
do the following:

• If you want to download a release prior to version 3.3.0, replace 3.x with the version
number. For example, 2.1.0. Prior to version 3.3.0, the only available architecture is arm64.

• If you want to download a release after version 3.3.0, replace 3.x with the version number
and arch with the architecture type. For example, 2.1.0 and arm64.

X-Ray assets are replicated to buckets in every supported region. To use the bucket closest to
you or your AWS resources, replace the region in the above links with your region.

https://s3.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/xray-daemon/aws-xray-
daemon-3.x.rpm

Amazon ECR

As of version 3.2.0 the daemon can be found on Amazon ECR. Before pulling an image you
should authenticate your docker client to the Amazon ECR public registry.

Pull the latest released 3.x version tag by running the following command:

docker pull public.ecr.aws/xray/aws-xray-daemon:3.x

Prior or alpha releases can be downloaded by replacing 3.x with alpha or a specific version
number.

We do not recommend using a daemon image with an alpha tag in a production environment.

Downloading the daemon 154

https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-3.x.deb
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-arm64-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-arm64-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-arm64-3.x.rpm
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-arm64-3.x.deb
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-macos-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-macos-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-process-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-process-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-service-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-service-3.x.zip.sig
https://gallery.ecr.aws/xray/aws-xray-daemon
https://docs.aws.amazon.com/AmazonECR/latest/public/public-registries.html#public-registry-auth

AWS X-Ray Developer Guide

Docker Hub

The daemon can be found on Docker Hub. To download the latest released 3.x version, run the
following command:

docker pull amazon/aws-xray-daemon:3.x

Prior releases of the daemon can be released by replacing 3.x with the desired version.

Verifying the daemon archive's signature

GPG signature files are included for daemon assets compressed in ZIP archives. The public key is
here: aws-xray.gpg.

You can use the public key to verify that the daemon's ZIP archive is original and unmodified. First,
import the public key with GnuPG.

To import the public key

1. Download the public key.

$ BUCKETURL=https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2
$ wget $BUCKETURL/xray-daemon/aws-xray.gpg

2. Import the public key into your keyring.

$ gpg --import aws-xray.gpg
gpg: /Users/me/.gnupg/trustdb.gpg: trustdb created
gpg: key 7BFE036BFE6157D3: public key "AWS X-Ray <aws-xray@amazon.com>" imported
gpg: Total number processed: 1
gpg: imported: 1

Use the imported key to verify the signature of the daemon's ZIP archive.

To verify an archive's signature

1. Download the archive and signature file.

$ BUCKETURL=https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2

Verifying the daemon archive's signature 155

https://hub.docker.com/r/amazon/aws-xray-daemon
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray.gpg
https://gnupg.org/index.html

AWS X-Ray Developer Guide

$ wget $BUCKETURL/xray-daemon/aws-xray-daemon-linux-3.x.zip
$ wget $BUCKETURL/xray-daemon/aws-xray-daemon-linux-3.x.zip.sig

2. Run gpg --verify to verify the signature.

$ gpg --verify aws-xray-daemon-linux-3.x.zip.sig aws-xray-daemon-linux-3.x.zip
gpg: Signature made Wed 19 Apr 2017 05:06:31 AM UTC using RSA key ID FE6157D3
gpg: Good signature from "AWS X-Ray <aws-xray@amazon.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: EA6D 9271 FBF3 6990 277F 4B87 7BFE 036B FE61 57D3

Note the warning about trust. A key is only trusted if you or someone you trust has signed it. This
does not mean that the signature is invalid, only that you have not verified the public key.

Running the daemon

Run the daemon locally from the command line. Use the -o option to run in local mode, and -n to
set the region.

~/Downloads$./xray -o -n us-east-2

For detailed platform-specific instructions, see the following topics:

• Linux (local) – Running the X-Ray daemon on Linux

• Windows (local) – Running the X-Ray daemon on Windows

• Elastic Beanstalk – Running the X-Ray daemon on AWS Elastic Beanstalk

• Amazon EC2 – Running the X-Ray daemon on Amazon EC2

• Amazon ECS – Running the X-Ray daemon on Amazon ECS

You can customize the daemon's behavior further by using command line options or a
configuration file. See Configuring the AWS X-Ray daemon for details.

Giving the daemon permission to send data to X-Ray

The X-Ray daemon uses the AWS SDK to upload trace data to X-Ray, and it needs AWS credentials
with permission to do that.

Running the daemon 156

AWS X-Ray Developer Guide

On Amazon EC2, the daemon uses the instance's instance profile role automatically. For
information about credentials required to run the daemon locally, see running your application
locally.

If you specify credentials in more than one location (credentials file, instance profile, or
environment variables), the SDK provider chain determines which credentials are used. For more
information about providing credentials to the SDK, see Specifying Credentials in the AWS SDK for
Go Developer Guide.

The IAM role or user that the daemon's credentials belong to must have permission to write data to
the service on your behalf.

• To use the daemon on Amazon EC2, create a new instance profile role or add the managed policy
to an existing one.

• To use the daemon on Elastic Beanstalk, add the managed policy to the Elastic Beanstalk default
instance profile role.

• To run the daemon locally, see running your application locally.

For more information, see Identity and access management for AWS X-Ray.

X-Ray daemon logs

The daemon outputs information about its current configuration and segments that it sends to
AWS X-Ray.

2016-11-24T06:07:06Z [Info] Initializing AWS X-Ray daemon 2.1.0
2016-11-24T06:07:06Z [Info] Using memory limit of 49 MB
2016-11-24T06:07:06Z [Info] 313 segment buffers allocated
2016-11-24T06:07:08Z [Info] Successfully sent batch of 1 segments (0.123 seconds)
2016-11-24T06:07:09Z [Info] Successfully sent batch of 1 segments (0.006 seconds)

By default, the daemon outputs logs to STDOUT. If you run the daemon in the background, use the
--log-file command line option or a configuration file to set the log file path. You can also set
the log level and disable log rotation. See Configuring the AWS X-Ray daemon for instructions.

On Elastic Beanstalk, the platform sets the location of the daemon logs. See Running the X-Ray
daemon on AWS Elastic Beanstalk for details.

X-Ray daemon logs 157

https://aws.github.io/aws-sdk-go-v2/docs/configuring-sdk/#specifying-credentials

AWS X-Ray Developer Guide

Configuring the AWS X-Ray daemon

You can use command line options or a configuration file to customize the X-Ray daemon's
behavior. Most options are available using both methods, but some are only available in
configuration files and some only at the command line.

To get started, the only option that you need to know is -n or --region, which you use to set the
region that the daemon uses to send trace data to X-Ray.

~/xray-daemon$./xray -n us-east-2

If you are running the daemon locally, that is, not on Amazon EC2, you can add the -o option to
skip checking for instance profile credentials so the daemon will become ready more quickly.

~/xray-daemon$./xray -o -n us-east-2

The rest of the command line options let you configure logging, listen on a different port, limit the
amount of memory that the daemon can use, or assume a role to send trace data to a different
account.

You can pass a configuration file to the daemon to access advanced configuration options and do
things like limit the number of concurrent calls to X-Ray, disable log rotation, and send traffic to a
proxy.

Sections

• Supported environment variables

• Using command line options

• Using a configuration file

Supported environment variables

The X-Ray daemon supports the following environment variables:

• AWS_REGION – Specifies the AWS Region of the X-Ray service endpoint.

• HTTPS_PROXY – Specifies a proxy address for the daemon to upload segments through. This can
be either the DNS domain names or IP addresses and port numbers used by your proxy servers.

Configuration 158

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration-region

AWS X-Ray Developer Guide

Using command line options

Pass these options to the daemon when you run it locally or with a user data script.

Command Line Options

• -b, --bind – Listen for segment documents on a different UDP port.

--bind "127.0.0.1:3000"

Default – 2000.

• -t, --bind-tcp – Listen for calls to the X-Ray service on a different TCP port.

-bind-tcp "127.0.0.1:3000"

Default – 2000.

• -c, --config – Load a configuration file from the specified path.

--config "/home/ec2-user/xray-daemon.yaml"

• -f, --log-file – Output logs to the specified file path.

--log-file "/var/log/xray-daemon.log"

• -l, --log-level – Log level, from most verbose to least: dev, debug, info, warn, error, prod.

--log-level warn

Default – prod

• -m, --buffer-memory – Change the amount of memory in MB that buffers can use (minimum
3).

--buffer-memory 50

Default – 1% of available memory.

• -o, --local-mode – Don't check for EC2 instance metadata.

• -r, --role-arn – Assume the specified IAM role to upload segments to a different account.

Using command line options 159

AWS X-Ray Developer Guide

--role-arn "arn:aws:iam::123456789012:role/xray-cross-account"

• -a, --resource-arn – Amazon Resource Name (ARN) of the AWS resource running the
daemon.

• -p, --proxy-address – Upload segments to AWS X-Ray through a proxy. The proxy server's
protocol must be specified.

--proxy-address "http://192.0.2.0:3000"

• -n, --region – Send segments to X-Ray service in a specific region.

• -v, --version – Show AWS X-Ray daemon version.

• -h, --help – Show the help screen.

Using a configuration file

You can also use a YAML format file to configure the daemon. Pass the configuration file to the
daemon by using the -c option.

~$./xray -c ~/xray-daemon.yaml

Configuration file options

• TotalBufferSizeMB – Maximum buffer size in MB (minimum 3). Choose 0 to use 1% of host
memory.

• Concurrency – Maximum number of concurrent calls to AWS X-Ray to upload segment
documents.

• Region – Send segments to AWS X-Ray service in a specific region.

• Socket – Configure the daemon's binding.

• UDPAddress – Change the port on which the daemon listens.

• TCPAddress – Listen for calls to the X-Ray service on a different TCP port.

• Logging – Configure logging behavior.

• LogRotation – Set to false to disable log rotation.

• LogLevel – Change the log level, from most verbose to least: dev, debug, info or prod,
warn, error, prod. The default is prod, which is equivalent to info.

Using a configuration file 160

AWS X-Ray Developer Guide

• LogPath – Output logs to the specified file path.

• LocalMode – Set to true to skip checking for EC2 instance metadata.

• ResourceARN – Amazon Resource Name (ARN) of the AWS resource running the daemon.

• RoleARN – Assume the specified IAM role to upload segments to a different account.

• ProxyAddress – Upload segments to AWS X-Ray through a proxy.

• Endpoint – Change the X-Ray service endpoint to which the daemon sends segment
documents.

• NoVerifySSL – Disable TLS certificate verification.

• Version – Daemon configuration file format version. The file format version is a required field.

Example Xray-daemon.yaml

This configuration file changes the daemon's listening port to 3000, turns off checks for instance
metadata, sets a role to use for uploading segments, and changes region and logging options.

Socket:
 UDPAddress: "127.0.0.1:3000"
 TCPAddress: "127.0.0.1:3000"
Region: "us-west-2"
Logging:
 LogLevel: "warn"
 LogPath: "/var/log/xray-daemon.log"
LocalMode: true
RoleARN: "arn:aws:iam::123456789012:role/xray-cross-account"
Version: 2

Running the X-Ray daemon locally

You can run the AWS X-Ray daemon locally on Linux, MacOS, Windows, or in a Docker container.
Run the daemon to relay trace data to X-Ray when you are developing and testing your
instrumented application. Download and extract the daemon by using the instructions here.

When running locally, the daemon can read credentials from an AWS SDK credentials file (.aws/
credentials in your user directory) or from environment variables. For more information, see
Giving the daemon permission to send data to X-Ray.

Run the daemon locally 161

AWS X-Ray Developer Guide

The daemon listens for UDP data on port 2000. You can change the port and other options by
using a configuration file and command line options. For more information, see Configuring the
AWS X-Ray daemon.

Running the X-Ray daemon on Linux

You can run the daemon executable from the command line. Use the -o option to run in local
mode, and -n to set the region.

~/xray-daemon$./xray -o -n us-east-2

To run the daemon in the background, use &.

~/xray-daemon$./xray -o -n us-east-2 &

Terminate a daemon process running in the background with pkill.

~$ pkill xray

Running the X-Ray daemon in a Docker container

To run the daemon locally in a Docker container, save the following text to a file named
Dockerfile. Download the complete example image on Amazon ECR. See downloading the
daemon for more information.

Example Dockerfile – Amazon Linux

FROM amazonlinux
RUN yum install -y unzip
RUN curl -o daemon.zip https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/
xray-daemon/aws-xray-daemon-linux-3.x.zip
RUN unzip daemon.zip && cp xray /usr/bin/xray
ENTRYPOINT ["/usr/bin/xray", "-t", "0.0.0.0:2000", "-b", "0.0.0.0:2000"]
EXPOSE 2000/udp
EXPOSE 2000/tcp

Build the container image with docker build.

~/xray-daemon$ docker build -t xray-daemon .

Running the X-Ray daemon on Linux 162

https://gallery.ecr.aws/xray/aws-xray-daemon

AWS X-Ray Developer Guide

Run the image in a container with docker run.

~/xray-daemon$ docker run \
 --attach STDOUT \
 -v ~/.aws/:/root/.aws/:ro \
 --net=host \
 -e AWS_REGION=us-east-2 \
 --name xray-daemon \
 -p 2000:2000/udp \
 xray-daemon -o

This command uses the following options:

• --attach STDOUT – View output from the daemon in the terminal.

• -v ~/.aws/:/root/.aws/:ro – Give the container read-only access to the .aws directory to
let it read your AWS SDK credentials.

• AWS_REGION=us-east-2 – Set the AWS_REGION environment variable to tell the daemon
which region to use.

• --net=host – Attach the container to the host network. Containers on the host network can
communicate with each other without publishing ports.

• -p 2000:2000/udp – Map UDP port 2000 on your machine to the same port on the container.
This is not required for containers on the same network to communicate, but it does let you send
segments to the daemon from the command line or from an application not running in Docker.

• --name xray-daemon – Name the container xray-daemon instead of generating a random
name.

• -o (after the image name) – Append the -o option to the entry point that runs the daemon
within the container. This option tells the daemon to run in local mode to prevent it from trying
to read Amazon EC2 instance metadata.

To stop the daemon, use docker stop. If you make changes to the Dockerfile and build a new
image, you need to delete the existing container before you can create another one with the same
name. Use docker rm to delete the container.

$ docker stop xray-daemon
$ docker rm xray-daemon

Running the X-Ray daemon in a Docker container 163

AWS X-Ray Developer Guide

Running the X-Ray daemon on Windows

You can run the daemon executable from the command line. Use the -o option to run in local
mode, and -n to set the region.

> .\xray_windows.exe -o -n us-east-2

Use a PowerShell script to create and run a service for the daemon.

Example PowerShell script - Windows

if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue){
 sc.exe stop AWSXRayDaemon
 sc.exe delete AWSXRayDaemon
}
if (Get-Item -path aws-xray-daemon -ErrorAction SilentlyContinue) {
 Remove-Item -Recurse -Force aws-xray-daemon
}

$currentLocation = Get-Location
$zipFileName = "aws-xray-daemon-windows-service-3.x.zip"
$zipPath = "$currentLocation\$zipFileName"
$destPath = "$currentLocation\aws-xray-daemon"
$daemonPath = "$destPath\xray.exe"
$daemonLogPath = "C:\inetpub\wwwroot\xray-daemon.log"
$url = "https://s3.dualstack.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/xray-
daemon/aws-xray-daemon-windows-service-3.x.zip"

Invoke-WebRequest -Uri $url -OutFile $zipPath
Add-Type -Assembly "System.IO.Compression.Filesystem"
[io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

sc.exe create AWSXRayDaemon binPath= "$daemonPath -f $daemonLogPath"
sc.exe start AWSXRayDaemon

Running the X-Ray daemon on OS X

You can run the daemon executable from the command line. Use the -o option to run in local
mode, and -n to set the region.

~/xray-daemon$./xray_mac -o -n us-east-2

Running the X-Ray daemon on Windows 164

AWS X-Ray Developer Guide

To run the daemon in the background, use &.

~/xray-daemon$./xray_mac -o -n us-east-2 &

Use nohup to prevent the daemon from terminating when the terminal is closed.

~/xray-daemon$ nohup ./xray_mac &

Running the X-Ray daemon on AWS Elastic Beanstalk

To relay trace data from your application to AWS X-Ray, you can run the X-Ray daemon on your
Elastic Beanstalk environment's Amazon EC2 instances. For a list of supported platforms, see
Configuring AWS X-Ray Debugging in the AWS Elastic Beanstalk Developer Guide.

Note

The daemon uses your environment's instance profile for permissions. For instructions
about adding permissions to the Elastic Beanstalk instance profile, see Giving the daemon
permission to send data to X-Ray.

Elastic Beanstalk platforms provide a configuration option that you can set to run the daemon
automatically. You can enable the daemon in a configuration file in your source code or by
choosing an option in the Elastic Beanstalk console. When you enable the configuration option, the
daemon is installed on the instance and runs as a service.

The version included on Elastic Beanstalk platforms might not be the latest version. See the
Supported Platforms topic to find out the version of the daemon that is available for your platform
configuration.

Elastic Beanstalk does not provide the X-Ray daemon on the Multicontainer Docker (Amazon ECS)
platform.

Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemon

Use the console to turn on X-Ray integration, or configure it in your application source code with a
configuration file.

On Elastic Beanstalk 165

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-configuration-debugging.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.platforms.html

AWS X-Ray Developer Guide

To enable the X-Ray daemon in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Choose Configuration.

4. Choose Software Settings.

5. For X-Ray daemon, choose Enabled.

6. Choose Apply.

You can include a configuration file in your source code to make your configuration portable
between environments.

Example .ebextensions/xray-daemon.config

option_settings:
 aws:elasticbeanstalk:xray:
 XRayEnabled: true

Elastic Beanstalk passes a configuration file to the daemon and outputs logs to a standard location.

On Windows Server Platforms

• Configuration file – C:\Program Files\Amazon\XRay\cfg.yaml

• Logs – c:\Program Files\Amazon\XRay\logs\xray-service.log

On Linux Platforms

• Configuration file – /etc/amazon/xray/cfg.yaml

• Logs – /var/log/xray/xray.log

Elastic Beanstalk provides tools for pulling instance logs from the AWS Management Console or
command line. You can tell Elastic Beanstalk to include the X-Ray daemon logs by adding a task
with a configuration file.

Example .ebextensions/xray-logs.config - Linux

files:

Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemon 166

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide

 "/opt/elasticbeanstalk/tasks/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 /var/log/xray/xray.log

Example .ebextensions/xray-logs.config - Windows server

files:
 "c:/Program Files/Amazon/ElasticBeanstalk/config/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 c:\Progam Files\Amazon\XRay\logs\xray-service.log

See Viewing Logs from Your Elastic Beanstalk Environment's Amazon EC2 Instances in the AWS
Elastic Beanstalk Developer Guide for more information.

Downloading and running the X-Ray daemon manually (advanced)

If the X-Ray daemon isn't available for your platform configuration, you can download it from
Amazon S3 and run it with a configuration file.

Use an Elastic Beanstalk configuration file to download and run the daemon.

Example .ebextensions/xray.config - Linux

commands:
 01-stop-tracing:
 command: yum remove -y xray
 ignoreErrors: true
 02-copy-tracing:
 command: curl https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-
daemon/aws-xray-daemon-3.x.rpm -o /home/ec2-user/xray.rpm
 03-start-tracing:
 command: yum install -y /home/ec2-user/xray.rpm

files:
 "/opt/elasticbeanstalk/tasks/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root

Downloading and running the X-Ray daemon manually (advanced) 167

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.logging.html

AWS X-Ray Developer Guide

 group: root
 content: |
 /var/log/xray/xray.log
 "/etc/amazon/xray/cfg.yaml" :
 mode: "000644"
 owner: root
 group: root
 content: |
 Logging:
 LogLevel: "debug"
 Version: 2

Example .ebextensions/xray.config - Windows server

container_commands:
 01-execute-config-script:
 command: Powershell.exe -ExecutionPolicy Bypass -File c:\\temp\\installDaemon.ps1
 waitAfterCompletion: 0

files:
 "c:/temp/installDaemon.ps1":
 content: |
 if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue) {
 sc.exe stop AWSXRayDaemon
 sc.exe delete AWSXRayDaemon
 }

 $targetLocation = "C:\Program Files\Amazon\XRay"
 if ((Test-Path $targetLocation) -eq 0) {
 mkdir $targetLocation
 }

 $zipFileName = "aws-xray-daemon-windows-service-3.x.zip"
 $zipPath = "$targetLocation\$zipFileName"
 $destPath = "$targetLocation\aws-xray-daemon"
 if ((Test-Path $destPath) -eq 1) {
 Remove-Item -Recurse -Force $destPath
 }

 $daemonPath = "$destPath\xray.exe"
 $daemonLogPath = "$targetLocation\xray-daemon.log"
 $url = "https://s3.dualstack.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/
xray-daemon/aws-xray-daemon-windows-service-3.x.zip"

Downloading and running the X-Ray daemon manually (advanced) 168

AWS X-Ray Developer Guide

 Invoke-WebRequest -Uri $url -OutFile $zipPath
 Add-Type -Assembly "System.IO.Compression.Filesystem"
 [io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

 New-Service -Name "AWSXRayDaemon" -StartupType Automatic -BinaryPathName
 "`"$daemonPath`" -f `"$daemonLogPath`""
 sc.exe start AWSXRayDaemon
 encoding: plain
 "c:/Program Files/Amazon/ElasticBeanstalk/config/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 C:\Program Files\Amazon\XRay\xray-daemon.log

These examples also add the daemon's log file to the Elastic Beanstalk tail logs task, so that it's
included when you request logs with the console or Elastic Beanstalk Command Line Interface (EB
CLI).

Running the X-Ray daemon on Amazon EC2

You can run the X-Ray daemon on the following operating systems on Amazon EC2:

• Amazon Linux

• Ubuntu

• Windows Server (2012 R2 and newer)

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the daemon permission to send data to X-Ray.

Use a user data script to run the daemon automatically when you launch the instance.

Example User data script - Linux

#!/bin/bash
curl https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-
daemon-3.x.rpm -o /home/ec2-user/xray.rpm
yum install -y /home/ec2-user/xray.rpm

On Amazon EC2 169

AWS X-Ray Developer Guide

Example User data script - Windows server

<powershell>
if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue) {
 sc.exe stop AWSXRayDaemon
 sc.exe delete AWSXRayDaemon
}

$targetLocation = "C:\Program Files\Amazon\XRay"
if ((Test-Path $targetLocation) -eq 0) {
 mkdir $targetLocation
}

$zipFileName = "aws-xray-daemon-windows-service-3.x.zip"
$zipPath = "$targetLocation\$zipFileName"
$destPath = "$targetLocation\aws-xray-daemon"
if ((Test-Path $destPath) -eq 1) {
 Remove-Item -Recurse -Force $destPath
}

$daemonPath = "$destPath\xray.exe"
$daemonLogPath = "$targetLocation\xray-daemon.log"
$url = "https://s3.dualstack.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/xray-
daemon/aws-xray-daemon-windows-service-3.x.zip"

Invoke-WebRequest -Uri $url -OutFile $zipPath
Add-Type -Assembly "System.IO.Compression.Filesystem"
[io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

New-Service -Name "AWSXRayDaemon" -StartupType Automatic -BinaryPathName
 "`"$daemonPath`" -f `"$daemonLogPath`""
sc.exe start AWSXRayDaemon
</powershell>

Running the X-Ray daemon on Amazon ECS

In Amazon ECS, create a Docker image that runs the X-Ray daemon, upload it to a Docker image
repository, and then deploy it to your Amazon ECS cluster. You can use port mappings and network
mode settings in your task definition file to allow your application to communicate with the
daemon container.

On Amazon ECS 170

AWS X-Ray Developer Guide

Using the official Docker image

X-Ray provides a Docker container image on Amazon ECR that you can deploy alongside your
application. See downloading the daemon for more information.

Example Task definition

 {
 "name": "xray-daemon",
 "image": "amazon/aws-xray-daemon",
 "cpu": 32,
 "memoryReservation": 256,
 "portMappings" : [
 {
 "hostPort": 0,
 "containerPort": 2000,
 "protocol": "udp"
 }
]
 }

Create and build a Docker image

For custom configuration, you may need to define your own Docker image.

Add managed policies to your task role to grant the daemon permission to upload trace data to X-
Ray. For more information, see Giving the daemon permission to send data to X-Ray.

Use one of the following Dockerfiles to create an image that runs the daemon.

Example Dockerfile – Amazon Linux

FROM amazonlinux
RUN yum install -y unzip
RUN curl -o daemon.zip https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/
xray-daemon/aws-xray-daemon-linux-3.x.zip
RUN unzip daemon.zip && cp xray /usr/bin/xray
ENTRYPOINT ["/usr/bin/xray", "-t", "0.0.0.0:2000", "-b", "0.0.0.0:2000"]
EXPOSE 2000/udp
EXPOSE 2000/tcp

Using the official Docker image 171

https://gallery.ecr.aws/xray/aws-xray-daemon

AWS X-Ray Developer Guide

Note

Flags -t and -b are required to specify a binding address to listen to the loopback of a
multi-container environment.

Example Dockerfile – Ubuntu

For Debian derivatives, you also need to install certificate authority (CA) certificates to avoid issues
when downloading the installer.

FROM ubuntu:16.04
RUN apt-get update && apt-get install -y --force-yes --no-install-recommends apt-
transport-https curl ca-certificates wget && apt-get clean && apt-get autoremove && rm
 -rf /var/lib/apt/lists/*
RUN wget https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-
xray-daemon-3.x.deb
RUN dpkg -i aws-xray-daemon-3.x.deb
ENTRYPOINT ["/usr/bin/xray", "--bind=0.0.0.0:2000", "--bind-tcp=0.0.0.0:2000"]
EXPOSE 2000/udp
EXPOSE 2000/tcp

In your task definition, the configuration depends on the networking mode that you use. Bridge
networking is the default and can be used in your default VPC. In a bridge network, set the
AWS_XRAY_DAEMON_ADDRESS environment variable to tell the X-Ray SDK which container-port to
reference and set the host port. For example, you could publish UDP port 2000, and create a link
from your application container to the daemon container.

Example Task definition

 {
 "name": "xray-daemon",
 "image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/xray-daemon",
 "cpu": 32,
 "memoryReservation": 256,
 "portMappings" : [
 {
 "hostPort": 0,
 "containerPort": 2000,
 "protocol": "udp"

Create and build a Docker image 172

AWS X-Ray Developer Guide

 }
]
 },
 {
 "name": "scorekeep-api",
 "image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/scorekeep-api",
 "cpu": 192,
 "memoryReservation": 512,
 "environment": [
 { "name" : "AWS_REGION", "value" : "us-east-2" },
 { "name" : "NOTIFICATION_TOPIC", "value" : "arn:aws:sns:us-
east-2:123456789012:scorekeep-notifications" },
 { "name" : "AWS_XRAY_DAEMON_ADDRESS", "value" : "xray-daemon:2000" }
],
 "portMappings" : [
 {
 "hostPort": 5000,
 "containerPort": 5000
 }
],
 "links": [
 "xray-daemon"
]
 }

If you run your cluster in the private subnet of a VPC, you can use the awsvpc network mode
to attach an elastic network interface (ENI) to your containers. This enables you to avoid using
links. Omit the host port in the port mappings, the link, and the AWS_XRAY_DAEMON_ADDRESS
environment variable.

Example VPC task definition

{
 "family": "scorekeep",
 "networkMode":"awsvpc",
 "containerDefinitions": [
 {
 "name": "xray-daemon",
 "image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/xray-daemon",
 "cpu": 32,
 "memoryReservation": 256,
 "portMappings" : [
 {

Create and build a Docker image 173

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html

AWS X-Ray Developer Guide

 "containerPort": 2000,
 "protocol": "udp"
 }
]
 },
 {
 "name": "scorekeep-api",
 "image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/scorekeep-api",
 "cpu": 192,
 "memoryReservation": 512,
 "environment": [
 { "name" : "AWS_REGION", "value" : "us-east-2" },
 { "name" : "NOTIFICATION_TOPIC", "value" : "arn:aws:sns:us-
east-2:123456789012:scorekeep-notifications" }
],
 "portMappings" : [
 {
 "containerPort": 5000
 }
]
 }
]
}

Configure command line options in the Amazon ECS console

Command line options override any conflicting values in your image's config file. Command line
options are typically used for local testing, but can also be used for convenience while setting
environment variables, or to control the startup process.

By adding command line options, you are updating the Docker CMD that is passed to the container.
For more information, see the Docker run reference.

To set a command line option

1. Open the Amazon ECS classic console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, choose the region that contains your task definition.

3. In the navigation pane, choose Task Definitions.

4. On the Task Definitions page, select the box to the left of the task definition to revise and
choose Create new revision.

5. On the Create new revision of Task Definition page, select the container.

Configure command line options in the Amazon ECS console 174

https://docs.docker.com/engine/reference/run/#overriding-dockerfile-image-defaults
https://console.aws.amazon.com/ecs/

AWS X-Ray Developer Guide

6. In the ENVIRONMENT section, add your comma-separated list of command line options to the
Command field.

7. Choose Update.

8. Verify the information and choose Create.

The following example shows how to write a comma-separated command line option for the
RoleARN option. The RoleARN option assumes the specified IAM role to upload segments to a
different account.

Example

--role-arn, arn:aws:iam::123456789012:role/xray-cross-account

To learn more about the available command line options in X-Ray, see Configuring the AWS X-Ray
Daemon.

Configure command line options in the Amazon ECS console 175

AWS X-Ray Developer Guide

Instrument your application for AWS X-Ray

Instrumenting your application involves sending trace data for incoming and outbound requests
and other events within your application, along with metadata about each request. There are
several different instrumentation options you can choose from or combine, based on your
particular requirements:

• Auto instrumentation – instrument your application with zero code changes, typically via
configuration changes, adding an auto-instrumentation agent, or other mechanisms.

• Library instrumentation – make minimal application code changes to add pre-built
instrumentation targeting specific libraries or frameworks, such as the AWS SDK, Apache HTTP
clients, or SQL clients.

• Manual instrumentation – add instrumentation code to your application at each location where
you want to send trace information.

There are several SDKs, agents, and tools that can be used to instrument your application for X-Ray
tracing.

Topics

• Instrumenting your application with the AWS Distro for OpenTelemetry

• Instrumenting your application with AWS X-Ray SDKs

• Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs

• Instrument your application with Go

• Instrument your application with Java

• Instrument your application with Node.js

• Instrument your application with Python

• Instrument your application with .NET

• Instrument your application with Ruby

176

AWS X-Ray Developer Guide

Instrumenting your application with the AWS Distro for
OpenTelemetry

The AWS Distro for OpenTelemetry (ADOT) is an AWS distribution based on the Cloud Native
Computing Foundation (CNCF) OpenTelemetry project. OpenTelemetry provides a single set of
open source APIs, libraries, and agents to collect distributed traces and metrics. This toolkit is
a distribution of upstream OpenTelemetry components including SDKs, auto-instrumentation
agents, and collectors that are tested, optimized, secured, and supported by AWS.

With ADOT, engineers can instrument their applications once and send correlated metrics and
traces to multiple AWS monitoring solutions including Amazon CloudWatch, AWS X-Ray, and
Amazon OpenSearch Service.

Using X-Ray with ADOT requires two components: an OpenTelemetry SDK enabled for use with
X-Ray, and the AWS Distro for OpenTelemetry Collector enabled for use with X-Ray. For more
information about using the AWS Distro for OpenTelemetry with AWS X-Ray and other AWS
services, see the AWS Distro for OpenTelemetry Documentation.

For more information about language support and usage, see AWS Observability on GitHub.

Note

You can now use the CloudWatch agent to collect metrics, logs and traces from Amazon
EC2 instances and on-premise servers. CloudWatch agent version 1.300025.0 and later can
collect traces from OpenTelemetry or X-Ray client SDKs, and send them to X-Ray. Using the
CloudWatch agent instead of the AWS Distro for OpenTelemetry (ADOT) Collector or X-Ray
daemon to collect traces can help you reduce the number of agents that you manage. See
the CloudWatch agent topic in the CloudWatch User Guide for more information.

ADOT includes the following:

• AWS Distro for OpenTelemetry Go

• AWS Distro for OpenTelemetry Java

• AWS Distro for OpenTelemetry JavaScript

• AWS Distro for OpenTelemetry Python

• AWS Distro for OpenTelemetry .NET

Instrumenting your application with the AWS Distro for OpenTelemetry 177

https://aws-otel.github.io/docs/introduction
https://github.com/aws-observability
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://aws-otel.github.io/docs/getting-started/go-sdk
https://aws-otel.github.io/docs/getting-started/java-sdk
https://aws-otel.github.io/docs/getting-started/javascript-sdk
https://aws-otel.github.io/docs/getting-started/python-sdk
https://aws-otel.github.io/docs/getting-started/dotnet-sdk

AWS X-Ray Developer Guide

ADOT currently includes auto-instrumentation support for Java and Python. In addition, ADOT
enables auto-instrumentation of AWS Lambda functions and their downstream requests using
Java, Node.js, and Python runtimes, via ADOT Managed Lambda Layers.

ADOT SDKs for Java and Go support X-Ray centralized sampling rules. If you need support for X-
Ray sampling rules in other languages, consider using an AWS X-Ray SDK.

Note

You can send now send W3C trace IDs to X-Ray. By default, traces that are created with
OpenTelemetry have a trace ID format that's based on the W3C Trace Context specification.
This is different from the format for trace IDs that are created using an X-Ray SDK or by
AWS services that are integrated with X-Ray. To ensure that trace IDs in W3C format are
accepted by X-Ray, you must use AWS X-Ray Exporter version 0.86.0 or later, which is
included with ADOT Collector version 0.34.0 and later. Previous versions of the exporter
validate trace ID timestamps, which might cause W3C trace IDs to be rejected.

Instrumenting your application with AWS X-Ray SDKs

AWS X-Ray includes a set of language-specific SDKs for instrumenting your application to send
traces to X-Ray. Each X-Ray SDK provides the following:

• Interceptors to add to your code to trace incoming HTTP requests

• Client handlers to instrument AWS SDK clients that your application uses to call other AWS
services

• An HTTP client to instrument calls to other internal and external HTTP web services

X-Ray SDKs also support instrumenting calls to SQL databases, automatic AWS SDK client
instrumentation, and other features. Instead of sending trace data directly to X-Ray, the SDK
sends JSON segment documents to a daemon process listening for UDP traffic. The X-Ray daemon
buffers segments in a queue and uploads them to X-Ray in batches.

The following language-specific SDKs are provided:

• AWS X-Ray SDK for Go

• AWS X-Ray SDK for Java

Instrumenting your application with AWS X-Ray SDKs 178

https://aws-otel.github.io/docs/getting-started/java-sdk/auto-instr
https://aws-otel.github.io/docs/getting-started/python-sdk/auto-instr
https://aws-otel.github.io/docs/getting-started/lambda
https://www.w3.org/TR/trace-context/
https://aws-otel.github.io/docs/getting-started/x-ray
https://aws-otel.github.io/download

AWS X-Ray Developer Guide

• AWS X-Ray SDK for Node.js

• AWS X-Ray SDK for Python

• AWS X-Ray SDK for .NET

• AWS X-Ray SDK for Ruby

X-Ray currently includes auto-instrumentation support for Java.

Choosing between the AWS Distro for OpenTelemetry and X-
Ray SDKs

The SDKs included with X-Ray are part of a tightly integrated instrumentation solution offered by
AWS. The AWS Distro for OpenTelemetry is part of a broader industry solution in which X-Ray is
only one of many tracing solutions. You can implement end-to-end tracing in X-Ray using either
approach, but it’s important to understand the differences in order to determine the most useful
approach for you.

We recommend instrumenting your application with the AWS Distro for OpenTelemetry if you need
the following:

• The ability to send traces to multiple different tracing back ends without having to re-instrument
your code

• Support for a large number of library instrumentations for each language, maintained by the
OpenTelemetry community

• Fully managed Lambda layers that package everything you need to collect telemetry data,
without requiring code changes when using Java, Python, or Node.js

Note

AWS Distro for OpenTelemetry offers a simpler getting started experience for
instrumenting your Lambda functions. However, due to the flexibility OpenTelemetry
offers, your Lambda function will require additional memory and invocations may
experience cold start latency increases, which can lead to additional charges. If you're
optimizing for low-latency and do not require OpenTelemetry's advanced capabilities
such as dynamically configurable back end destinations, you may want to use the AWS X-
Ray SDK to instrument your application.

Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs 179

AWS X-Ray Developer Guide

We recommend choosing an X-Ray SDK for instrumenting your application if you need the
following:

• A tightly integrated single-vendor solution

• Integration with X-Ray centralized sampling rules, including the ability to configure sampling
rules from the X-Ray console and automatically use them across multiple hosts, when using
Node.js, Python, Ruby, or .NET

Instrument your application with Go

There are two ways to instrument your Go application to send traces to X-Ray:

• AWS Distro for OpenTelemetry Go – An AWS distribution that provides a set of open source
libraries for sending correlated metrics and traces to multiple AWS monitoring solutions
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for Go – A set of libraries for generating and sending traces to X-Ray via the X-
Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry Go

With the AWS Distro for OpenTelemetry Go, you can instrument your applications once and send
correlated metrics and traces to multiple AWS monitoring solutions including Amazon CloudWatch,
AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with AWS Distro for OpenTelemetry
requires two components: an OpenTelemetry SDK enabled for use with X-Ray, and the AWS Distro
for OpenTelemetry Collector enabled for use with X-Ray.

To get started, see the AWS Distro for OpenTelemetry Go documentation.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

For more information about language support and usage, see AWS Observability on GitHub.

Instrument with Go 180

https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/go-sdk
https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction
https://github.com/aws-observability

AWS X-Ray Developer Guide

AWS X-Ray SDK for Go

The X-Ray SDK for Go is a set of libraries for Go applications that provide classes and methods
for generating and sending trace data to the X-Ray daemon. Trace data includes information
about incoming HTTP requests served by the application, and calls that the application makes to
downstream services using the AWS SDK, HTTP clients, or an SQL database connector. You can also
create segments manually and add debug information in annotations and metadata.

Download the SDK from its GitHub repository with go get:

$ go get -u github.com/aws/aws-xray-sdk-go/...

For web applications, start by using the xray.Handler function to trace incoming requests. The
message handler creates a segment for each traced request, and completes the segment when
the response is sent. While the segment is open you can use the SDK client's methods to add
information to the segment and create subsegments to trace downstream calls. The SDK also
automatically records exceptions that your application throws while the segment is open.

For Lambda functions called by an instrumented application or service, Lambda reads the tracing
header and traces sampled requests automatically. For other functions, you can configure Lambda
to sample and trace incoming requests. In either case, Lambda creates the segment and provides it
to the X-Ray SDK.

Note

On Lambda, the X-Ray SDK is optional. If you don't use it in your function, your service
map will still include a node for the Lambda service, and one for each Lambda function.
By adding the SDK, you can instrument your function code to add subsegments to the
function segment recorded by Lambda. See AWS Lambda and AWS X-Ray for more
information.

Next, wrap your client with a call to the AWS function. This step ensures that X-Ray instruments
calls to any client methods. You can also instrument calls to SQL databases.

After you start using the SDK, customize its behavior by configuring the recorder and middleware.
You can add plugins to record data about the compute resources running your application,
customize sampling behavior by defining sampling rules, and set the log level to see more or less
information from the SDK in your application logs.

X-Ray SDK for Go 181

https://github.com/aws/aws-xray-sdk-go

AWS X-Ray Developer Guide

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have a lot of instrumented clients in your code, a single request segment can contain
a large number of subsegments, one for each call made with an instrumented client. You can
organize and group subsegments by wrapping client calls in custom subsegments. You can create
a custom subsegment for an entire function or any section of code, and record metadata and
annotations on the subsegment instead of writing everything on the parent segment.

Requirements

The X-Ray SDK for Go requires Go 1.9 or later.

The SDK depends on the following libraries at compile and runtime:

• AWS SDK for Go version 1.10.0 or newer

These dependencies are declared in the SDK's README.md file.

Reference documentation

Once you have downloaded the SDK, build and host the documentation locally to view it in a web
browser.

To view the reference documentation

1. Navigating to the $GOPATH/src/github.com/aws/aws-xray-sdk-go (Linux or Mac)
directory or the %GOPATH%\src\github.com\aws\aws-xray-sdk-go (Windows) folder

X-Ray SDK for Go 182

AWS X-Ray Developer Guide

2. Run the godoc command.

$ godoc -http=:6060

3. Opening a browser at http://localhost:6060/pkg/github.com/aws/aws-xray-sdk-
go/.

Configuring the X-Ray SDK for Go

You can specify the configuration for X-Ray SDK for Go through environment variables, by calling
Configure with a Config object, or by assuming default values. Environment variables take
precedence over Config values, which take precedence over any default value.

Sections

• Service plugins

• Sampling rules

• Logging

• Environment variables

• Using configure

Service plugins

Use plugins to record information about the service hosting your application.

Plugins

• Amazon EC2 – EC2Plugin adds the instance ID, Availability Zone, and the CloudWatch Logs
Group.

• Elastic Beanstalk – ElasticBeanstalkPlugin adds the environment name, version label, and
deployment ID.

• Amazon ECS – ECSPlugin adds the container ID.

X-Ray SDK for Go 183

AWS X-Ray Developer Guide

To use a plugin, import one of the following packages.

"github.com/aws/aws-xray-sdk-go/awsplugins/ec2"
"github.com/aws/aws-xray-sdk-go/awsplugins/ecs"
"github.com/aws/aws-xray-sdk-go/awsplugins/beanstalk"

Each plugin has an explicit Init() function call that loads the plugin.

Example ec2.Init()

import (
 "os"

 "github.com/aws/aws-xray-sdk-go/awsplugins/ec2"
 "github.com/aws/aws-xray-sdk-go/xray"
)

func init() {

X-Ray SDK for Go 184

AWS X-Ray Developer Guide

 // conditionally load plugin
 if os.Getenv("ENVIRONMENT") == "production" {
 ec2.Init()
 }

 xray.Configure(xray.Config{
 ServiceVersion: "1.2.3",
 })
}

The SDK also uses plugin settings to set the origin field on the segment. This indicates the type
of AWS resource that runs your application. When you use multiple plugins, the SDK uses the
following resolution order to determine the origin: ElasticBeanstalk > EKS > ECS > EC2.

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional
requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request received at the beginning of each second, and five percent of any additional
requests per host. This can occur if the host doesn't have permission to call sampling APIs,
or can't connect to the X-Ray daemon, which acts as a TCP proxy for API calls made by the
SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{
 "version": 2,

X-Ray SDK for Go 185

AWS X-Ray Developer Guide

 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

On AWS Lambda, you cannot modify the sampling rate. If your function is called by an
instrumented service, calls that generated requests that were sampled by that service will be
recorded by Lambda. If active tracing is enabled and no tracing header is present, Lambda makes
the sampling decision.

To provide backup rules, point to the local sampling JSON file by using
NewCentralizedStrategyWithFilePath.

Example main.go – Local sampling rule

s, _ := sampling.NewCentralizedStrategyWithFilePath("sampling.json") // path to local
 sampling json
xray.Configure(xray.Config{SamplingStrategy: s})

To use only local rules, point to the local sampling JSON file by using
NewLocalizedStrategyFromFilePath.

X-Ray SDK for Go 186

AWS X-Ray Developer Guide

Example main.go – Disable sampling

s, _ := sampling.NewLocalizedStrategyFromFilePath("sampling.json") // path to local
 sampling json
xray.Configure(xray.Config{SamplingStrategy: s})

Logging

Note

The xray.Config{} fields LogLevel and LogFormat are deprecated starting with
version 1.0.0-rc.10.

X-Ray uses the following interface for logging. The default logger writes to stdout at
LogLevelInfo and above.

type Logger interface {
 Log(level LogLevel, msg fmt.Stringer)
}

const (
 LogLevelDebug LogLevel = iota + 1
 LogLevelInfo
 LogLevelWarn
 LogLevelError
)

Example write to io.Writer

xray.SetLogger(xraylog.NewDefaultLogger(os.Stderr, xraylog.LogLevelError))

Environment variables

You can use environment variables to configure the X-Ray SDK for Go. The SDK supports the
following variables.

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

X-Ray SDK for Go 187

AWS X-Ray Developer Guide

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

• AWS_XRAY_TRACING_NAME – Set the service name that the SDK uses for segments.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK sends trace data to 127.0.0.1:2000. Use this variable if you have configured the
daemon to listen on a different port or if it is running on a different host.

Environment variables override equivalent values set in code.

Using configure

You can also configure the X-Ray SDK for Go using the Configure method. Configure takes one
argument, a Config object, with the following, optional fields.

DaemonAddr

This string specifies the host and port of the X-Ray daemon listener. If not specified, X-Ray uses
the value of the AWS_XRAY_DAEMON_ADDRESS environment variable. If that value is not set, it
uses "127.0.0.1:2000".

ServiceVersion

This string specifies the version of the service. If not specified, X-Ray uses the empty string ("").

SamplingStrategy

This SamplingStrategy object specifies which of your application calls are traced. If not
specified, X-Ray uses a LocalizedSamplingStrategy, which takes the strategy as defined in
xray/resources/DefaultSamplingRules.json.

X-Ray SDK for Go 188

AWS X-Ray Developer Guide

StreamingStrategy

This StreamingStrategy object specifies whether to stream a segment when
RequiresStreaming returns true. If not specified, X-Ray uses a DefaultStreamingStrategy
that streams a sampled segment if the number of subsegments is greater than 20.

ExceptionFormattingStrategy

This ExceptionFormattingStrategy object specifies how you want to handle various
exceptions. If not specified, X-Ray uses a DefaultExceptionFormattingStrategy with an
XrayError of type error, the error message, and stack trace.

Instrumenting incoming HTTP requests with the X-Ray SDK for Go

You can use the X-Ray SDK to trace incoming HTTP requests that your application serves on an EC2
instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

Use xray.Handler to instrument incoming HTTP requests. The X-Ray SDK for Go implements
the standard Go library http.Handler interface in the xray.Handler class to intercept web
requests. The xray.Handler class wraps the provided http.Handler with xray.Capture using
the request's context, parsing the incoming headers, adding response headers if needed, and sets
HTTP-specific trace fields.

When you use this class to handle HTTP requests and responses, the X-Ray SDK for Go creates a
segment for each sampled request. This segment includes timing, method, and disposition of the
HTTP request. Additional instrumentation creates subsegments on this segment.

Note

For AWS Lambda functions, Lambda creates a segment for each sampled request. See AWS
Lambda and AWS X-Ray for more information.

The following example intercepts requests on port 8000 and returns "Hello!" as a response. It
creates the segment myApp and instruments calls through any application.

Example main.go

func main() {

X-Ray SDK for Go 189

AWS X-Ray Developer Guide

 http.Handle("/", xray.Handler(xray.NewFixedSegmentNamer("MyApp"),
 http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("Hello!"))
 })))

 http.ListenAndServe(":8000", nil)
}

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

When a request is forwarded, the SDK sets an additional field in the segment to indicate this. If the
segment contains the field x_forwarded_for set to true, the client IP was taken from the X-
Forwarded-For header in the HTTP request.

The handler creates a segment for each incoming request with an http block that contains the
following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

X-Ray SDK for Go 190

AWS X-Ray Developer Guide

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
create the handler, as shown in the previous section.

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

A dynamic naming strategy defines a pattern that hostnames should match, and a default
name to use if the hostname in the HTTP request doesn't match the pattern. To name segments
dynamically, use NewDynamicSegmentNamer to configure the default name and pattern to match.

X-Ray SDK for Go 191

AWS X-Ray Developer Guide

Example main.go

If the hostname in the request matches the pattern *.example.com, use the hostname.
Otherwise, use MyApp.

func main() {
 http.Handle("/", xray.Handler(xray.NewDynamicSegmentNamer("MyApp", "*.example.com"),
 http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("Hello!"))
 })))

 http.ListenAndServe(":8000", nil)
}

Tracing AWS SDK calls with the X-Ray SDK for Go

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Go tracks the calls downstream in subsegments. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

To trace AWS SDK clients, wrap the client object with the xray.AWS() call as shown in the
following example.

Example main.go

var dynamo *dynamodb.DynamoDB
func main() {
 dynamo = dynamodb.New(session.Must(session.NewSession()))
 xray.AWS(dynamo.Client)
}

Then, when you use the AWS SDK client, use the withContext version of the call method, and
pass it the context from the http.Request object passed to the handler.

Example main.go – AWS SDK call

func listTablesWithContext(ctx context.Context) {
 output := dynamo.ListTablesWithContext(ctx, &dynamodb.ListTablesInput{})
 doSomething(output)

X-Ray SDK for Go 192

AWS X-Ray Developer Guide

}

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the service
map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the table
name to the segment for calls that target a table. In the console, each table appears as a separate
node in the service map, with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

X-Ray SDK for Go 193

AWS X-Ray Developer Guide

Tracing calls to downstream HTTP web services with the X-Ray SDK for Go

When your application makes calls to microservices or public HTTP APIs, you can use the
xray.Client to instrument those calls as subsegments of your Go application, as shown in the
following example, where http-client is an HTTP client.

The client creates a shallow copy of the provided HTTP client, defaulting to
http.DefaultClient, with roundtripper wrapped with xray.RoundTripper.

Example

<caption>main.go – HTTP client</caption>

myClient := xray.Client(http-client)

<caption>main.go – Trace downstream HTTP call with ctxhttp library</caption>

The following example instruments the outgoing HTTP call with the ctxhttp library using
xray.Client. ctx can be passed from the upstream call. This ensures that the existing segment
context is used. For example, X-Ray does not allow a new segment to be created within a Lambda
function, so the existing Lambda segment context should be used.

resp, err := ctxhttp.Get(ctx, xray.Client(nil), url)

Tracing SQL queries with the X-Ray SDK for Go

To trace SQL calls to PostgreSQL or MySQL, replacing sql.Open calls to xray.SQLContext, as
shown in the following example. Use URLs instead of configuration strings if possible.

Example main.go

func main() {
 db, err := xray.SQLContext("postgres", "postgres://user:password@host:port/db")
 row, err := db.QueryRowContext(ctx, "SELECT 1") // Use as normal
}

Generating custom subsegments with the X-Ray SDK for Go

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information

X-Ray SDK for Go 194

AWS X-Ray Developer Guide

generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

Use the Capture method to create a subsegment around a function.

Example main.go – Custom subsegment

func criticalSection(ctx context.Context) {
 //this is an example of a subsegment
 xray.Capture(ctx, "GameModel.saveGame", func(ctx1 context.Context) error {
 var err error

 section.Lock()
 result := someLockedResource.Go()
 section.Unlock()

 xray.AddMetadata(ctx1, "ResourceResult", result)
 })

The following screenshot shows an example of how the saveGame subsegment might appear in
traces for the application Scorekeep.

Add annotations and metadata to segments with the X-Ray SDK for Go

You can use annotations and metadata to record additional information about requests, the
environment, or your application. You can add annotations and metadata to the segments that the
X-Ray SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

X-Ray SDK for Go 195

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

In addition to annotations and metadata, you can also record user ID strings on segments. User IDs
are recorded in a separate field on segments and are indexed for use with search.

Sections

• Recording annotations with the X-Ray SDK for Go

• Recording metadata with the X-Ray SDK for Go

• Recording user IDs with the X-Ray SDK for Go

Recording annotations with the X-Ray SDK for Go

Use annotations to record information on segments that you want indexed for search.

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than the underscore symbol (_).

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations, call AddAnnotation with a string containing the metadata you want to
associate with the segment.

xray.AddAnnotation(key string, value interface{})

The SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling AddAnnotation twice with the same key overwrites previously recorded values
on the same segment.

To find traces that have annotations with specific values, use the annotations.key keyword in a
filter expression.

Recording metadata with the X-Ray SDK for Go

Use metadata to record information on segments that you don't need indexed for search.

X-Ray SDK for Go 196

AWS X-Ray Developer Guide

To record metadata, call AddMetadata with a string containing the metadata you want to
associate with the segment.

xray.AddMetadata(key string, value interface{})

Recording user IDs with the X-Ray SDK for Go

Record user IDs on request segments to identify the user who sent the request.

To record user IDs

1. Get a reference to the current segment from AWSXRay.

import (
 "context"
 "github.com/aws/aws-xray-sdk-go/xray"
)

mySegment := xray.GetSegment(context)

2. Call setUser with a String ID of the user who sent the request.

mySegment.User = "U12345"

To find traces for a user ID, use the user keyword in a filter expression.

Instrument your application with Java

There are two ways to instrument your Java application to send traces to X-Ray:

• AWS Distro for OpenTelemetry Java – An AWS distribution that provides a set of open source
libraries for sending correlated metrics and traces to multiple AWS monitoring solutions,
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for Java – A set of libraries for generating and sending traces to X-Ray via the X-
Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

Instrument with Java 197

https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector

AWS X-Ray Developer Guide

AWS Distro for OpenTelemetry Java

With the AWS Distro for OpenTelemetry (ADOT) Java, you can instrument your applications once
and send correlated metrics and traces to multiple AWS monitoring solutions including Amazon
CloudWatch, AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with ADOT requires
two components: an OpenTelemetry SDK enabled for use with X-Ray, and the AWS Distro for
OpenTelemetry Collector enabled for use with X-Ray. ADOT Java includes auto-instrumentation
support, enabling your application to send traces without code changes.

To get started, see the AWS Distro for OpenTelemetry Java documentation.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

For more information about language support and usage, see AWS Observability on GitHub.

AWS X-Ray SDK for Java

The X-Ray SDK for Java is a set of libraries for Java web applications that provide classes and
methods for generating and sending trace data to the X-Ray daemon. Trace data includes
information about incoming HTTP requests served by the application, and calls that the application
makes to downstream services using the AWS SDK, HTTP clients, or an SQL database connector.
You can also create segments manually and add debug information in annotations and metadata.

The X-Ray SDK for Java is an open source project. You can follow the project and submit issues and
pull requests on GitHub: github.com/aws/aws-xray-sdk-java

Start by adding AWSXRayServletFilter as a servlet filter to trace incoming requests. A servlet
filter creates a segment. While the segment is open, you can use the SDK client's methods to add
information to the segment and create subsegments to trace downstream calls. The SDK also
automatically records exceptions that your application throws while the segment is open.

Starting in release 1.3, you can instrument your application using aspect-oriented programming
(AOP) in Spring. What this means is that you can instrument your application, while it is running on
AWS, without adding any code to your application's runtime.

Next, use the X-Ray SDK for Java to instrument your AWS SDK for Java clients by including the SDK
Instrumentor submodule in your build configuration. Whenever you make a call to a downstream

AWS Distro for OpenTelemetry Java 198

https://aws-otel.github.io/docs/getting-started/java-sdk
https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction
https://github.com/aws-observability
https://github.com/aws/aws-xray-sdk-java

AWS X-Ray Developer Guide

AWS service or resource with an instrumented client, the SDK records information about the call
in a subsegment. AWS services and the resources that you access within the services appear as
downstream nodes on the trace map to help you identify errors and throttling issues on individual
connections.

If you don't want to instrument all downstream calls to AWS services, you can leave out the
Instrumentor submodule and choose which clients to instrument. Instrument individual clients by
adding a TracingHandler to an AWS SDK service client.

Other X-Ray SDK for Java submodules provide instrumentation for downstream calls to HTTP
web APIs and SQL databases. You can use the X-Ray SDK for Java versions of HTTPClient and
HTTPClientBuilder in the Apache HTTP submodule to instrument Apache HTTP clients. To
instrument SQL queries, add the SDK's interceptor to your data source.

After you start using the SDK, customize its behavior by configuring the recorder and servlet
filter. You can add plugins to record data about the compute resources running your application,
customize sampling behavior by defining sampling rules, and set the log level to see more or less
information from the SDK in your application logs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have a lot of instrumented clients in your code, a single request segment can contain
many subsegments, one for each call made with an instrumented client. You can organize and
group subsegments by wrapping client calls in custom subsegments. You can create a custom
subsegment for an entire function or any section of code, and record metadata and annotations on
the subsegment instead of writing everything on the parent segment.

X-Ray SDK for Java 199

AWS X-Ray Developer Guide

Submodules

You can download the X-Ray SDK for Java from Maven. The X-Ray SDK for Java is split into
submodules by use case, with a bill of materials for version management:

• aws-xray-recorder-sdk-core (required) – Basic functionality for creating segments and
transmitting segments. Includes AWSXRayServletFilter for instrumenting incoming requests.

• aws-xray-recorder-sdk-aws-sdk – Instruments calls to AWS services made with AWS SDK
for Java clients by adding a tracing client as a request handler.

• aws-xray-recorder-sdk-aws-sdk-v2 – Instruments calls to AWS services made with AWS
SDK for Java 2.2 and later clients by adding a tracing client as a request intereceptor.

• aws-xray-recorder-sdk-aws-sdk-instrumentor – With aws-xray-recorder-sdk-
aws-sdk, instruments all AWS SDK for Java clients automatically.

• aws-xray-recorder-sdk-aws-sdk-v2-instrumentor – With aws-xray-recorder-sdk-
aws-sdk-v2, instruments all AWS SDK for Java 2.2 and later clients automatically.

• aws-xray-recorder-sdk-apache-http – Instruments outbound HTTP calls made with
Apache HTTP clients.

• aws-xray-recorder-sdk-spring – Provides interceptors for Spring AOP Framework
applications.

• aws-xray-recorder-sdk-sql-postgres – Instruments outbound calls to a PostgreSQL
database made with JDBC.

• aws-xray-recorder-sdk-sql-mysql – Instruments outbound calls to a MySQL database
made with JDBC.

• aws-xray-recorder-sdk-bom – Provides a bill of materials that you can use to specify the
version to use for all submodules.

• aws-xray-recorder-sdk-metrics – Publish unsampled Amazon CloudWatch metrics from
your collected X-Ray segments.

If you use Maven or Gradle to build your application, add the X-Ray SDK for Java to your build
configuration.

For reference documentation of the SDK's classes and methods, see AWS X-Ray SDK for Java API
Reference.

X-Ray SDK for Java 200

https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-core/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk-v2/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk-instrumentor/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk-v2-instrumentor/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-apache-http/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-spring/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-sql-postgres/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-sql-mysql/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-bom/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-metrics/
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc

AWS X-Ray Developer Guide

Requirements

The X-Ray SDK for Java requires Java 8 or later, Servlet API 3, the AWS SDK, and Jackson.

The SDK depends on the following libraries at compile and runtime:

• AWS SDK for Java version 1.11.398 or later

• Servlet API 3.1.0

These dependencies are declared in the SDK's pom.xml file and are included automatically if you
build using Maven or Gradle.

If you use a library that is included in the X-Ray SDK for Java, you must use the included version.
For example, if you already depend on Jackson at runtime and include JAR files in your deployment
for that dependency, you must remove those JAR files because the SDK JAR includes its own
versions of Jackson libraries.

Dependency management

The X-Ray SDK for Java is available from Maven:

• Group – com.amazonaws

• Artifact – aws-xray-recorder-sdk-bom

• Version – 2.11.0

If you use Maven to build your application, add the SDK as a dependency in your pom.xml file.

Example pom.xml - dependencies

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-bom</artifactId>
 <version>2.11.0</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>

X-Ray SDK for Java 201

AWS X-Ray Developer Guide

</dependencyManagement>
<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-core</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-apache-http</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-aws-sdk</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-aws-sdk-instrumentor</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-sql-postgres</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-sql-mysql</artifactId>
 </dependency>
</dependencies>

For Gradle, add the SDK as a compile-time dependency in your build.gradle file.

Example build.gradle - dependencies

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile("org.springframework.boot:spring-boot-starter-test")
 compile("com.amazonaws:aws-java-sdk-dynamodb")
 compile("com.amazonaws:aws-xray-recorder-sdk-core")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk-instrumentor")
 compile("com.amazonaws:aws-xray-recorder-sdk-apache-http")
 compile("com.amazonaws:aws-xray-recorder-sdk-sql-postgres")
 compile("com.amazonaws:aws-xray-recorder-sdk-sql-mysql")
 testCompile("junit:junit:4.11")
}

X-Ray SDK for Java 202

AWS X-Ray Developer Guide

dependencyManagement {
 imports {
 mavenBom('com.amazonaws:aws-java-sdk-bom:1.11.39')
 mavenBom('com.amazonaws:aws-xray-recorder-sdk-bom:2.11.0')
 }
}

If you use Elastic Beanstalk to deploy your application, you can use Maven or Gradle to build on-
instance each time you deploy, instead of building and uploading a large archive that includes all of
your dependencies. See the sample application for an example that uses Gradle.

AWS X-Ray auto-instrumentation agent for Java

The AWS X-Ray auto-instrumentation agent for Java is a tracing solution that instruments your
Java web applications with minimal development effort. The agent enables tracing for servlet-
based applications and all of the agent's downstream requests made with supported frameworks
and libraries. This includes downstream Apache HTTP requests, AWS SDK requests, and SQL
queries made using a JDBC driver. The agent propagates X-Ray context, including all active
segments and subsegments, across threads. All of the configurations and versatility of the X-Ray
SDK are still available with the Java agent. Suitable defaults were chosen to ensure that the agent
works with minimal effort.

The X-Ray agent solution is best suited for servlet-based, request-response Java web application
servers. If your application uses an asynchronous framework, or is not well modeled as a request-
response service, you might want to consider manual instrumentation with the SDK instead.

The X-Ray agent is built using the Distributed Systems Comprehension toolkit, or DiSCo. DiSCo
is an open source framework for building Java agents that can be used in distributed systems.
While it is not necessary to understand DiSCo to use the X-Ray agent, you can learn more about the
project by visiting its homepage on GitHub. The X-Ray agent is also fully open-sourced. To view the
source code, make contributions, or raise issues about the agent, visit its repository on GitHub.

Sample application

The eb-java-scorekeep sample application is adapted to be instrumented with the X-Ray agent.
This branch contains no servlet filter or recorder configuration, as these functions are done by
the agent. To run the application locally or using AWS resources, follow the steps in the sample
application's readme file. The instructions for using the sample app to generate X-Ray traces are in
the sample app’s tutorial.

X-Ray SDK for Java 203

https://github.com/awslabs/disco
https://github.com/aws/aws-xray-java-agent
https://github.com/aws-samples/eb-java-scorekeep/tree/xray-agent

AWS X-Ray Developer Guide

Getting started

To get started with the X-Ray auto-instrumentation Java agent in your own application, follow
these steps.

1. Run the X-Ray daemon in your environment. For more information, see X-Ray daemon.

2. Download the latest distribution of the agent. Unzip the archive and note its location in your file
system. Its contents should look like the following.

disco
disco-java-agent.jar
disco-plugins
 ### aws-xray-agent-plugin.jar
 ### disco-java-agent-aws-plugin.jar
 ### disco-java-agent-sql-plugin.jar
 ### disco-java-agent-web-plugin.jar

3. Modify the JVM arguments of your application to include the following, which enables the
agent. Ensure the -javaagent argument is placed before the -jar argument if applicable.
The process to modify JVM arguments varies depending on the tools and frameworks you use
to launch your Java server. Consult the documentation of your server framework for specific
guidance.

-javaagent:/<path-to-disco>/disco-java-agent.jar=pluginPath=/<path-to-disco>/disco-
plugins

4. To specify how the name of your application appears on the X-Ray
console, set the AWS_XRAY_TRACING_NAME environment variable or the
com.amazonaws.xray.strategy.tracingName system property. If no name is provided, a
default name is used.

5. Restart your server or container. Incoming requests and their downstream calls are now traced. If
you don’t see the expected results, see the section called “Troubleshooting”.

Configuration

The X-Ray agent is configured by an external, user-provided JSON file. By default, this file is
at the root of the user’s classpath (for example, in their resources directory) named xray-
agent.json. You can configure a custom location for the config file by setting the

X-Ray SDK for Java 204

https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html
https://github.com/aws/aws-xray-java-agent/releases/latest/download/xray-agent.zip

AWS X-Ray Developer Guide

com.amazonaws.xray.configFile system property to the absolute filesystem path of your
configuration file.

An example configuration file is shown next.

{
 "serviceName": "XRayInstrumentedService",
 "contextMissingStrategy": "LOG_ERROR",
 "daemonAddress": "127.0.0.1:2000",
 "tracingEnabled": true,
 "samplingStrategy": "CENTRAL",
 "traceIdInjectionPrefix": "prefix",
 "samplingRulesManifest": "/path/to/manifest",
 "awsServiceHandlerManifest": "/path/to/manifest",
 "awsSdkVersion": 2,
 "maxStackTraceLength": 50,
 "streamingThreshold": 100,
 "traceIdInjection": true,
 "pluginsEnabled": true,
 "collectSqlQueries": false
}

Configuration specification

The following table describes valid values for each property. Property names are case sensitive,
but their keys are not. For properties that can be overridden by environment variables and system
properties, the order of priority is always environment variable, then system property, and then
configuration file. See the Environment Variables for information about properties that you can
override. All fields are optional.

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

serviceNa
me

String Any string The name
of your
instrumen
ted service
as it will
appear in

AWS_XRAY_
TRACING_N
AME

com.amazo
naws.xray
.strategy
.tracingN
ame

XRayInstr
umentedSe
rvice

X-Ray SDK for Java 205

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-configuration.html#xray-sdk-java-configuration-envvars

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

the X-Ray
console.

contextMi
ssingStra
tegy

String LOG_ERROR
,
IGNORE_ER
ROR

The action
taken by
the agent
when it
attempts
to use
the X-Ray
segment
context
but none is
present.

AWS_XRAY_
CONTEXT_M
ISSING

com.amazo
naws.xray
.strategy
.contextM
issingStr
ategy

LOG_ERROR

daemonAdd
ress

String Formatted
IP address
and port,
or list
of TCP
and UDP
address

The
address
the agent
uses to
communica
te with
the X-Ray
daemon.

AWS_XRAY_
DAEMON_AD
DRESS

com.amazo
naws.xray
.emitter.
daemonAdd
ress

127.0.0.1
:2000

tracingEn
abled

Boolean True, False Enables
instrumen
tation by
the X-Ray
agent.

AWS_XRAY_
TRACING_E
NABLED

com.amazo
naws.xray
.tracingE
nabled

TRUE

X-Ray SDK for Java 206

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

samplingS
trategy

String CENTRAL,
LOCAL,
NONE, ALL

The
sampling
strategy
used
by the
agent. ALL
captures
all
requests,
 NONE
captures
no
requests.
See
sampling
rules.

N/A N/A CENTRAL

traceIdIn
jectionPr
efix

String Any string Includes
the
provided
prefix
before
injected
trace IDs in
logs.

N/A N/A None
(empty
string)

X-Ray SDK for Java 207

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-configuration.html#xray-sdk-java-configuration-sampling
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-configuration.html#xray-sdk-java-configuration-sampling

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

samplingR
ulesManif
est

String An
absolute
file path

The path
to a
custom
sampling
rules file
to be used
as the
source of
sampling
rules for
the local
sampling
strategy,
or the
fallback
rules for
the central
strategy.

N/A N/A DefaultSa
mplingRul
es.json

awsServic
eHandlerM
anifest

String An
absolute
file path

The path
to a
custom
parameter
allow list,
which
captures
additiona
l informati
on from
AWS SDK
clients.

N/A N/A DefaultOp
erationPa
rameterWh
itelist.json

X-Ray SDK for Java 208

https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-core/src/main/resources/com/amazonaws/xray/strategy/sampling/DefaultSamplingRules.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-core/src/main/resources/com/amazonaws/xray/strategy/sampling/DefaultSamplingRules.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-core/src/main/resources/com/amazonaws/xray/strategy/sampling/DefaultSamplingRules.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-aws-sdk-v2/src/main/resources/com/amazonaws/xray/interceptors/DefaultOperationParameterWhitelist.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-aws-sdk-v2/src/main/resources/com/amazonaws/xray/interceptors/DefaultOperationParameterWhitelist.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-aws-sdk-v2/src/main/resources/com/amazonaws/xray/interceptors/DefaultOperationParameterWhitelist.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-aws-sdk-v2/src/main/resources/com/amazonaws/xray/interceptors/DefaultOperationParameterWhitelist.json

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

awsSdkVer
sion

Integer 1, 2 Version of
the AWS
SDK for
Java you’re
using.
Ignored if
awsServic
eHandlerM
anifest is
not also
set.

N/A N/A 2

maxStackT
raceLength

Integer Non-
negative
integers

The
maximum
lines of a
stack trace
to record
in a trace.

N/A N/A 50

streaming
Threshold

Integer Non-
negative
integers

After at
least this
many
subsegmen
ts are
closed,
they are
streamed
to the
daemon
out-of-ba
nd to avoid
chunks
being too
large.

N/A N/A 100

X-Ray SDK for Java 209

https://docs.aws.amazon.com/sdk-for-java/index.html
https://docs.aws.amazon.com/sdk-for-java/index.html
https://docs.aws.amazon.com/sdk-for-java/index.html

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

traceIdIn
jection

Boolean True, False Enables X-
Ray trace
ID injection
into logs
if the
dependenc
ies and
configura
tion
described
in logging
config are
also
added.
Otherwise
, does
nothing.

N/A N/A TRUE

pluginsEn
abled

Boolean True, False Enables
plugins
that record
metadata
about
the AWS
environme
nts you’re
operating
in. See
plugins.

N/A N/A TRUE

X-Ray SDK for Java 210

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-configuration.html#xray-sdk-java-configuration-logging
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-configuration.html#xray-sdk-java-configuration-logging
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-configuration.html#xray-sdk-java-configuration-plugins

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

collectSq
lQueries

Boolean True, False Records
SQL query
strings
in SQL
subsegmen
ts on a
best-effort
basis.

N/A N/A FALSE

contextPr
opagation

Boolean True, False Automatic
ally
propagate
s X-Ray
context
between
threads
if true.
Otherwise
, uses
Thread
Local
to store
context
and
manual
propagati
on across
threads is
required.

N/A N/A TRUE

Logging configuration

The X-Ray agent's log level can be configured in the same way as the X-Ray SDK for Java. See
Logging for more information on configuring logging with the X-Ray SDK for Java.

X-Ray SDK for Java 211

AWS X-Ray Developer Guide

Manual instrumentation

If you’d like to perform manual instrumentation in addition to the agent’s auto-instrumentation,
add the X-Ray SDK as a dependency to your project. Note that the SDK's custom servlet filters
mentioned in Tracing Incoming Requests are not compatible with the X-Ray agent.

Note

You must use the latest version of the X-Ray SDK to perform manual instrumentation while
also using the agent.

If you are working in a Maven project, add the following dependencies to your pom.xml file.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-core</artifactId>
 <version>2.11.0</version>
 </dependency>
 </dependencies>

If you are working in a Gradle project, add the following dependencies to your build.gradle file.

implementation 'com.amazonaws:aws-xray-recorder-sdk-core:2.11.0'

You can add custom subsegments in addition to annotations, metadata, and user IDs while using
the agent, just as you would with the normal SDK. The agent automatically propagates context
across threads, so no workarounds to propagate context should be necessary when working with
multithreaded applications.

Troubleshooting

Since the agent offers fully automatic instrumentation, it can be difficult to identify the root cause
of a problem when you are experiencing issues. If the X-Ray agent is not working as expected for
you, review the following problems and solutions. The X-Ray agent and SDK use Jakarta Commons
Logging (JCL). To see the logging output, ensure that a bridge connecting JCL to your logging
backend is on the classpath, as in the following example: log4j-jcl or jcl-over-slf4j.

X-Ray SDK for Java 212

AWS X-Ray Developer Guide

Problem: I’ve enabled the Java agent on my application but don’t see anything on the X-Ray
console

Is the X-Ray daemon running on the same machine?

If not, see the X-Ray daemon documentation to set it up.

In your application logs, do you see a message like "Initializing the X-Ray agent recorder"?

If you have correctly added the agent to your application, this message is logged at INFO level
when your application starts, before it starts taking requests. If this message is not there, then the
Java agent is not running with your Java process. Make sure you’ve followed all the setup steps
correctly with no typos.

In your application logs, do you see several error messages saying something like "Suppressing
AWS X-Ray context missing exception"?

These errors occur because the agent is trying to instrument downstream requests, like AWS SDK
requests or SQL queries, but the agent was unable to automatically create a segment. If you see
many of these errors, the agent might not be the best tool for your use case and you might want to
consider manual instrumentation with the X-Ray SDK instead. Alternatively, you can enable X-Ray
SDK debug logs to see the stack trace of where the context-missing exceptions are occurring. You
can wrap these portions of your code with custom segments, which should resolve these errors.
For an example of wrapping downstream requests with custom segments, see the sample code
in instrumenting startup code.

Problem: Some of the segments I expect do not appear on the X-Ray console

Does your application use multithreading?

If some segments that you expect to be created are not appearing in your console, background
threads in your application might be the cause. If your application performs tasks using
background threads that are “fire and forget,” like making a one-off call to a Lambda function
with the AWS SDK, or polling some HTTP endpoint periodically, that may confuse the agent
while it is propagating context across threads. To verify this is your problem, enable X-Ray SDK
debug logs and check for messages like: Not emitting segment named <NAME > as it parents in-
progress subsegments. To work around this, you can try joining the background threads before
your server returns to ensure all the work done in them is recorded. Or, you can set the agent’s
contextPropagation configuration to false to disable context propagation in background
threads. If you do this, you’ll have to manually instrument those threads with custom segments or
ignore the context missing exceptions they produce.

X-Ray SDK for Java 213

https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-configuration.html#xray-sdk-java-configuration-logging
https://docs.aws.amazon.com/xray/latest/devguide/scorekeep-startup.html

AWS X-Ray Developer Guide

Have you set up sampling rules?

If there are seemingly random or unexpected segments appearing on the X-Ray console, or the
segments you expect to be on the console aren’t, you might be experiencing a sampling issue. The
X-Ray agent applies centralized sampling to all segments it creates, using the rules from the X-Ray
console. The default rule is 1 segment per second, plus 5% of segments afterward, are sampled.
This means segments that are created rapidly with the agent might not be sampled. To resolve
this, you should create custom sampling rules on the X-Ray console that appropriately sample
the desired segments. For more information, see Configure sampling rules in Explore the X-Ray
console.

Configuring the X-Ray SDK for Java

The X-Ray SDK for Java includes a class named AWSXRay that provides the global recorder. This is a
TracingHandler that you can use to instrument your code. You can configure the global recorder
to customize the AWSXRayServletFilter that creates segments for incoming HTTP calls.

Sections

• Service plugins

• Sampling rules

• Logging

• Segment listeners

• Environment variables

• System properties

Service plugins

Use plugins to record information about the service hosting your application.

Plugins

• Amazon EC2 – EC2Plugin adds the instance ID, Availability Zone, and the CloudWatch Logs
Group.

• Elastic Beanstalk – ElasticBeanstalkPlugin adds the environment name, version label, and
deployment ID.

• Amazon ECS – ECSPlugin adds the container ID.

X-Ray SDK for Java 214

AWS X-Ray Developer Guide

• Amazon EKS – EKSPlugin adds the container ID, cluster name, pod ID, and the CloudWatch Logs
Group.

To use a plugin, call withPlugin on your AWSXRayRecorderBuilder.

Example src/main/java/scorekeep/WebConfig.java - recorder

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.plugins.ElasticBeanstalkPlugin;
import com.amazonaws.xray.strategy.sampling.LocalizedSamplingStrategy;

@Configuration
public class WebConfig {

X-Ray SDK for Java 215

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorderBuilder.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/plugins/EC2Plugin.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/plugins/ElasticBeanstalkPlugin.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/sampling/LocalizedSamplingStrategy.html

AWS X-Ray Developer Guide

...
 static {
 AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder.standard().withPlugin(new
 EC2Plugin()).withPlugin(new ElasticBeanstalkPlugin());

 URL ruleFile = WebConfig.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new LocalizedSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
 }
}

The SDK also uses plugin settings to set the origin field on the segment. This indicates the type
of AWS resource that runs your application. When you use multiple plugins, the SDK uses the
following resolution order to determine the origin: ElasticBeanstalk > EKS > ECS > EC2.

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional
requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request received at the beginning of each second, and five percent of any additional
requests per host. This can occur if the host doesn't have permission to call sampling APIs,
or can't connect to the X-Ray daemon, which acts as a TCP proxy for API calls made by the
SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{

X-Ray SDK for Java 216

AWS X-Ray Developer Guide

 "version": 2,
 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

On AWS Lambda, you cannot modify the sampling rate. If your function is called by an
instrumented service, calls that generated requests that were sampled by that service will be
recorded by Lambda. If active tracing is enabled and no tracing header is present, Lambda makes
the sampling decision.

To provide backup rules in Spring, configure the global recorder with a
CentralizedSamplingStrategy in a configuration class.

Example src/main/java/myapp/WebConfig.java - recorder configuration

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.strategy.sampling.LocalizedSamplingStrategy;

@Configuration

X-Ray SDK for Java 217

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorderBuilder.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/plugins/EC2Plugin.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/sampling/LocalizedSamplingStrategy.html

AWS X-Ray Developer Guide

public class WebConfig {

 static {
 AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder.standard().withPlugin(new
 EC2Plugin());

 URL ruleFile = WebConfig.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new CentralizedSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
}

For Tomcat, add a listener that extends ServletContextListener and register the listener in
the deployment descriptor.

Example src/com/myapp/web/Startup.java

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.strategy.sampling.LocalizedSamplingStrategy;

import java.net.URL;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

public class Startup implements ServletContextListener {

 @Override
 public void contextInitialized(ServletContextEvent event) {
 AWSXRayRecorderBuilder builder =
 AWSXRayRecorderBuilder.standard().withPlugin(new EC2Plugin());

 URL ruleFile = Startup.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new CentralizedSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
 }

 @Override
 public void contextDestroyed(ServletContextEvent event) { }
}

X-Ray SDK for Java 218

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorderBuilder.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/plugins/EC2Plugin.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/sampling/LocalizedSamplingStrategy.html

AWS X-Ray Developer Guide

Example WEB-INF/web.xml

...
 <listener>
 <listener-class>com.myapp.web.Startup</listener-class>
 </listener>

To use local rules only, replace the CentralizedSamplingStrategy with a
LocalizedSamplingStrategy.

builder.withSamplingStrategy(new LocalizedSamplingStrategy(ruleFile));

Logging

By default, the SDK outputs ERROR-level messages to your application logs. You can enable debug-
level logging on the SDK to output more detailed logs to your application log file. Valid log levels
are DEBUG, INFO, WARN, ERROR, and FATAL. FATAL log level silences all log messages because the
SDK does not log at fatal level.

Example application.properties

Set the logging level with the logging.level.com.amazonaws.xray property.

logging.level.com.amazonaws.xray = DEBUG

Use debug logs to identify issues, such as unclosed subsegments, when you generate subsegments
manually.

Trace ID injection into logs

To expose the current fully qualified trace ID to your log statements, you can inject the ID into the
mapped diagnostic context (MDC). Using the SegmentListener interface, methods are called
from the X-Ray recorder during segment lifecycle events. When a segment or subsegment begins,
the qualified trace ID is injected into the MDC with the key AWS-XRAY-TRACE-ID. When that
segment ends, the key is removed from the MDC. This exposes the trace ID to the logging library in
use. When a subsegment ends, its parent ID is injected into the MDC.

Example fully qualified trace ID

The fully qualified ID is represented as TraceID@EntityID

X-Ray SDK for Java 219

AWS X-Ray Developer Guide

1-5df42873-011e96598b447dfca814c156@541b3365be3dafc3

This feature works with Java applications instrumented with the AWS X-Ray SDK for Java, and
supports the following logging configurations:

• SLF4J front-end API with Logback backend

• SLF4J front-end API with Log4J2 backend

• Log4J2 front-end API with Log4J2 backend

See the following tabs for the needs of each front end and each backend.

SLF4J Frontend

1. Add the following Maven dependency to your project.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-slf4j</artifactId>
 <version>2.11.0</version>
</dependency>

2. Include the withSegmentListener method when building the AWSXRayRecorder. This
adds a SegmentListener class, which automatically injects new trace IDs into the SLF4J
MDC.

The SegmentListener takes an optional string as a parameter to configure the log
statement prefix. The prefix can be configured in the following ways:

• None – Uses the default AWS-XRAY-TRACE-ID prefix.

• Empty – Uses an empty string (e.g. "").

• Custom – Uses a custom prefix as defined in the string.

Example AWSXRayRecorderBuilder statement

AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder
 .standard().withSegmentListener(new SLF4JSegmentListener("CUSTOM-
PREFIX"));

X-Ray SDK for Java 220

AWS X-Ray Developer Guide

Log4J2 front end

1. Add the following Maven dependency to your project.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-log4j</artifactId>
 <version>2.11.0</version>
</dependency>

2. Include the withSegmentListener method when building the AWSXRayRecorder. This
will add a SegmentListener class, which automatically injects new fully qualified trace
IDs into the SLF4J MDC.

The SegmentListener takes an optional string as a parameter to configure the log
statement prefix. The prefix can be configured in the following ways:

• None – Uses the default AWS-XRAY-TRACE-ID prefix.

• Empty – Uses an empty string (e.g. "") and removes the prefix.

• Custom – Uses the custom prefix defined in the string.

Example AWSXRayRecorderBuilder statement

AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder
 .standard().withSegmentListener(new Log4JSegmentListener("CUSTOM-
PREFIX"));

Logback backend

To insert the trace ID into your log events, you must modify the logger's PatternLayout,
which formats each logging statement.

1. Find where the patternLayout is configured. You can do this programmatically, or
through an XML configuration file. To learn more, see Logback configuration.

2. Insert %X{AWS-XRAY-TRACE-ID} anywhere in the patternLayout to insert the trace
ID in future logging statements. %X{} indicates that you are retrieving a value with
the provided key from the MDC. To learn more about PatternLayouts in Logback, see
PatternLayout.

X-Ray SDK for Java 221

http://logback.qos.ch/manual/configuration.html
https://logback.qos.ch/manual/layouts.html#ClassicPatternLayout

AWS X-Ray Developer Guide

Log4J2 backend

1. Find where the patternLayout is configured. You can do this programmatically, or
through a configuration file written in XML, JSON, YAML, or properties format.

To learn more about configuring Log4J2 through a configuration file, see Configuration.

To learn more about configuring Log4J2 programmatically, see Programmatic
Configuration.

2. Insert %X{AWS-XRAY-TRACE-ID} anywhere in the PatternLayout to insert the trace
ID in future logging statements. %X{} indicates that you are retrieving a value with the
provided key from the MDC. To learn more about PatternLayouts in Log4J2, see Pattern
Layout.

Trace ID Injection Example

The following shows a PatternLayout string modified to include the trace ID. The trace ID is
printed after the thread name (%t) and before the log level (%-5p).

Example PatternLayout With ID injection

%d{HH:mm:ss.SSS} [%t] %X{AWS-XRAY-TRACE-ID} %-5p %m%n

AWS X-Ray automatically prints the key and the trace ID in the log statement for easy parsing. The
following shows a log statement using the modified PatternLayout.

Example Log statement with ID injection

2019-09-10 18:58:30.844 [nio-5000-exec-4] AWS-XRAY-TRACE-ID:
 1-5d77f256-19f12e4eaa02e3f76c78f46a@1ce7df03252d99e1 WARN 1 - Your logging message
 here

The logging message itself is housed in the pattern %m and is set when calling the logger.

Segment listeners

Segement listeners are an interface to intercept lifecycle events such as the beginning and
ending of segments produced by the AWSXRayRecorder. Implementation of a segment
listener event function might be to add the same annotation to all subsegments when they

X-Ray SDK for Java 222

https://logging.apache.org/log4j/2.x/manual/configuration.html
https://logging.apache.org/log4j/2.x/manual/customconfig.html
https://logging.apache.org/log4j/2.x/manual/customconfig.html
https://logging.apache.org/log4j/2.x/manual/layouts.html#Pattern_Layout
https://logging.apache.org/log4j/2.x/manual/layouts.html#Pattern_Layout

AWS X-Ray Developer Guide

are created with onBeginSubsegment, log a message after each segment is sent to the
daemon using afterEndSegment, or to record queries sent by the SQL interceptors using
beforeEndSubsegment to verify if the subsegment represents an SQL query, adding additional
metadata if so.

To see the full list of SegmentListener functions, visit the documentation for the AWS X-Ray
Recorder SDK for Java API.

The following example shows how to add a consistent annotation to all subsegments on
creation with onBeginSubsegment and to print a log message at the end of each segment with
afterEndSegment.

Example MySegmentListener.java

import com.amazonaws.xray.entities.Segment;
import com.amazonaws.xray.entities.Subsegment;
import com.amazonaws.xray.listeners.SegmentListener;

public class MySegmentListener implements SegmentListener {

 @Override
 public void onBeginSubsegment(Subsegment subsegment) {
 subsegment.putAnnotation("annotationKey", "annotationValue");
 }

 @Override
 public void afterEndSegment(Segment segment) {
 // Be mindful not to mutate the segment
 logger.info("Segment with ID " + segment.getId());
 }
}

This custom segment listener is then referenced when building the AWSXRayRecorder.

Example AWSXRayRecorderBuilder statement

AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder
 .standard().withSegmentListener(new MySegmentListener());

X-Ray SDK for Java 223

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html#onBeginSubsegment-com.amazonaws.xray.entities.Subsegment-
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html#afterEndSegment-com.amazonaws.xray.entities.Segment-
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html#beforeEndSubsegment-com.amazonaws.xray.entities.Subsegment-
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html#onBeginSubsegment-com.amazonaws.xray.entities.Subsegment-
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html#afterEndSegment-com.amazonaws.xray.entities.Segment-

AWS X-Ray Developer Guide

Environment variables

You can use environment variables to configure the X-Ray SDK for Java. The SDK supports the
following variables.

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK uses 127.0.0.1:2000 for both trace data (UDP) and sampling (TCP). Use this variable
if you have configured the daemon to listen on a different port or if it is running on a different
host.

Format

• Same port – address:port

• Different ports – tcp:address:port udp:address:port

• AWS_LOG_GROUP – Set the name of a log group to log group associated with your application.
If your log group uses the same AWS account and region as your application, X-Ray will
automatically search for your application's segment data using this specified log group. For more
information about log groups, see Working with log groups and streams.

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments. Overrides the
service name that you set on the servlet filter's segment naming strategy.

Environment variables override equivalent system properties and values set in code.

System properties

You can use system properties as a JVM-specific alternative to environment variables. The SDK
supports the following properties:

X-Ray SDK for Java 224

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html

AWS X-Ray Developer Guide

• com.amazonaws.xray.strategy.tracingName – Equivalent to AWS_XRAY_TRACING_NAME.

• com.amazonaws.xray.emitters.daemonAddress – Equivalent to
AWS_XRAY_DAEMON_ADDRESS.

• com.amazonaws.xray.strategy.contextMissingStrategy – Equivalent to
AWS_XRAY_CONTEXT_MISSING.

If both a system property and the equivalent environment variable are set, the environment
variable value is used. Either method overrides values set in code.

Tracing incoming requests with the X-Ray SDK for Java

You can use the X-Ray SDK to trace incoming HTTP requests that your application serves on an EC2
instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

Use a Filter to instrument incoming HTTP requests. When you add the X-Ray servlet filter to
your application, the X-Ray SDK for Java creates a segment for each sampled request. This segment
includes timing, method, and disposition of the HTTP request. Additional instrumentation creates
subsegments on this segment.

Note

For AWS Lambda functions, Lambda creates a segment for each sampled request. See AWS
Lambda and AWS X-Ray for more information.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

X-Ray SDK for Java 225

AWS X-Ray Developer Guide

When a request is forwarded, the SDK sets an additional field in the segment to indicate this. If the
segment contains the field x_forwarded_for set to true, the client IP was taken from the X-
Forwarded-For header in the HTTP request.

The message handler creates a segment for each incoming request with an http block that
contains the following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

Sections

• Adding a tracing filter to your application (Tomcat)

• Adding a tracing filter to your application (spring)

• Configuring a segment naming strategy

Adding a tracing filter to your application (Tomcat)

For Tomcat, add a <filter> to your project's web.xml file. Use the fixedName parameter to
specify a service name to apply to segments created for incoming requests.

Example WEB-INF/web.xml - Tomcat

<filter>
 <filter-name>AWSXRayServletFilter</filter-name>
 <filter-class>com.amazonaws.xray.javax.servlet.AWSXRayServletFilter</filter-class>
 <init-param>
 <param-name>fixedName</param-name>
 <param-value>MyApp</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>AWSXRayServletFilter</filter-name>

X-Ray SDK for Java 226

AWS X-Ray Developer Guide

 <url-pattern>*</url-pattern>
</filter-mapping>

Adding a tracing filter to your application (spring)

For Spring, add a Filter to your WebConfig class. Pass the segment name to the
AWSXRayServletFilter constructor as a string.

Example src/main/java/myapp/WebConfig.java - spring

package myapp;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Bean;
import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter("Scorekeep");
 }
}

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

X-Ray SDK for Java 227

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html

AWS X-Ray Developer Guide

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
initialize the servlet filter, as shown in the previous section. This has the same effect as creating a
fixed SegmentNamingStrategy by calling SegmentNamingStrategy.fixed() and passing it to
the AWSXRayServletFilter constructor.

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

A dynamic naming strategy defines a pattern that hostnames should match, and a default
name to use if the hostname in the HTTP request does not match the pattern. To name
segments dynamically in Tomcat, use the dynamicNamingRecognizedHosts and
dynamicNamingFallbackName to define the pattern and default name, respectively.

Example WEB-INF/web.xml - servlet filter with dynamic naming

<filter>
 <filter-name>AWSXRayServletFilter</filter-name>
 <filter-class>com.amazonaws.xray.javax.servlet.AWSXRayServletFilter</filter-class>
 <init-param>
 <param-name>dynamicNamingRecognizedHosts</param-name>
 <param-value>*.example.com</param-value>
 </init-param>
 <init-param>
 <param-name>dynamicNamingFallbackName</param-name>
 <param-value>MyApp</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>AWSXRayServletFilter</filter-name>
 <url-pattern>*</url-pattern>

X-Ray SDK for Java 228

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/SegmentNamingStrategy.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html

AWS X-Ray Developer Guide

</filter-mapping>

For Spring, create a dynamic SegmentNamingStrategy by calling
SegmentNamingStrategy.dynamic(), and pass it to the AWSXRayServletFilter constructor.

Example src/main/java/myapp/WebConfig.java - servlet filter with dynamic naming

package myapp;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Bean;
import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
import com.amazonaws.xray.strategy.SegmentNamingStrategy;

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter(SegmentNamingStrategy.dynamic("MyApp",
 "*.example.com"));
 }
}

Tracing AWS SDK calls with the X-Ray SDK for Java

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Java tracks the calls downstream in subsegments. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

The X-Ray SDK for Java automatically instruments all AWS SDK clients when you include the
aws-sdk and an aws-sdk-instrumentor submodules in your build. If you don't include the
Instrumentor submodule, you can choose to instrument some clients while excluding others.

To instrument individual clients, remove the aws-sdk-instrumentor submodule from your build
and add an XRayClient as a TracingHandler on your AWS SDK client using the service's client
builder.

For example, to instrument an AmazonDynamoDB client, pass a tracing handler to
AmazonDynamoDBClientBuilder.

X-Ray SDK for Java 229

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/SegmentNamingStrategy.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/SegmentNamingStrategy.html

AWS X-Ray Developer Guide

Example MyModel.java - DynamoDB client

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.handlers.TracingHandler;

...
public class MyModel {
 private AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.fromName(System.getenv("AWS_REGION")))
 .withRequestHandlers(new TracingHandler(AWSXRay.getGlobalRecorder()))
 .build();
...

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the service
map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the table
name to the segment for calls that target a table. In the console, each table appears as a separate
node in the service map, with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

X-Ray SDK for Java 230

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/handlers/TracingHandler.html

AWS X-Ray Developer Guide

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

To instrument downstream calls to AWS services with AWS SDK for Java 2.2 and later, you can
omit the aws-xray-recorder-sdk-aws-sdk-v2-instrumentor module from your build
configuration. Include the aws-xray-recorder-sdk-aws-sdk-v2 module instead, then
instrument individual clients by configuring them with a TracingInterceptor.

Example AWS SDK for Java 2.2 and later - tracing interceptor

import com.amazonaws.xray.interceptors.TracingInterceptor;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
//...
public class MyModel {
private DynamoDbClient client = DynamoDbClient.builder()
.region(Region.US_WEST_2)
.overrideConfiguration(ClientOverrideConfiguration.builder()
.addExecutionInterceptor(new TracingInterceptor())
.build()
)
.build();
//...

Tracing calls to downstream HTTP web services with the X-Ray SDK for Java

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for Java's version of HttpClient to instrument those calls and add the API to the service graph as
a downstream service.

The X-Ray SDK for Java includes DefaultHttpClient and HttpClientBuilder classes that can
be used in place of the Apache HttpComponents equivalents to instrument outgoing HTTP calls.

• com.amazonaws.xray.proxies.apache.http.DefaultHttpClient -
org.apache.http.impl.client.DefaultHttpClient

X-Ray SDK for Java 231

AWS X-Ray Developer Guide

• com.amazonaws.xray.proxies.apache.http.HttpClientBuilder -
org.apache.http.impl.client.HttpClientBuilder

These libraries are in the aws-xray-recorder-sdk-apache-http submodule.

You can replace your existing import statements with the X-Ray equivalent to instrument all
clients, or use the fully qualified name when you initialize a client to instrument specific clients.

Example HttpClientBuilder

import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.http.HttpEntity;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.util.EntityUtils;
import com.amazonaws.xray.proxies.apache.http.HttpClientBuilder;
...
 public String randomName() throws IOException {
 CloseableHttpClient httpclient = HttpClientBuilder.create().build();
 HttpGet httpGet = new HttpGet("http://names.example.com/api/");
 CloseableHttpResponse response = httpclient.execute(httpGet);
 try {
 HttpEntity entity = response.getEntity();
 InputStream inputStream = entity.getContent();
 ObjectMapper mapper = new ObjectMapper();
 Map<String, String> jsonMap = mapper.readValue(inputStream, Map.class);
 String name = jsonMap.get("name");
 EntityUtils.consume(entity);
 return name;
 } finally {
 response.close();
 }
 }

When you instrument a call to a downstream web api, the X-Ray SDK for Java records a
subsegment with information about the HTTP request and response. X-Ray uses the subsegment to
generate an inferred segment for the remote API.

Example Subsegment for a downstream HTTP call

{

X-Ray SDK for Java 232

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/proxies/apache/http/HttpClientBuilder.html

AWS X-Ray Developer Guide

 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred segment for a downstream HTTP call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-62be1272-1b71c4274f39f122afa64eab",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

X-Ray SDK for Java 233

AWS X-Ray Developer Guide

Tracing SQL queries with the X-Ray SDK for Java

SQL Interceptors

Instrument SQL database queries by adding the X-Ray SDK for Java JDBC interceptor to your data
source configuration.

• PostgreSQL – com.amazonaws.xray.sql.postgres.TracingInterceptor

• MySQL – com.amazonaws.xray.sql.mysql.TracingInterceptor

These interceptors are in the aws-xray-recorder-sql-postgres and aws-
xray-recorder-sql-mysql submodules, respectively. They implement
org.apache.tomcat.jdbc.pool.JdbcInterceptor and are compatible with Tomcat
connection pools.

Note

SQL interceptors do not record the SQL query itself within subsegments for security
purposes.

For Spring, add the interceptor in a properties file and build the data source with Spring Boot's
DataSourceBuilder.

Example src/main/java/resources/application.properties - PostgreSQL JDBC
interceptor

spring.datasource.continue-on-error=true
spring.jpa.show-sql=false
spring.jpa.hibernate.ddl-auto=create-drop
spring.datasource.jdbc-interceptors=com.amazonaws.xray.sql.postgres.TracingInterceptor
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQL94Dialect

Example src/main/java/myapp/WebConfig.java - Data source

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.boot.autoconfigure.jdbc.DataSourceBuilder;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;

X-Ray SDK for Java 234

AWS X-Ray Developer Guide

import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

import javax.servlet.Filter;
import javax.sql.DataSource;
import java.net.URL;

@Configuration
@EnableAutoConfiguration
@EnableJpaRepositories("myapp")
public class RdsWebConfig {

 @Bean
 @ConfigurationProperties(prefix = "spring.datasource")
 public DataSource dataSource() {
 logger.info("Initializing PostgreSQL datasource");
 return DataSourceBuilder.create()
 .driverClassName("org.postgresql.Driver")
 .url("jdbc:postgresql://" + System.getenv("RDS_HOSTNAME") + ":" +
 System.getenv("RDS_PORT") + "/ebdb")
 .username(System.getenv("RDS_USERNAME"))
 .password(System.getenv("RDS_PASSWORD"))
 .build();
 }
...
}

For Tomcat, call setJdbcInterceptors on the JDBC data source with a reference to the X-Ray
SDK for Java class.

Example src/main/myapp/model.java - Data source

import org.apache.tomcat.jdbc.pool.DataSource;
...
DataSource source = new DataSource();
source.setUrl(url);
source.setUsername(user);
source.setPassword(password);
source.setDriverClassName("com.mysql.jdbc.Driver");
source.setJdbcInterceptors("com.amazonaws.xray.sql.mysql.TracingInterceptor;");

The Tomcat JDBC Data Source library is included in the X-Ray SDK for Java, but you can declare it
as a provided dependency to document that you use it.

X-Ray SDK for Java 235

AWS X-Ray Developer Guide

Example pom.xml - JDBC data source

<dependency>
 <groupId>org.apache.tomcat</groupId>
 <artifactId>tomcat-jdbc</artifactId>
 <version>8.0.36</version>
 <scope>provided</scope>
</dependency>

Native SQL Tracing Decorator

• Add aws-xray-recorder-sdk-sql to your dependencies.

• Decorate your database datasource, connection, or statement.

dataSource = TracingDataSource.decorate(dataSource)
connection = TracingConnection.decorate(connection)
statement = TracingStatement.decorateStatement(statement)
preparedStatement = TracingStatement.decoratePreparedStatement(preparedStatement,
 sql)
callableStatement = TracingStatement.decorateCallableStatement(callableStatement,
 sql)

Generating custom subsegments with the X-Ray SDK for Java

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information
generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

To manage subsegments, use the beginSubsegment and endSubsegment methods.

Example GameModel.java - custom subsegment

import com.amazonaws.xray.AWSXRay;
...
 public void saveGame(Game game) throws SessionNotFoundException {
 // wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("Save Game");
 try {
 // check session

X-Ray SDK for Java 236

https://github.com/aws/aws-xray-sdk-java/tree/master/aws-xray-recorder-sdk-sql
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html

AWS X-Ray Developer Guide

 String sessionId = game.getSession();
 if (sessionModel.loadSession(sessionId) == null) {
 throw new SessionNotFoundException(sessionId);
 }
 mapper.save(game);
 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

In this example, the code within the subsegment loads the game's session from DynamoDB with
a method on the session model, and uses the AWS SDK for Java's DynamoDB mapper to save the
game. Wrapping this code in a subsegment makes the calls DynamoDB children of the Save Game
subsegment in the trace view in the console.

If the code in your subsegment throws checked exceptions, wrap it in a try block and call
AWSXRay.endSubsegment() in a finally block to ensure that the subsegment is always closed.
If a subsegment is not closed, the parent segment cannot be completed and won't be sent to X-
Ray.

For code that doesn't throw checked exceptions, you can pass the code to
AWSXRay.CreateSubsegment as a Lambda function.

Example Subsegment Lambda function

import com.amazonaws.xray.AWSXRay;

AWSXRay.createSubsegment("getMovies", (subsegment) -> {
 // function code
});

X-Ray SDK for Java 237

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html

AWS X-Ray Developer Guide

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for Java
generates an ID for it and records the start time and end time.

Example Subsegment with metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },

For asynchronous and multi-threaded programming, you must manually pass the subsegment to
the endSubsegment() method to ensure it is closed correctly because the X-Ray context may be
modified during async execution. If an asynchronous subsegment is closed after its parent segment
is closed, this method will automatically stream the entire segment to the X-Ray daemon.

Example Asynchronous Subsegment

@GetMapping("/api")
public ResponseEntity<?> api() {
 CompletableFuture.runAsync(() -> {
 Subsegment subsegment = AWSXRay.beginSubsegment("Async Work");
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment(subsegment);
 }
 });
 return ResponseEntity.ok().build();
}

X-Ray SDK for Java 238

AWS X-Ray Developer Guide

Add annotations and metadata to segments with the X-Ray SDK for Java

You can use annotations and metadata to record additional information about requests, the
environment, or your application. You can add annotations and metadata to the segments that the
X-Ray SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

In addition to annotations and metadata, you can also record user ID strings on segments. User IDs
are recorded in a separate field on segments and are indexed for use with search.

Sections

• Recording annotations with the X-Ray SDK for Java

• Recording metadata with the X-Ray SDK for Java

• Recording user IDs with the X-Ray SDK for Java

Recording annotations with the X-Ray SDK for Java

Use annotations to record information on segments or subsegments that you want indexed for
search.

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than the underscore symbol (_).

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations

1. Get a reference to the current segment or subsegment from AWSXRay.

import com.amazonaws.xray.AWSXRay;

X-Ray SDK for Java 239

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html

AWS X-Ray Developer Guide

import com.amazonaws.xray.entities.Segment;
...
Segment document = AWSXRay.getCurrentSegment();

or

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Subsegment;
...
Subsegment document = AWSXRay.getCurrentSubsegment();

2. Call putAnnotation with a String key, and a Boolean, Number, or String value.

document.putAnnotation("mykey", "my value");

The SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling putAnnotation twice with the same key overwrites previously recorded values
on the same segment or subsegment.

To find traces that have annotations with specific values, use the annotations.key keyword in a
filter expression.

Example src/main/java/scorekeep/GameModel.java – Annotations and metadata

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
import com.amazonaws.xray.entities.Subsegment;
...
 public void saveGame(Game game) throws SessionNotFoundException {
 // wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("## GameModel.saveGame");
 try {
 // check session
 String sessionId = game.getSession();
 if (sessionModel.loadSession(sessionId) == null) {
 throw new SessionNotFoundException(sessionId);
 }
 Segment segment = AWSXRay.getCurrentSegment();
 subsegment.putMetadata("resources", "game", game);
 segment.putAnnotation("gameid", game.getId());
 mapper.save(game);

X-Ray SDK for Java 240

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/GameModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

Recording metadata with the X-Ray SDK for Java

Use metadata to record information on segments or subsegments that you don't need indexed for
search. Metadata values can be strings, numbers, Booleans, or any object that can be serialized into
a JSON object or array.

To record metadata

1. Get a reference to the current segment or subsegment from AWSXRay.

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
...
Segment document = AWSXRay.getCurrentSegment();

or

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Subsegment;
...
Subsegment document = AWSXRay.getCurrentSubsegment();

2. Call putMetadata with a String namespace, String key, and a Boolean, Number, String, or
Object value.

document.putMetadata("my namespace", "my key", "my value");

or

Call putMetadata with just a key and value.

document.putMetadata("my key", "my value");

X-Ray SDK for Java 241

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

If you don't specify a namespace, the SDK uses default. Calling putMetadata twice with the
same key overwrites previously recorded values on the same segment or subsegment.

Example src/main/java/scorekeep/GameModel.java – Annotations and metadata

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
import com.amazonaws.xray.entities.Subsegment;
...
 public void saveGame(Game game) throws SessionNotFoundException {
 // wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("## GameModel.saveGame");
 try {
 // check session
 String sessionId = game.getSession();
 if (sessionModel.loadSession(sessionId) == null) {
 throw new SessionNotFoundException(sessionId);
 }
 Segment segment = AWSXRay.getCurrentSegment();
 subsegment.putMetadata("resources", "game", game);
 segment.putAnnotation("gameid", game.getId());
 mapper.save(game);
 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

Recording user IDs with the X-Ray SDK for Java

Record user IDs on request segments to identify the user who sent the request.

To record user IDs

1. Get a reference to the current segment from AWSXRay.

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
...
Segment document = AWSXRay.getCurrentSegment();

X-Ray SDK for Java 242

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/GameModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html

AWS X-Ray Developer Guide

2. Call setUser with a string ID of the user who sent the request.

document.setUser("U12345");

You can call setUser in your controllers to record the user ID as soon as your application starts
processing a request. If you will only use the segment to set the user ID, you can chain the calls in a
single line.

Example src/main/java/scorekeep/MoveController.java – User ID

import com.amazonaws.xray.AWSXRay;
...
 @RequestMapping(value="/{userId}", method=RequestMethod.POST)
 public Move newMove(@PathVariable String sessionId, @PathVariable String
 gameId, @PathVariable String userId, @RequestBody String move) throws
 SessionNotFoundException, GameNotFoundException, StateNotFoundException,
 RulesException {
 AWSXRay.getCurrentSegment().setUser(userId);
 return moveFactory.newMove(sessionId, gameId, userId, move);
 }

To find traces for a user ID, use the user keyword in a filter expression.

AWS X-Ray metrics for the X-Ray SDK for Java

This topic describes the AWS X-Ray namespace, metrics, and dimensions. You can use the X-
Ray SDK for Java to publish unsampled Amazon CloudWatch metrics from your collected X-Ray
segments. These metrics are derived from the segment’s start and end time, and the error, fault,
and throttled status flags. Use these trace metrics to expose retries and dependency issues within
subsegments.

CloudWatch is a metrics repository. A metric is the fundamental concept in CloudWatch and
represents a time-ordered set of data points. You (or AWS services) publish metrics data points into
CloudWatch and you retrieve statistics about those data points as an ordered set of time-series
data.

Metrics are uniquely defined by a name, a namespace, and one or more dimensions. Each data
point has a timestamp and, optionally, a unit of measure. When you request statistics, the returned
data stream is identified by namespace, metric name, and dimension.

X-Ray SDK for Java 243

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/MoveController.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html

AWS X-Ray Developer Guide

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

X-Ray CloudWatch metrics

The ServiceMetrics/SDK namespace includes the following metrics.

Metric Statistics available Description Units

Latency Average, Minimum,
Maximum, Count

The difference
between the start
and end time.
Average, minimum,
and maximum all
describe operation
al latency. Count
describes call count.

Milliseconds

ErrorRate Average, Sum The rate of requests
that failed with a
4xx Client Error
status code, resulting
in an error.

Percent

FaultRate Average, Sum The rate of traces
that failed with a
5xx Server Error
status code, resulting
in a fault.

Percent

ThrottleRate Average, Sum The rate of throttled
traces that return
a 429 status code.
This is a subset of the
ErrorRate metric.

Percent

OkRate Average, Sum The rate of traced
requests resulting in
an OK status code.

Percent

X-Ray SDK for Java 244

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

AWS X-Ray Developer Guide

X-Ray CloudWatch dimensions

Use the dimensions in the following table to refine the metrics returned for your X-Ray
instrumented Java applications.

Dimension Description

ServiceType The type of the service, for example,
AWS::EC2::Instance or NONE, if not
known.

ServiceName The canonical name for the service.

Enable X-Ray CloudWatch metrics

Use the following procedure to enable trace metrics in your instrumented Java application.

To configure trace metrics

1. Add the aws-xray-recorder-sdk-metrics package as an Apache Maven dependency. For
more information, see X-Ray SDK for Java Submodules.

2. Enable a new MetricsSegmentListener() as part of the global recorder build.

Example src/com/myapp/web/Startup.java

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.plugins.ElasticBeanstalkPlugin;
import com.amazonaws.xray.strategy.sampling.LocalizedSamplingStrategy;

@Configuration
public class WebConfig {
...
 static {
 AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder
 .standard()
 .withPlugin(new EC2Plugin())
 .withPlugin(new ElasticBeanstalkPlugin())
 .withSegmentListener(new
 MetricsSegmentListener());

X-Ray SDK for Java 245

AWS X-Ray Developer Guide

 URL ruleFile = WebConfig.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new LocalizedSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
 }
}

3. Deploy the CloudWatch agent to collect metrics using Amazon Elastic Compute Cloud
(Amazon EC2), Amazon Elastic Container Service (Amazon ECS), or Amazon Elastic Kubernetes
Service (Amazon EKS):

• To configure Amazon EC2, see Installing the CloudWatch agent.

• To configure Amazon ECS, see Monitor Amazon ECS containers using Container Insights.

• To configure Amazon EKS, see Install the CloudWatch agent by using the Amazon
CloudWatch Observability EKS add-on.

4. Configure the SDK to communicate with the CloudWatch agent. By default, the SDK
communicates with the CloudWatch agent on the address 127.0.0.1. You can configure
alternate addresses by setting the environment variable or Java property to address:port.

Example Environment variable

AWS_XRAY_METRICS_DAEMON_ADDRESS=address:port

Example Java property

com.amazonaws.xray.metrics.daemonAddress=address:port

To validate configuration

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Open the Metrics tab to observe the influx of your metrics.

3. (Optional) In the CloudWatch console, on the Logs tab, open the ServiceMetricsSDK log
group. Look for a log stream that matches the host metrics, and confirm the log messages.

X-Ray SDK for Java 246

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-EC2-Instance.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-container-insights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Observability-EKS-addon.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Observability-EKS-addon.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

Passing segment context between threads in a multithreaded application

When you create a new thread in your application, the AWSXRayRecorder doesn't maintain
a reference to the current segment or subsegment Entity. If you use an instrumented
client in the new thread, the SDK tries to write to a segment that doesn't exist, causing a
SegmentNotFoundException.

To avoid throwing exceptions during development, you can configure the recorder with a
ContextMissingStrategy that tells it to log an error instead. You can configure the strategy in code
with SetContextMissingStrategy, or configure equivalent options with an environment variable or
system property.

One way to address the error is to use a new segment by calling beginSegment when you start the
thread and endSegment when you close it. This works if you are instrumenting code that doesn't
run in response to an HTTP request, like code that runs when your application starts.

If you use multiple threads to handle incoming requests, you can pass the current segment
or subsegment to the new thread and provide it to the global recorder. This ensures that the
information recorded within the new thread is associated with the same segment as the rest of
the information recorded about that request. Once the segment is available in the new thread, you
can execute any runnable with access to that segment's context using the segment.run(() ->
{ ... }) method.

See Using instrumented clients in worker threads for an example.

Using X-Ray with Asynchronous Programming

The X-Ray SDK for Java can be used in asynchronous Java programs with
SegmentContextExecutors. The SegmentContextExecutor implements the Executor interface,
which means it can be passed into all asynchronous operations of a CompletableFuture. This
ensures that any asynchronous operations will be executed with the correct segment in its context.

Example Example App.java: Passing SegmentContextExecutor to CompletableFuture

DynamoDbAsyncClient client = DynamoDbAsyncClient.create();

AWSXRay.beginSegment();

// ...

X-Ray SDK for Java 247

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Entity.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/exceptions/SegmentNotFoundException.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/ContextMissingStrategy.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html#setContextMissingStrategy(com.amazonaws.xray.strategy.ContextMissingStrategy)
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html#beginSegment(java.lang.String)
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html#endSegment--
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/contexts/SegmentContextExecutors.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html

AWS X-Ray Developer Guide

client.getItem(request).thenComposeAsync(response -> {
 // If we did not provide the segment context executor, this request would not be
 traced correctly.
 return client.getItem(request2);
}, SegmentContextExecutors.newSegmentContextExecutor());

AOP with Spring and the X-Ray SDK for Java

This topic describes how to use the X-Ray SDK and the Spring Framework to instrument your
application without changing its core logic. This means that there is now a non-invasive way to
instrument your applications running remotely in AWS.

To enable AOP in spring

1. Configure Spring

2. Add a tracing filter to your application

3. Annotate your code or implement an interface

4. Activate X-Ray in your application

Configuring Spring

You can use Maven or Gradle to configure Spring to use AOP to instrument your application.

If you use Maven to build your application, add the following dependency in your pom.xml file.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-spring</artifactId>
 <version>2.11.0</version>
</dependency>

For Gradle, add the following dependency in your build.gradle file.

compile 'com.amazonaws:aws-xray-recorder-sdk-spring:2.11.0'

Configuring Spring Boot

In addition to the Spring dependency described in the previous section, if you’re using Spring Boot,
add the following dependency if it’s not already on your classpath.

X-Ray SDK for Java 248

AWS X-Ray Developer Guide

Maven:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-aop</artifactId>
 <version>2.5.2</version>
</dependency>

Gradle:

compile 'org.springframework.boot:spring-boot-starter-aop:2.5.2'

Adding a tracing filter to your application

Add a Filter to your WebConfig class. Pass the segment name to the AWSXRayServletFilter
constructor as a string. For more information about tracing filters and instrumenting incoming
requests, see Tracing incoming requests with the X-Ray SDK for Java.

Example src/main/java/myapp/WebConfig.java - spring

package myapp;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Bean;
import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter("Scorekeep");
 }
}

Jakarta Support

Spring 6 uses Jakarta instead of Javax for its Enterprise Edition. To support this new namespace, X-
Ray has created a parallel set of classes that live in their own Jakarta namespace.

For the filter classes, replace javax with jakarta. When configuring a segment naming strategy,
add jakarta before the naming strategy class name, as in the following example:

X-Ray SDK for Java 249

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
https://spring.io/blog/2022/11/16/spring-framework-6-0-goes-ga

AWS X-Ray Developer Guide

package myapp;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Bean;
import jakarta.servlet.Filter;
import com.amazonaws.xray.jakarta.servlet.AWSXRayServletFilter;
import com.amazonaws.xray.strategy.jakarta.SegmentNamingStrategy;

@Configuration
public class WebConfig {
 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter(SegmentNamingStrategy.dynamic("Scorekeep"));
 }
}

Annotating your code or implementing an interface

Your classes must either be annotated with the @XRayEnabled annotation, or implement the
XRayTraced interface. This tells the AOP system to wrap the functions of the affected class for X-
Ray instrumentation.

Activating X-Ray in your application

To activate X-Ray tracing in your application, your code must extend the abstract class
BaseAbstractXRayInterceptor by overriding the following methods.

• generateMetadata—This function allows customization of the metadata attached to the
current function’s trace. By default, the class name of the executing function is recorded in the
metadata. You can add more data if you need additional information.

• xrayEnabledClasses—This function is empty, and should remain so. It serves as the host
for a pointcut instructing the interceptor about which methods to wrap. Define the pointcut
by specifying which of the classes that are annotated with @XRayEnabled to trace. The
following pointcut statement tells the interceptor to wrap all controller beans annotated with
the @XRayEnabled annotation.

@Pointcut(“@within(com.amazonaws.xray.spring.aop.XRayEnabled) && bean(*Controller)”)

If your project is using Spring Data JPA, consider extending from AbstractXRayInterceptor
instead of BaseAbstractXRayInterceptor.

X-Ray SDK for Java 250

AWS X-Ray Developer Guide

Example

The following code extends the abstract class BaseAbstractXRayInterceptor.

@Aspect
@Component
public class XRayInspector extends BaseAbstractXRayInterceptor {
 @Override
 protected Map<String, Map<String, Object>> generateMetadata(ProceedingJoinPoint
 proceedingJoinPoint, Subsegment subsegment) throws Exception {
 return super.generateMetadata(proceedingJoinPoint, subsegment);
 }

 @Override
 @Pointcut("@within(com.amazonaws.xray.spring.aop.XRayEnabled) && bean(*Controller)")

 public void xrayEnabledClasses() {}

}

The following code is a class that will be instrumented by X-Ray.

@Service
@XRayEnabled
public class MyServiceImpl implements MyService {
 private final MyEntityRepository myEntityRepository;

 @Autowired
 public MyServiceImpl(MyEntityRepository myEntityRepository) {
 this.myEntityRepository = myEntityRepository;
 }

 @Transactional(readOnly = true)
 public List<MyEntity> getMyEntities(){
 try(Stream<MyEntity> entityStream = this.myEntityRepository.streamAll()){

 return entityStream.sorted().collect(Collectors.toList());
 }
 }
}

X-Ray SDK for Java 251

AWS X-Ray Developer Guide

If you've configured your application correctly, you should see the complete call stack of the
application, from the controller down through the service calls, as shown in the following screen
shot of the console.

Instrument your application with Node.js

There are two ways to instrument your Node.js application to send traces to X-Ray:

• AWS Distro for OpenTelemetry JavaScript – An AWS distribution that provides a set of open
source libraries for sending correlated metrics and traces to multiple AWS monitoring solutions,
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for Node.js – A set of libraries for generating and sending traces to X-Ray via the
X-Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry JavaScript

With the AWS Distro for OpenTelemetry (ADOT) JavaScript, you can instrument your applications
once and send correlated metrics and traces to multiple AWS monitoring solutions including
Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with AWS Distro
for OpenTelemetry requires two components: an OpenTelemetry SDK enabled for use with X-Ray,
and the AWS Distro for OpenTelemetry Collector enabled for use with X-Ray.

To get started, see the AWS Distro for OpenTelemetry JavaScript documentation.

Instrument with Node.js 252

https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/javascript-sdk

AWS X-Ray Developer Guide

Note

ADOT JavaScript is supported for all server-side Node.js applications. ADOT JavaScript is
not able to export data to X-Ray from browser clients.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

For more information about language support and usage, see AWS Observability on GitHub.

AWS X-Ray SDK for Node.js

The X-Ray SDK for Node.js is a library for Express web applications and Node.js Lambda functions
that provides classes and methods for generating and sending trace data to the X-Ray daemon.
Trace data includes information about incoming HTTP requests served by the application, and calls
that the application makes to downstream services using the AWS SDK or HTTP clients.

Note

The X-Ray SDK for Node.js is an open source project that is supported for Node.js versions
14.x and up. You can follow the project and submit issues and pull requests on GitHub:
github.com/aws/aws-xray-sdk-node

If you use Express, start by adding the SDK as middleware on your application server to trace
incoming requests. The middleware creates a segment for each traced request, and completes
the segment when the response is sent. While the segment is open you can use the SDK client's
methods to add information to the segment and create subsegments to trace downstream calls.
The SDK also automatically records exceptions that your application throws while the segment is
open.

For Lambda functions called by an instrumented application or service, Lambda reads the tracing
header and traces sampled requests automatically. For other functions, you can configure Lambda
to sample and trace incoming requests. In either case, Lambda creates the segment and provides it
to the X-Ray SDK.

X-Ray SDK for Node.js 253

https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction
https://github.com/aws-observability
https://github.com/aws/aws-xray-sdk-node

AWS X-Ray Developer Guide

Note

On Lambda, the X-Ray SDK is optional. If you don't use it in your function, your service
map will still include a node for the Lambda service, and one for each Lambda function.
By adding the SDK, you can instrument your function code to add subsegments to the
function segment recorded by Lambda. See AWS Lambda and AWS X-Ray for more
information.

Next, use the X-Ray SDK for Node.js to instrument your AWS SDK for JavaScript in Node.js clients.
Whenever you make a call to a downstream AWS service or resource with an instrumented client,
the SDK records information about the call in a subsegment. AWS services and the resources that
you access within the services appear as downstream nodes on the trace map to help you identify
errors and throttling issues on individual connections.

The X-Ray SDK for Node.js also provides instrumentation for downstream calls to HTTP web APIs
and SQL queries. Wrap your HTTP client in the SDK's capture method to record information about
outgoing HTTP calls. For SQL clients, use the capture method for your database type.

The middleware applies sampling rules to incoming requests to determine which requests to
trace. You can configure the X-Ray SDK for Node.js to adjust the sampling behavior or to record
information about the AWS compute resources on which your application runs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have a lot of instrumented clients in your code, a single request segment can contain
a large number of subsegments, one for each call made with an instrumented client. You can

X-Ray SDK for Node.js 254

AWS X-Ray Developer Guide

organize and group subsegments by wrapping client calls in custom subsegments. You can create
a custom subsegment for an entire function or any section of code, and record metadata and
annotations on the subsegment instead of writing everything on the parent segment.

For reference documentation about the SDK's classes and methods, see the AWS X-Ray SDK for
Node.js API Reference.

Requirements

The X-Ray SDK for Node.js requires Node.js and the following libraries:

• atomic-batcher – 1.0.2

• cls-hooked – 4.2.2

• pkginfo – 0.4.0

• semver – 5.3.0

The SDK pulls these libraries in when you install it with NPM.

To trace AWS SDK clients, the X-Ray SDK for Node.js requires a minimum version of the AWS SDK
for JavaScript in Node.js.

• aws-sdk – 2.7.15

Dependency management

The X-Ray SDK for Node.js is available from NPM.

• Package – aws-xray-sdk

For local development, install the SDK in your project directory with npm.

~/nodejs-xray$ npm install aws-xray-sdk
aws-xray-sdk@3.3.3
 ### aws-xray-sdk-core@3.3.3
 # ### @aws-sdk/service-error-classification@3.15.0
 # ### @aws-sdk/types@3.15.0
 # ### @types/cls-hooked@4.3.3
 # # ### @types/node@15.3.0

X-Ray SDK for Node.js 255

https://docs.aws.amazon.com//xray-sdk-for-nodejs/latest/reference
https://docs.aws.amazon.com//xray-sdk-for-nodejs/latest/reference
https://www.npmjs.com/package/aws-xray-sdk

AWS X-Ray Developer Guide

 # ### atomic-batcher@1.0.2
 # ### cls-hooked@4.2.2
 # # ### async-hook-jl@1.7.6
 # # # ### stack-chain@1.3.7
 # # ### emitter-listener@1.1.2
 # # ### shimmer@1.2.1
 # ### semver@5.7.1
 ### aws-xray-sdk-express@3.3.3
 ### aws-xray-sdk-mysql@3.3.3
 ### aws-xray-sdk-postgres@3.3.3

Use the --save option to save the SDK as a dependency in your application's package.json.

~/nodejs-xray$ npm install aws-xray-sdk --save
aws-xray-sdk@3.3.3

If your application has any dependencies whose versions conflict with the X-Ray SDK's
dependencies, both versions will be installed to ensure compatibility. For more details, see the
official NPM documentation for dependency resolution.

Node.js samples

Work with the AWS X-Ray SDK for Node.js to get an end-to-end view of requests as they travel
through your Node.js applications.

• Node.js sample application on GitHub.

Configuring the X-Ray SDK for Node.js

You can configure the X-Ray SDK for Node.js with plugins to include information about the service
that your application runs on, modify the default sampling behavior, or add sampling rules that
apply to requests to specific paths.

Sections

• Service plugins

• Sampling rules

• Logging

• X-Ray daemon address

X-Ray SDK for Node.js 256

http://npm.github.io/how-npm-works-docs/npm3/how-npm3-works.html
https://github.com/aws-samples/aws-xray-sdk-node-sample

AWS X-Ray Developer Guide

• Environment variables

Service plugins

Use plugins to record information about the service hosting your application.

Plugins

• Amazon EC2 – EC2Plugin adds the instance ID, Availability Zone, and the CloudWatch Logs
Group.

• Elastic Beanstalk – ElasticBeanstalkPlugin adds the environment name, version label, and
deployment ID.

• Amazon ECS – ECSPlugin adds the container ID.

To use a plugin, configure the X-Ray SDK for Node.js client by using the config method.

Example app.js - plugins

var AWSXRay = require('aws-xray-sdk');
AWSXRay.config([AWSXRay.plugins.EC2Plugin,AWSXRay.plugins.ElasticBeanstalkPlugin]);

The SDK also uses plugin settings to set the origin field on the segment. This indicates the type
of AWS resource that runs your application. When you use multiple plugins, the SDK uses the
following resolution order to determine the origin: ElasticBeanstalk > EKS > ECS > EC2.

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional
requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request received at the beginning of each second, and five percent of any additional

X-Ray SDK for Node.js 257

AWS X-Ray Developer Guide

requests per host. This can occur if the host doesn't have permission to call sampling APIs,
or can't connect to the X-Ray daemon, which acts as a TCP proxy for API calls made by the
SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{
 "version": 2,
 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

On AWS Lambda, you cannot modify the sampling rate. If your function is called by an
instrumented service, calls that generated requests that were sampled by that service will be
recorded by Lambda. If active tracing is enabled and no tracing header is present, Lambda makes
the sampling decision.

X-Ray SDK for Node.js 258

AWS X-Ray Developer Guide

To configure backup rules, tell the X-Ray SDK for Node.js to load sampling rules from a file with
setSamplingRules.

Example app.js - sampling rules from a file

var AWSXRay = require('aws-xray-sdk');
AWSXRay.middleware.setSamplingRules('sampling-rules.json');

You can also define your rules in code and pass them to setSamplingRules as an object.

Example app.js - sampling rules from an object

var AWSXRay = require('aws-xray-sdk');
var rules = {
 "rules": [{ "description": "Player moves.", "service_name": "*", "http_method": "*",
 "url_path": "/api/move/*", "fixed_target": 0, "rate": 0.05 }],
 "default": { "fixed_target": 1, "rate": 0.1 },
 "version": 1
 }

AWSXRay.middleware.setSamplingRules(rules);

To use only local rules, call disableCentralizedSampling.

AWSXRay.middleware.disableCentralizedSampling()

Logging

To log output from the SDK, call AWSXRay.setLogger(logger), where logger is an object that
provides standard logging methods (warn, info, etc.).

By default the SDK will log error messages to the console using the standard methods
on the console object. The log level of the built-in logger can be set by using either the
AWS_XRAY_DEBUG_MODE or AWS_XRAY_LOG_LEVEL environment variables. For a list of valid log
level values, see Environment variables.

If you wish to provide a different format or destination for the logs then you can provide the SDK
with your own implementation of the logger interface as shown below. Any object that implements
this interface can be used. This means that many logging libraries, e.g. Winston, could be used and
passed to the SDK directly.

X-Ray SDK for Node.js 259

AWS X-Ray Developer Guide

Example app.js - logging

var AWSXRay = require('aws-xray-sdk');

// Create your own logger, or instantiate one using a library.
var logger = {
 error: (message, meta) => { /* logging code */ },
 warn: (message, meta) => { /* logging code */ },
 info: (message, meta) => { /* logging code */ },
 debug: (message, meta) => { /* logging code */ }
}

AWSXRay.setLogger(logger);
AWSXRay.config([AWSXRay.plugins.EC2Plugin]);

Call setLogger before you run other configuration methods to ensure that you capture output
from those operations.

X-Ray daemon address

If the X-Ray daemon listens on a port or host other than 127.0.0.1:2000, you can configure the
X-Ray SDK for Node.js to send trace data to a different address.

AWSXRay.setDaemonAddress('host:port');

You can specify the host by name or by IPv4 address.

Example app.js - daemon address

var AWSXRay = require('aws-xray-sdk');
AWSXRay.setDaemonAddress('daemonhost:8082');

If you configured the daemon to listen on different ports for TCP and UDP, you can specify both in
the daemon address setting.

Example app.js - daemon address on separate ports

var AWSXRay = require('aws-xray-sdk');
AWSXRay.setDaemonAddress('tcp:daemonhost:8082 udp:daemonhost:8083');

You can also set the daemon address by using the AWS_XRAY_DAEMON_ADDRESS environment
variable.

X-Ray SDK for Node.js 260

AWS X-Ray Developer Guide

Environment variables

You can use environment variables to configure the X-Ray SDK for Node.js. The SDK supports the
following variables.

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK uses 127.0.0.1:2000 for both trace data (UDP) and sampling (TCP). Use this variable
if you have configured the daemon to listen on a different port or if it is running on a different
host.

Format

• Same port – address:port

• Different ports – tcp:address:port udp:address:port

• AWS_XRAY_DEBUG_MODE – Set to TRUE to configure the SDK to output logs to the console, at
debug level.

• AWS_XRAY_LOG_LEVEL – Set a log level for the default logger. Valid values are debug, info,
warn, error, and silent. This value is ignored when AWS_XRAY_DEBUG_MODE is set to TRUE.

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments. Overrides the
segment name that you set on the Express middleware.

Tracing incoming requests with the X-Ray SDK for Node.js

You can use the X-Ray SDK for Node.js to trace incoming HTTP requests that your Express and
Restify applications serve on an EC2 instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon
ECS.

X-Ray SDK for Node.js 261

AWS X-Ray Developer Guide

The X-Ray SDK for Node.js provides middleware for applications that use the Express and
Restify frameworks. When you add the X-Ray middleware to your application, the X-Ray SDK for
Node.js creates a segment for each sampled request. This segment includes timing, method, and
disposition of the HTTP request. Additional instrumentation creates subsegments on this segment.

Note

For AWS Lambda functions, Lambda creates a segment for each sampled request. See AWS
Lambda and AWS X-Ray for more information.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

When a request is forwarded, the SDK sets an additional field in the segment to indicate this. If the
segment contains the field x_forwarded_for set to true, the client IP was taken from the X-
Forwarded-For header in the HTTP request.

The message handler creates a segment for each incoming request with an http block that
contains the following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

X-Ray SDK for Node.js 262

AWS X-Ray Developer Guide

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

Sections

• Tracing incoming requests with Express

• Tracing incoming requests with restify

• Configuring a segment naming strategy

Tracing incoming requests with Express

To use the Express middleware, initialize the SDK client and use the middleware returned by the
express.openSegment function before you define your routes.

Example app.js - Express

var app = express();

var AWSXRay = require('aws-xray-sdk');
app.use(AWSXRay.express.openSegment('MyApp'));

app.get('/', function (req, res) {
 res.render('index');
});

app.use(AWSXRay.express.closeSegment());

After you define your routes, use the output of express.closeSegment as shown to handle any
errors returned by the X-Ray SDK for Node.js.

Tracing incoming requests with restify

To use the Restify middleware, initialize the SDK client and run enable. Pass it your Restify server
and segment name.

Example app.js - restify

var AWSXRay = require('aws-xray-sdk');
var AWSXRayRestify = require('aws-xray-sdk-restify');

X-Ray SDK for Node.js 263

AWS X-Ray Developer Guide

var restify = require('restify');
var server = restify.createServer();
AWSXRayRestify.enable(server, 'MyApp'));

server.get('/', function (req, res) {
 res.render('index');
});

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
initialize the middleware, as shown in the previous sections.

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

X-Ray SDK for Node.js 264

AWS X-Ray Developer Guide

A dynamic naming strategy defines a pattern that hostnames should match, and a default name
to use if the hostname in the HTTP request does not match the pattern. To name segments
dynamically, use AWSXRay.middleware.enableDynamicNaming.

Example app.js - dynamic segment names

If the hostname in the request matches the pattern *.example.com, use the hostname.
Otherwise, use MyApp.

var app = express();

var AWSXRay = require('aws-xray-sdk');
app.use(AWSXRay.express.openSegment('MyApp'));
AWSXRay.middleware.enableDynamicNaming('*.example.com');

app.get('/', function (req, res) {
 res.render('index');
});

app.use(AWSXRay.express.closeSegment());

Tracing AWS SDK calls with the X-Ray SDK for Node.js

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Node.js tracks the calls downstream in subsegments. Traced AWS
services, and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

Instrument AWS SDK clients that you create via the AWS SDK for JavaScript V2 or AWS SDK for
JavaScript V3. Each AWS SDK version provides different methods for instrumenting AWS SDK
clients.

Note

Currently, the AWS X-Ray SDK for Node.js returns less segment information when
instrumenting AWS SDK for JavaScript V3 clients, as compared to instrumenting V2 clients.
For instance, subsegments representing calls to DynamoDB will not return the table name.
If you need this segment information in your traces, consider using the AWS SDK for
JavaScript V2.

X-Ray SDK for Node.js 265

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/welcome.html
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/welcome.html
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/welcome.html

AWS X-Ray Developer Guide

AWS SDK for JavaScript V2

You can instrument all AWS SDK V2 clients by wrapping your aws-sdk require statement in a
call to AWSXRay.captureAWS.

Example app.js - AWS SDK instrumentation

const AWS = AWSXRay.captureAWS(require('aws-sdk'));

To instrument individual clients, wrap your AWS SDK client in a call to
AWSXRay.captureAWSClient. For example, to instrument an AmazonDynamoDB client:

Example app.js - DynamoDB client instrumentation

 const AWSXRay = require('aws-xray-sdk');
...
 const ddb = AWSXRay.captureAWSClient(new AWS.DynamoDB());

Warning

Do not use both captureAWS and captureAWSClient together. This will lead to
duplicate subsegments.

If you want to use TypeScript with ECMAScript modules (ESM) to load your JavaScript code, use
the following example to import libraries:

Example app.js - AWS SDK instrumentation

import * as AWS from 'aws-sdk';
import * as AWSXRay from 'aws-xray-sdk';

To instrument all AWS clients with ESM, use the following code:

Example app.js - AWS SDK instrumentation

import * as AWS from 'aws-sdk';
import * as AWSXRay from 'aws-xray-sdk';

X-Ray SDK for Node.js 266

https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://nodejs.org/api/esm.html

AWS X-Ray Developer Guide

const XRAY_AWS = AWSXRay.captureAWS(AWS);
const ddb = new XRAY_AWS.DynamoDB();

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the
service map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the
table name to the segment for calls that target a table. In the console, each table appears as a
separate node in the service map, with a generic DynamoDB node for calls that don't target a
table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

X-Ray SDK for Node.js 267

AWS X-Ray Developer Guide

AWS SDK for JavaScript V3

The AWS SDK for JavaScript V3 is modular, so your code only loads the modules it needs.
Because of this, it isn't possible to instrument all AWS SDK clients as V3 does not support the
captureAWS method.

If you want to use TypeScript with ECMAScript Modules (ESM) to load your JavaScript code, you
can use the following example to import libraries:

import * as AWS from 'aws-sdk';
import * as AWSXRay from 'aws-xray-sdk';

Instrument each AWS SDK client using the AWSXRay.captureAWSv3Client method. For
example, to instrument an AmazonDynamoDB client:

Example app.js - DynamoDB client instrumentation using SDK for Javascript V3

 const AWSXRay = require('aws-xray-sdk');
 const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
...
 const ddb = AWSXRay.captureAWSv3Client(new DynamoDBClient({ region:
 "region" }));

When using AWS SDK for JavaScript V3, metadata such as table name, bucket and key name, or
queue name, are not currently returned, and therefore the trace map will not contain discrete
nodes for each named resource as it would when instrumenting AWS SDK clients using the AWS
SDK for JavaScript V2.

Example Subsegment for a call to DynamoDB to save an item, when using the AWS SDK for
JavaScript V3

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200

X-Ray SDK for Node.js 268

AWS X-Ray Developer Guide

 }
 },
 "aws": {
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

Tracing calls to downstream HTTP web services using the X-Ray SDK for Node.js

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for Node.js client to instrument those calls and add the API to the service graph as a downstream
service.

Pass your http or https client to the X-Ray SDK for Node.js captureHTTPs method to trace
outgoing calls.

Note

Calls using third-party HTTP request libraries, such as Axios or Superagent, are supported
through the captureHTTPsGlobal() API and will still be traced when they use the native
http module.

Example app.js - HTTP client

var AWSXRay = require('aws-xray-sdk');
var http = AWSXRay.captureHTTPs(require('http'));

To enable tracing on all HTTP clients, call captureHTTPsGlobal before you load http.

Example app.js - HTTP client (global)

var AWSXRay = require('aws-xray-sdk');
AWSXRay.captureHTTPsGlobal(require('http'));
var http = require('http');

When you instrument a call to a downstream web API, the X-Ray SDK for Node.js records a
subsegment that contains information about the HTTP request and response. X-Ray uses the
subsegment to generate an inferred segment for the remote API.

X-Ray SDK for Node.js 269

https://docs.aws.amazon.com/xray-sdk-for-nodejs/latest/reference/module-http_p.html

AWS X-Ray Developer Guide

Example Subsegment for a downstream HTTP call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred segment for a downstream HTTP call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-62be1272-1b71c4274f39f122afa64eab",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

X-Ray SDK for Node.js 270

AWS X-Ray Developer Guide

Tracing SQL queries with the X-Ray SDK for Node.js

Instrument SQL database queries by wrapping your SQL client in the corresponding X-Ray SDK for
Node.js client method.

• PostgreSQL – AWSXRay.capturePostgres()

var AWSXRay = require('aws-xray-sdk');
var pg = AWSXRay.capturePostgres(require('pg'));
var client = new pg.Client();

• MySQL – AWSXRay.captureMySQL()

var AWSXRay = require('aws-xray-sdk');
var mysql = AWSXRay.captureMySQL(require('mysql'));
...
var connection = mysql.createConnection(config);

When you use an instrumented client to make SQL queries, the X-Ray SDK for Node.js records
information about the connection and query in a subsegment.

Including additional data in SQL subsegments

You can add additional information to subsegments generated for SQL queries, as long as it's
mapped to an allow-listed SQL field. For example, to record the sanitized SQL query string in a
subsegment, you can add it directly to the subsegment's SQL object.

Example Assign SQL to subsegment

 const queryString = 'SELECT * FROM MyTable';
connection.query(queryString, ...);

// Retrieve the most recently created subsegment
const subs = AWSXRay.getSegment().subsegments;

if (subs & & subs.length > 0) {
 var sqlSub = subs[subs.length - 1];
 sqlSub.sql.sanitized_query = queryString;
}

X-Ray SDK for Node.js 271

AWS X-Ray Developer Guide

For a full list of allow-listed SQL fields, see the SQL Queries section in the X-Ray segment
documents.

Generating custom subsegments with the X-Ray SDK for Node.js

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information
generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

Custom Express subsegments

To create a custom subsegment for a function that makes calls to downstream services, use the
captureAsyncFunc function.

Example app.js - custom subsegments Express

var AWSXRay = require('aws-xray-sdk');

app.use(AWSXRay.express.openSegment('MyApp'));

app.get('/', function (req, res) {
 var host = 'api.example.com';

 AWSXRay.captureAsyncFunc('send', function(subsegment) {
 sendRequest(host, function() {
 console.log('rendering!');
 res.render('index');
 subsegment.close();
 });
 });
});

app.use(AWSXRay.express.closeSegment());

function sendRequest(host, cb) {
 var options = {
 host: host,
 path: '/',
 };

 var callback = function(response) {

X-Ray SDK for Node.js 272

AWS X-Ray Developer Guide

 var str = '';

 response.on('data', function (chunk) {
 str += chunk;
 });

 response.on('end', function () {
 cb();
 });
 }

 http.request(options, callback).end();
};

In this example, the application creates a custom subsegment named send for calls to the
sendRequest function. captureAsyncFunc passes a subsegment that you must close within the
callback function when the asynchronous calls that it makes are complete.

For synchronous functions, you can use the captureFunc function, which closes the subsegment
automatically as soon as the function block finishes executing.

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for
Node.js generates an ID for it and records the start time and end time.

Example Subsegment with metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },

Custom Lambda subsegments

The SDK is configured to automatically create a placeholder facade segment when it
detects it's running in Lambda. To create a basic subsegement, which will create a single

X-Ray SDK for Node.js 273

AWS X-Ray Developer Guide

AWS::Lambda::Function node on the X-Ray trace map, call and repurpose the facade segment.
If you manually create a new segment with a new ID (while sharing the trace ID, parent ID and the
sampling decision) you will be able to send a new segment.

Example app.js - manual custom subsegments

const segment = AWSXRay.getSegment(); //returns the facade segment
const subsegment = segment.addNewSubsegment('subseg');
...
subsegment.close();
//the segment is closed by the SDK automatically

Add annotations and metadata to segments with the X-Ray SDK for Node.js

You can use annotations and metadata to record additional information about requests, the
environment, or your application. You can add annotations and metadata to the segments that the
X-Ray SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

In addition to annotations and metadata, you can also record user ID strings on segments. User IDs
are recorded in a separate field on segments and are indexed for use with search.

Sections

• Recording annotations with the X-Ray SDK for Node.js

• Recording metadata with the X-Ray SDK for Node.js

• Recording user IDs with the X-Ray SDK for Node.js

Recording annotations with the X-Ray SDK for Node.js

Use annotations to record information on segments or subsegments that you want indexed for
search.

X-Ray SDK for Node.js 274

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than the underscore symbol (_).

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations

1. Get a reference to the current segment or subsegment.

var AWSXRay = require('aws-xray-sdk');
...
var document = AWSXRay.getSegment();

2. Call addAnnotation with a String key, and a Boolean, Number, or String value.

document.addAnnotation("mykey", "my value");

The SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling addAnnotation twice with the same key overwrites previously recorded values
on the same segment or subsegment.

To find traces that have annotations with specific values, use the annotations.key keyword in a
filter expression.

Example app.js - annotations

var AWS = require('aws-sdk');
var AWSXRay = require('aws-xray-sdk');
var ddb = AWSXRay.captureAWSClient(new AWS.DynamoDB());
...
app.post('/signup', function(req, res) {
 var item = {
 'email': {'S': req.body.email},
 'name': {'S': req.body.name},
 'preview': {'S': req.body.previewAccess},
 'theme': {'S': req.body.theme}
 };

X-Ray SDK for Node.js 275

AWS X-Ray Developer Guide

 var seg = AWSXRay.getSegment();
 seg.addAnnotation('theme', req.body.theme);

 ddb.putItem({
 'TableName': ddbTable,
 'Item': item,
 'Expected': { email: { Exists: false } }
 }, function(err, data) {
...

Recording metadata with the X-Ray SDK for Node.js

Use metadata to record information on segments or subsegments that you don't need indexed
for search. Metadata values can be strings, numbers, Booleans, or any other object that can be
serialized into a JSON object or array.

To record metadata

1. Get a reference to the current segment or subsegment.

var AWSXRay = require('aws-xray-sdk');
...
var document = AWSXRay.getSegment();

2. Call addMetadata with a string key, a Boolean, number, string, or object value, and a string
namespace.

document.addMetadata("my key", "my value", "my namespace");

or

Call addMetadata with just a key and value.

document.addMetadata("my key", "my value");

If you don't specify a namespace, the SDK uses default. Calling addMetadata twice with the
same key overwrites previously recorded values on the same segment or subsegment.

X-Ray SDK for Node.js 276

AWS X-Ray Developer Guide

Recording user IDs with the X-Ray SDK for Node.js

Record user IDs on request segments to identify the user who sent the request. This operation
isn’t compatible with AWS Lambda functions because segments in Lambda environments are
immutable. The setUser call can be applied only to segments, not subsegments.

To record user IDs

1. Get a reference to the current segment or subsegment.

var AWSXRay = require('aws-xray-sdk');
...
var document = AWSXRay.getSegment();

2. Call setUser() with a string ID of the user who sent the request.

var user = 'john123';

AWSXRay.getSegment().setUser(user);

You can call setUser to record the user ID as soon as your express application starts processing a
request. If you will use the segment only to set the user ID, you can chain the calls in a single line.

Example app.js - user ID

var AWS = require('aws-sdk');
var AWSXRay = require('aws-xray-sdk');
var uuidv4 = require('uuid/v4');
var ddb = AWSXRay.captureAWSClient(new AWS.DynamoDB());
...
 app.post('/signup', function(req, res) {
 var userId = uuidv4();
 var item = {
 'userId': {'S': userId},
 'email': {'S': req.body.email},
 'name': {'S': req.body.name}
 };

 var seg = AWSXRay.getSegment().setUser(userId);

 ddb.putItem({

X-Ray SDK for Node.js 277

AWS X-Ray Developer Guide

 'TableName': ddbTable,
 'Item': item,
 'Expected': { email: { Exists: false } }
 }, function(err, data) {
...

To find traces for a user ID, use the user keyword in a filter expression.

Instrument your application with Python

There are two ways to instrument your Python application to send traces to X-Ray:

• AWS Distro for OpenTelemetry Python – An AWS distribution that provides a set of open
source libraries for sending correlated metrics and traces to multiple AWS monitoring solutions,
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for Python – A set of libraries for generating and sending traces to X-Ray via the
X-Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry Python

With the AWS Distro for OpenTelemetry (ADOT) Python, you can instrument your applications once
and send correlated metrics and traces to multiple AWS monitoring solutions including Amazon
CloudWatch, AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with ADOT requires
two components: an OpenTelemetry SDK enabled for use with X-Ray, and the AWS Distro for
OpenTelemetry Collector enabled for use with X-Ray. ADOT Python includes auto-instrumentation
support, enabling your application to send traces without code changes.

To get started, see the AWS Distro for OpenTelemetry Python documentation.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

For more information about language support and usage, see AWS Observability on GitHub.

Instrument with Python 278

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-filters.html
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/python-sdk
https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction
https://github.com/aws-observability

AWS X-Ray Developer Guide

AWS X-Ray SDK for Python

The X-Ray SDK for Python is a library for Python web applications that provides classes and
methods for generating and sending trace data to the X-Ray daemon. Trace data includes
information about incoming HTTP requests served by the application, and calls that the application
makes to downstream services using the AWS SDK, HTTP clients, or an SQL database connector.
You can also create segments manually and add debug information in annotations and metadata.

You can download the SDK with pip.

$ pip install aws-xray-sdk

Note

The X-Ray SDK for Python is an open source project. You can follow the project and submit
issues and pull requests on GitHub: github.com/aws/aws-xray-sdk-python

If you use Django or Flask, start by adding the SDK middleware to your application to trace
incoming requests. The middleware creates a segment for each traced request, and completes
the segment when the response is sent. While the segment is open, you can use the SDK client's
methods to add information to the segment and create subsegments to trace downstream calls.
The SDK also automatically records exceptions that your application throws while the segment is
open. For other applications, you can create segments manually.

For Lambda functions called by an instrumented application or service, Lambda reads the tracing
header and traces sampled requests automatically. For other functions, you can configure Lambda
to sample and trace incoming requests. In either case, Lambda creates the segment and provides it
to the X-Ray SDK.

Note

On Lambda, the X-Ray SDK is optional. If you don't use it in your function, your service
map will still include a node for the Lambda service, and one for each Lambda function.
By adding the SDK, you can instrument your function code to add subsegments to the
function segment recorded by Lambda. See AWS Lambda and AWS X-Ray for more
information.

X-Ray SDK for Python 279

https://github.com/aws/aws-xray-sdk-python

AWS X-Ray Developer Guide

See Worker for a example Python function instrumented in Lambda.

Next, use the X-Ray SDK for Python to instrument downstream calls by patching your application's
libraries. The SDK supports the following libraries.

Supported Libraries

• botocore, boto3 – Instrument AWS SDK for Python (Boto) clients.

• pynamodb – Instrument PynamoDB's version of the Amazon DynamoDB client.

• aiobotocore, aioboto3 – Instrument asyncio-integrated versions of SDK for Python clients.

• requests, aiohttp – Instrument high-level HTTP clients.

• httplib, http.client – Instrument low-level HTTP clients and the higher level libraries that
use them.

• sqlite3 – Instrument SQLite clients.

• mysql-connector-python – Instrument MySQL clients.

• pg8000 – Instrument Pure-Python PostgreSQL interface.

• psycopg2 – Instrument PostgreSQL database adapter.

• pymongo – Instrument MongoDB clients.

• pymysql – Instrument PyMySQL based clients for MySQL and MariaDB.

Whenever your application makes calls to AWS, an SQL database, or other HTTP services, the SDK
records information about the call in a subsegment. AWS services and the resources that you access
within the services appear as downstream nodes on the trace map to help you identify errors and
throttling issues on individual connections.

After you start using the SDK, customize its behavior by configuring the recorder and middleware.
You can add plugins to record data about the compute resources running your application,
customize sampling behavior by defining sampling rules, and set the log level to see more or less
information from the SDK in your application logs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

X-Ray SDK for Python 280

https://pypi.python.org/pypi/botocore
https://pypi.python.org/pypi/boto3
https://pypi.python.org/pypi/pynamodb/
https://pypi.python.org/pypi/aiobotocore
https://pypi.python.org/pypi/aioboto3
https://docs.python.org/3/library/asyncio.html
https://pypi.python.org/pypi/requests
https://pypi.python.org/pypi/aiohttp
https://docs.python.org/2/library/httplib.html
https://docs.python.org/3/library/http.client.html
https://docs.python.org/3/library/sqlite3.html
https://pypi.python.org/pypi/mysql-connector-python
https://pypi.org/project/pg8000/
https://pypi.org/project/psycopg2/
https://pypi.org/project/pymongo/
https://pypi.org/project/PyMySQL/

AWS X-Ray Developer Guide

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have a lot of instrumented clients in your code, a single request segment can contain
a large number of subsegments, one for each call made with an instrumented client. You can
organize and group subsegments by wrapping client calls in custom subsegments. You can
create a custom subsegment for an entire function or any section of code. You can then you can
record metadata and annotations on the subsegment instead of writing everything on the parent
segment.

For reference documentation for the SDK's classes and methods, see the AWS X-Ray SDK for
Python API Reference.

Requirements

The X-Ray SDK for Python supports the following language and library versions.

• Python – 2.7, 3.4, and newer

• Django – 1.10 and newer

• Flask – 0.10 and newer

• aiohttp – 2.3.0 and newer

• AWS SDK for Python (Boto) – 1.4.0 and newer

• botocore – 1.5.0 and newer

• enum – 0.4.7 and newer, for Python versions 3.4.0 and older

• jsonpickle – 1.0.0 and newer

• setuptools – 40.6.3 and newer

• wrapt – 1.11.0 and newer

Dependency management

The X-Ray SDK for Python is available from pip.

X-Ray SDK for Python 281

https://docs.aws.amazon.com/xray-sdk-for-python/latest/reference
https://docs.aws.amazon.com/xray-sdk-for-python/latest/reference

AWS X-Ray Developer Guide

• Package – aws-xray-sdk

Add the SDK as a dependency in your requirements.txt file.

Example requirements.txt

aws-xray-sdk==2.4.2
boto3==1.4.4
botocore==1.5.55
Django==1.11.3

If you use Elastic Beanstalk to deploy your application, Elastic Beanstalk installs all of the packages
in requirements.txt automatically.

Configuring the X-Ray SDK for Python

The X-Ray SDK for Python has a class named xray_recorder that provides the global recorder.
You can configure the global recorder to customize the middleware that creates segments for
incoming HTTP calls.

Sections

• Service plugins

• Sampling rules

• Logging

• Recorder configuration in code

• Recorder configuration with Django

• Environment variables

Service plugins

Use plugins to record information about the service hosting your application.

Plugins

• Amazon EC2 – EC2Plugin adds the instance ID, Availability Zone, and the CloudWatch Logs
Group.

• Elastic Beanstalk – ElasticBeanstalkPlugin adds the environment name, version label, and
deployment ID.

X-Ray SDK for Python 282

AWS X-Ray Developer Guide

• Amazon ECS – ECSPlugin adds the container ID.

To use a plugin, call configure on the xray_recorder.

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

xray_recorder.configure(service='My app')
plugins = ('ElasticBeanstalkPlugin', 'EC2Plugin')
xray_recorder.configure(plugins=plugins)
patch_all()

Note

Since plugins are passed in as a tuple, be sure to include a trailing , when specifying a
single plugin. For example, plugins = ('EC2Plugin',)

You can also use environment variables, which take precedence over values set in code, to
configure the recorder.

Configure plugins before patching libraries to record downstream calls.

X-Ray SDK for Python 283

AWS X-Ray Developer Guide

The SDK also uses plugin settings to set the origin field on the segment. This indicates the type
of AWS resource that runs your application. When you use multiple plugins, the SDK uses the
following resolution order to determine the origin: ElasticBeanstalk > EKS > ECS > EC2.

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional
requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request received at the beginning of each second, and five percent of any additional
requests per host. This can occur if the host doesn't have permission to call sampling APIs,
or can't connect to the X-Ray daemon, which acts as a TCP proxy for API calls made by the
SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{
 "version": 2,
 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],

X-Ray SDK for Python 284

AWS X-Ray Developer Guide

 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

On AWS Lambda, you cannot modify the sampling rate. If your function is called by an
instrumented service, calls that generated requests that were sampled by that service will be
recorded by Lambda. If active tracing is enabled and no tracing header is present, Lambda makes
the sampling decision.

To configure backup sampling rules, call xray_recorder.configure, as shown in the following
example, where rules is either a dictionary of rules or the absolute path to a JSON file containing
sampling rules.

xray_recorder.configure(sampling_rules=rules)

To use only local rules, configure the recorder with a LocalSampler.

from aws_xray_sdk.core.sampling.local.sampler import LocalSampler
xray_recorder.configure(sampler=LocalSampler())

You can also configure the global recorder to disable sampling and instrument all incoming
requests.

Example main.py – Disable sampling

xray_recorder.configure(sampling=False)

X-Ray SDK for Python 285

AWS X-Ray Developer Guide

Logging

The SDK uses Python’s built-in logging module with a default WARNING logging level. Get a
reference to the logger for the aws_xray_sdk class and call setLevel on it to configure the
different log level for the library and the rest of your application.

Example app.py – Logging

logging.basicConfig(level='WARNING')
logging.getLogger('aws_xray_sdk').setLevel(logging.ERROR)

Use debug logs to identify issues, such as unclosed subsegments, when you generate subsegments
manually.

Recorder configuration in code

Additional settings are available from the configure method on xray_recorder.

• context_missing – Set to LOG_ERROR to avoid throwing exceptions when your instrumented
code attempts to record data when no segment is open.

• daemon_address – Set the host and port of the X-Ray daemon listener.

• service – Set a service name that the SDK uses for segments.

• plugins – Record information about your application's AWS resources.

• sampling – Set to False to disable sampling.

• sampling_rules – Set the path of the JSON file containing your sampling rules.

Example main.py – Disable context missing exceptions

from aws_xray_sdk.core import xray_recorder

xray_recorder.configure(context_missing='LOG_ERROR')

Recorder configuration with Django

If you use the Django framework, you can use the Django settings.py file to configure options
on the global recorder.

• AUTO_INSTRUMENT (Django only) – Record subsegments for built-in database and template
rendering operations.

X-Ray SDK for Python 286

AWS X-Ray Developer Guide

• AWS_XRAY_CONTEXT_MISSING – Set to LOG_ERROR to avoid throwing exceptions when your
instrumented code attempts to record data when no segment is open.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener.

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments.

• PLUGINS – Record information about your application's AWS resources.

• SAMPLING – Set to False to disable sampling.

• SAMPLING_RULES – Set the path of the JSON file containing your sampling rules.

To enable recorder configuration in settings.py, add the Django middleware to the list of
installed apps.

Example settings.py – Installed apps

INSTALLED_APPS = [
 ...
 'django.contrib.sessions',
 'aws_xray_sdk.ext.django',
]

Configure the available settings in a dict named XRAY_RECORDER.

Example settings.py – Installed apps

XRAY_RECORDER = {
 'AUTO_INSTRUMENT': True,
 'AWS_XRAY_CONTEXT_MISSING': 'LOG_ERROR',
 'AWS_XRAY_DAEMON_ADDRESS': '127.0.0.1:5000',
 'AWS_XRAY_TRACING_NAME': 'My application',
 'PLUGINS': ('ElasticBeanstalkPlugin', 'EC2Plugin', 'ECSPlugin'),
 'SAMPLING': False,
}

Environment variables

You can use environment variables to configure the X-Ray SDK for Python. The SDK supports the
following variables:

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments. Overrides the
service name that you set programmatically.

X-Ray SDK for Python 287

AWS X-Ray Developer Guide

• AWS_XRAY_SDK_ENABLED – When set to false, disables the SDK. By default, the SDK is enabled
unless the environment variable is set to false.

• When disabled, the global recorder automatically generates dummy segments and
subsegments that are not sent to the daemon, and automatic patching is disabled.
Middlewares are written as a wrapper over the global recorder. All segment and subsegment
generation through the middleware also become dummy segment and dummy subsegments.

• Set the value of AWS_XRAY_SDK_ENABLED through the environment variable or through direct
interaction with the global_sdk_config object from the aws_xray_sdk library. Settings to
the environment variable override these interactions.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK uses 127.0.0.1:2000 for both trace data (UDP) and sampling (TCP). Use this variable
if you have configured the daemon to listen on a different port or if it is running on a different
host.

Format

• Same port – address:port

• Different ports – tcp:address:port udp:address:port

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

Environment variables override values set in code.

Tracing incoming requests with the X-Ray SDK for Python middleware

When you add the middleware to your application and configure a segment name, the X-Ray SDK
for Python creates a segment for each sampled request. This segment includes timing, method,
X-Ray SDK for Python 288

AWS X-Ray Developer Guide

and disposition of the HTTP request. Additional instrumentation creates subsegments on this
segment.

The X-Ray SDK for Python supports the following middleware to instrument incoming HTTP
requests:

• Django

• Flask

• Bottle

Note

For AWS Lambda functions, Lambda creates a segment for each sampled request. See AWS
Lambda and AWS X-Ray for more information.

See Worker for a example Python function instrumented in Lambda.

For scripts or Python applications on other frameworks, you can create segments manually.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

When a request is forwarded, the SDK sets an additional field in the segment to indicate this. If the
segment contains the field x_forwarded_for set to true, the client IP was taken from the X-
Forwarded-For header in the HTTP request.

X-Ray SDK for Python 289

AWS X-Ray Developer Guide

The middleware creates a segment for each incoming request with an http block that contains the
following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

Sections

• Adding the middleware to your application (Django)

• Adding the middleware to your application (flask)

• Adding the middleware to your application (Bottle)

• Instrumenting Python code manually

• Configuring a segment naming strategy

Adding the middleware to your application (Django)

Add the middleware to the MIDDLEWARE list in your settings.py file. The X-Ray middleware
should be the first line in your settings.py file to ensure that requests that fail in other
middleware are recorded.

Example settings.py - X-Ray SDK for Python middleware

MIDDLEWARE = [
 'aws_xray_sdk.ext.django.middleware.XRayMiddleware',
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware'
]

X-Ray SDK for Python 290

AWS X-Ray Developer Guide

Add the X-Ray SDK Django app to the INSTALLED_APPS list in your settings.py file. This will
allow the X-Ray recorder to be configured during your app's startup.

Example settings.py - X-Ray SDK for Python Django app

INSTALLED_APPS = [
 'aws_xray_sdk.ext.django',
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

Configure a segment name in your settings.py file.

Example settings.py – Segment name

XRAY_RECORDER = {
 'AWS_XRAY_TRACING_NAME': 'My application',
 'PLUGINS': ('EC2Plugin',),
}

This tells the X-Ray recorder to trace requests served by your Django application with the default
sampling rate. You can configure the recorder your Django settings file to apply custom sampling
rules or change other settings.

Note

Since plugins are passed in as a tuple, be sure to include a trailing , when specifying a
single plugin. For example, plugins = ('EC2Plugin',)

Adding the middleware to your application (flask)

To instrument your Flask application, first configure a segment name on the xray_recorder.
Then, use the XRayMiddleware function to patch your Flask application in code.

Example app.py

from aws_xray_sdk.core import xray_recorder

X-Ray SDK for Python 291

AWS X-Ray Developer Guide

from aws_xray_sdk.ext.flask.middleware import XRayMiddleware

app = Flask(__name__)

xray_recorder.configure(service='My application')
XRayMiddleware(app, xray_recorder)

This tells the X-Ray recorder to trace requests served by your Flask application with the default
sampling rate. You can configure the recorder in code to apply custom sampling rules or change
other settings.

Adding the middleware to your application (Bottle)

To instrument your Bottle application, first configure a segment name on the xray_recorder.
Then, use the XRayMiddleware function to patch your Bottle application in code.

Example app.py

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.bottle.middleware import XRayMiddleware

app = Bottle()

xray_recorder.configure(service='fallback_name', dynamic_naming='My application')
app.install(XRayMiddleware(xray_recorder))

This tells the X-Ray recorder to trace requests served by your Bottle application with the default
sampling rate. You can configure the recorder in code to apply custom sampling rules or change
other settings.

Instrumenting Python code manually

If you don't use Django or Flask, you can create segments manually. You can create a segment for
each incoming request, or create segments around patched HTTP or AWS SDK clients to provide
context for the recorder to add subsegments.

Example main.py – Manual instrumentation

from aws_xray_sdk.core import xray_recorder

Start a segment
segment = xray_recorder.begin_segment('segment_name')

X-Ray SDK for Python 292

AWS X-Ray Developer Guide

Start a subsegment
subsegment = xray_recorder.begin_subsegment('subsegment_name')

Add metadata and annotations
segment.put_metadata('key', dict, 'namespace')
subsegment.put_annotation('key', 'value')

Close the subsegment and segment
xray_recorder.end_subsegment()
xray_recorder.end_segment()

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
configure the recorder, as shown in the previous sections.

A dynamic naming strategy defines a pattern that hostnames should match, and a default
name to use if the hostname in the HTTP request doesn't match the pattern. To name segments
dynamically in Django, add the DYNAMIC_NAMING setting to your settings.py file.

X-Ray SDK for Python 293

AWS X-Ray Developer Guide

Example settings.py – Dynamic naming

XRAY_RECORDER = {
 'AUTO_INSTRUMENT': True,
 'AWS_XRAY_TRACING_NAME': 'My application',
 'DYNAMIC_NAMING': '*.example.com',
 'PLUGINS': ('ElasticBeanstalkPlugin', 'EC2Plugin')
}

You can use '*' in the pattern to match any string, or '?' to match any single character. For Flask,
configure the recorder in code.

Example main.py – Segment name

from aws_xray_sdk.core import xray_recorder
xray_recorder.configure(service='My application')
xray_recorder.configure(dynamic_naming='*.example.com')

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

Patching libraries to instrument downstream calls

To instrument downstream calls, use the X-Ray SDK for Python to patch the libraries that your
application uses. The X-Ray SDK for Python can patch the following libraries.

Supported Libraries

• botocore, boto3 – Instrument AWS SDK for Python (Boto) clients.

• pynamodb – Instrument PynamoDB's version of the Amazon DynamoDB client.

• aiobotocore, aioboto3 – Instrument asyncio-integrated versions of SDK for Python clients.

• requests, aiohttp – Instrument high-level HTTP clients.

• httplib, http.client – Instrument low-level HTTP clients and the higher level libraries that
use them.

• sqlite3 – Instrument SQLite clients.

• mysql-connector-python – Instrument MySQL clients.

X-Ray SDK for Python 294

https://pypi.python.org/pypi/botocore
https://pypi.python.org/pypi/boto3
https://pypi.python.org/pypi/pynamodb/
https://pypi.python.org/pypi/aiobotocore
https://pypi.python.org/pypi/aioboto3
https://docs.python.org/3/library/asyncio.html
https://pypi.python.org/pypi/requests
https://pypi.python.org/pypi/aiohttp
https://docs.python.org/2/library/httplib.html
https://docs.python.org/3/library/http.client.html
https://docs.python.org/3/library/sqlite3.html
https://pypi.python.org/pypi/mysql-connector-python

AWS X-Ray Developer Guide

• pg8000 – Instrument Pure-Python PostgreSQL interface.

• psycopg2 – Instrument PostgreSQL database adapter.

• pymongo – Instrument MongoDB clients.

• pymysql – Instrument PyMySQL based clients for MySQL and MariaDB.

When you use a patched library, the X-Ray SDK for Python creates a subsegment for the call and
records information from the request and response. A segment must be available for the SDK to
create the subsegment, either from the SDK middleware or from AWS Lambda.

Note

If you use SQLAlchemy ORM, you can instrument your SQL queries by importing the
SDK's version of SQLAlchemy's session and query classes. See Use SQLAlchemy ORM for
instructions.

To patch all available libraries, use the patch_all function in aws_xray_sdk.core. Some
libraries, such as httplib and urllib, may need to enable double patching by calling
patch_all(double_patch=True).

Example main.py – Patch all supported libraries

import boto3
import botocore
import requests
import sqlite3

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

patch_all()

To patch a single library, call patch with a tuple of the library name. In order to achieve this, you
will need to provide a single element list.

Example main.py – Patch specific libraries

import boto3
import botocore

X-Ray SDK for Python 295

https://pypi.org/project/pg8000/
https://pypi.org/project/psycopg2/
https://pypi.org/project/pymongo/
https://pypi.org/project/PyMySQL/
https://github.com/aws/aws-xray-sdk-python/blob/master/README.md#use-sqlalchemy-orm

AWS X-Ray Developer Guide

import requests
import mysql-connector-python

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch

libraries = (['botocore'])
patch(libraries)

Note

In some cases, the key that you use to patch a library does not match the library name.
Some keys serve as aliases for one or more libraries.

Libraries Aliases

• httplib – httplib and http.client

• mysql – mysql-connector-python

Tracing context for asynchronous work

For asyncio integrated libraries, or to create subsegments for asynchronous functions, you must
also configure the X-Ray SDK for Python with an async context. Import the AsyncContext class
and pass an instance of it to the X-Ray recorder.

Note

Web framework support libraries, such as AIOHTTP, are not handled through the
aws_xray_sdk.core.patcher module. They will not appear in the patcher catalog of
supported libraries.

Example main.py – Patch aioboto3

import asyncio
import aioboto3
import requests

from aws_xray_sdk.core.async_context import AsyncContext

X-Ray SDK for Python 296

https://docs.python.org/2/library/httplib.html
https://docs.python.org/3/library/http.client.html
https://pypi.python.org/pypi/mysql-connector-python

AWS X-Ray Developer Guide

from aws_xray_sdk.core import xray_recorder
xray_recorder.configure(service='my_service', context=AsyncContext())
from aws_xray_sdk.core import patch

libraries = (['aioboto3'])
patch(libraries)

Tracing AWS SDK calls with the X-Ray SDK for Python

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Python tracks the calls downstream in subsegments. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

The X-Ray SDK for Python automatically instruments all AWS SDK clients when you patch the
botocore library. You cannot instrument individual clients.

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the service
map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the table
name to the segment for calls that target a table. In the console, each table appears as a separate
node in the service map, with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",

X-Ray SDK for Python 297

AWS X-Ray Developer Guide

 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

Tracing calls to downstream HTTP web services using the X-Ray SDK for Python

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for Python to instrument those calls and add the API to the service graph as a downstream service.

To instrument HTTP clients, patch the library that you use to make outgoing calls. If you use
requests or Python's built in HTTP client, that's all you need to do. For aiohttp, also configure
the recorder with an async context.

If you use aiohttp 3's client API, you also need to configure the ClientSession's with an
instance of the tracing configuration provided by the SDK.

Example aiohttp 3 client API

from aws_xray_sdk.ext.aiohttp.client import aws_xray_trace_config

async def foo():
 trace_config = aws_xray_trace_config()
 async with ClientSession(loop=loop, trace_configs=[trace_config]) as session:
 async with session.get(url) as resp
 await resp.read()

When you instrument a call to a downstream web API, the X-Ray SDK for Python records a
subsegment that contains information about the HTTP request and response. X-Ray uses the
subsegment to generate an inferred segment for the remote API.

Example Subsegment for a downstream HTTP call

{

X-Ray SDK for Python 298

https://github.com/aws/aws-xray-sdk-python#trace-aiohttp-client-requests

AWS X-Ray Developer Guide

 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred segment for a downstream HTTP call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-62be1272-1b71c4274f39f122afa64eab",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Generating custom subsegments with the X-Ray SDK for Python

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information

X-Ray SDK for Python 299

AWS X-Ray Developer Guide

generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

To manage subsegments, use the begin_subsegment and end_subsegment methods.

Example main.py – Custom subsegment

from aws_xray_sdk.core import xray_recorder

subsegment = xray_recorder.begin_subsegment('annotations')
subsegment.put_annotation('id', 12345)
xray_recorder.end_subsegment()

To create a subsegment for a synchronous function, use the @xray_recorder.capture
decorator. You can pass a name for the subsegment to the capture function or leave it out to use
the function name.

Example main.py – Function subsegment

from aws_xray_sdk.core import xray_recorder

@xray_recorder.capture('## create_user')
def create_user():
...

For an asynchronous function, use the @xray_recorder.capture_async decorator, and pass an
async context to the recorder.

Example main.py – Asynchronous function subsegment

from aws_xray_sdk.core.async_context import AsyncContext
from aws_xray_sdk.core import xray_recorder
xray_recorder.configure(service='my_service', context=AsyncContext())

@xray_recorder.capture_async('## create_user')
async def create_user():
 ...

async def main():
 await myfunc()

X-Ray SDK for Python 300

AWS X-Ray Developer Guide

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for
Python generates an ID for it and records the start time and end time.

Example Subsegment with metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },

Add annotations and metadata to segments with the X-Ray SDK for Python

You can use annotations and metadata to record additional information about requests, the
environment, or your application. You can add annotations and metadata to the segments that the
X-Ray SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

In addition to annotations and metadata, you can also record user ID strings on segments. User IDs
are recorded in a separate field on segments and are indexed for use with search.

Sections

• Recording annotations with the X-Ray SDK for Python

• Recording metadata with the X-Ray SDK for Python

• Recording user IDs with the X-Ray SDK for Python

X-Ray SDK for Python 301

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

Recording annotations with the X-Ray SDK for Python

Use annotations to record information on segments or subsegments that you want indexed for
search.

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than the underscore symbol (_).

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations

1. Get a reference to the current segment or subsegment from xray_recorder.

from aws_xray_sdk.core import xray_recorder
...
document = xray_recorder.current_segment()

or

from aws_xray_sdk.core import xray_recorder
...
document = xray_recorder.current_subsegment()

2. Call put_annotation with a String key, and a Boolean, Number, or String value.

document.put_annotation("mykey", "my value");

Alternatively, you can use the put_annotation method on the xray_recorder. This method
records annotations on the current subsegment or, if no subsegment is open, on the segment.

xray_recorder.put_annotation("mykey", "my value");

The SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling put_annotation twice with the same key overwrites previously recorded
values on the same segment or subsegment.

X-Ray SDK for Python 302

AWS X-Ray Developer Guide

To find traces that have annotations with specific values, use the annotations.key keyword in a
filter expression.

Recording metadata with the X-Ray SDK for Python

Use metadata to record information on segments or subsegments that you don't need indexed for
search. Metadata values can be strings, numbers, Booleans, or any object that can be serialized into
a JSON object or array.

To record metadata

1. Get a reference to the current segment or subsegment from xray_recorder.

from aws_xray_sdk.core import xray_recorder
...
document = xray_recorder.current_segment()

or

from aws_xray_sdk.core import xray_recorder
...
document = xray_recorder.current_subsegment()

2. Call put_metadata with a String key; a Boolean, Number, String, or Object value; and a String
namespace.

document.put_metadata("my key", "my value", "my namespace");

or

Call put_metadata with just a key and value.

document.put_metadata("my key", "my value");

Alternatively, you can use the put_metadata method on the xray_recorder. This method
records metadata on the current subsegment or, if no subsegment is open, on the segment.

xray_recorder.put_metadata("my key", "my value");

X-Ray SDK for Python 303

AWS X-Ray Developer Guide

If you don't specify a namespace, the SDK uses default. Calling put_metadata twice with the
same key overwrites previously recorded values on the same segment or subsegment.

Recording user IDs with the X-Ray SDK for Python

Record user IDs on request segments to identify the user who sent the request.

To record user IDs

1. Get a reference to the current segment from xray_recorder.

from aws_xray_sdk.core import xray_recorder
...
document = xray_recorder.current_segment()

2. Call setUser with a String ID of the user who sent the request.

document.set_user("U12345");

You can call set_user in your controllers to record the user ID as soon as your application starts
processing a request.

To find traces for a user ID, use the user keyword in a filter expression.

Instrumenting web frameworks deployed to serverless environments

The AWS X-Ray SDK for Python supports instrumenting web frameworks deployed in serverless
applications. Serverless is the native architecture of the cloud that enables you to shift more of
your operational responsibilities to AWS, increasing your agility and innovation.

Serverless architecture is a software application model that enables you to build and run
applications and services without thinking about servers. It eliminates infrastructure management
tasks such as server or cluster provisioning, patching, operating system maintenance, and capacity
provisioning. You can build serverless solutions for nearly any type of application or backend
service, and everything required to run and scale your application with high availability is handled
for you.

This tutorial shows you how to automatically instrument AWS X-Ray on a web framework, such
as Flask or Django, that is deployed to a serverless environment. X-Ray instrumentation of the

X-Ray SDK for Python 304

AWS X-Ray Developer Guide

application enables you to view all downstream calls that are made, starting from Amazon API
Gateway through your AWS Lambda function, and the outgoing calls your application makes.

The X-Ray SDK for Python supports the following Python application frameworks:

• Flask version 0.8, or later

• Django version 1.0, or later

This tutorial develops an example serverless application that is deployed to Lambda and invoked
by API Gateway. This tutorial uses Zappa to automatically deploy the application to Lambda and to
configure the API Gateway endpoint.

Prerequisites

• Zappa

• Python – Version 2.7 or 3.6.

• AWS CLI – Verify that your AWS CLI is configured with the account and AWS Region in which you
will deploy your application.

• Pip

• Virtualenv

Step 1: Create an environment

In this step, you create a virtual environment using virtualenv to host an application.

1. Using the AWS CLI, create a directory for the application. Then change to the new directory.

mkdir serverless_application
cd serverless_application

2. Next, create a virtual environment within your new directory. Use the following command to
activate it.

Create our virtual environment
virtualenv serverless_env

Activate it
source serverless_env/bin/activate

X-Ray SDK for Python 305

https://github.com/Miserlou/Zappa
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://pypi.org/project/pip/
https://virtualenv.pypa.io/en/latest/

AWS X-Ray Developer Guide

3. Install X-Ray, Flask, Zappa, and the Requests library to your environment.

Install X-Ray, Flask, Zappa, and Requests into your environment
pip install aws-xray-sdk flask zappa requests

4. Add application code to the serverless_application directory. For this example, we can
build off of Flasks's Hello World example.

In the serverless_application directory, create a file named my_app.py. Then use a
text editor to add the following commands. This application instruments the Requests library,
patches the Flask application's middleware, and opens the endpoint '/'.

Import the X-Ray modules
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware
from aws_xray_sdk.core import patcher, xray_recorder
from flask import Flask
import requests

Patch the requests module to enable automatic instrumentation
patcher.patch(('requests',))

app = Flask(__name__)

Configure the X-Ray recorder to generate segments with our service name
xray_recorder.configure(service='My First Serverless App')

Instrument the Flask application
XRayMiddleware(app, xray_recorder)

@app.route('/')
def hello_world():
 resp = requests.get("https://aws.amazon.com")
 return 'Hello, World: %s' % resp.url

Step 2: Create and deploy a zappa environment

In this step you will use Zappa to automatically configure an API Gateway endpoint and then
deploy to Lambda.

X-Ray SDK for Python 306

https://flask.palletsprojects.com/en/3.0.x/quickstart/

AWS X-Ray Developer Guide

1. Initialize Zappa from within the serverless_application directory. For this example,
we used the default settings, but if you have customization preferences, Zappa displays
configuration instructions.

zappa init

What do you want to call this environment (default 'dev'): dev
...
What do you want to call your bucket? (default 'zappa-*******'): zappa-*******
...
...
It looks like this is a Flask application.
What's the modular path to your app's function?
This will likely be something like 'your_module.app'.
We discovered: my_app.app
Where is your app's function? (default 'my_app.app'): my_app.app
...
Would you like to deploy this application globally? (default 'n') [y/n/
(p)rimary]: n

2. Enable X-Ray. Open the zappa_settings.json file and verify that it looks similar to the
example.

{
 "dev": {
 "app_function": "my_app.app",
 "aws_region": "us-west-2",
 "profile_name": "default",
 "project_name": "serverless-exam",
 "runtime": "python2.7",
 "s3_bucket": "zappa-*********"
 }
}

3. Add "xray_tracing": true as an entry to the configuration file.

{
 "dev": {
 "app_function": "my_app.app",
 "aws_region": "us-west-2",
 "profile_name": "default",
 "project_name": "serverless-exam",

X-Ray SDK for Python 307

AWS X-Ray Developer Guide

 "runtime": "python2.7",
 "s3_bucket": "zappa-*********",
 "xray_tracing": true
 }
}

4. Deploy the application. This automatically configures the API Gateway endpoint and uploads
your code to Lambda.

zappa deploy

...
Deploying API Gateway..
Deployment complete!: https://**********.execute-api.us-west-2.amazonaws.com/dev

Step 3: Enable X-Ray tracing for API Gateway

In this step you will interact with the API Gateway console to enable X-Ray tracing.

1. Sign in to the AWS Management Console and open the API Gateway console at https://
console.aws.amazon.com/apigateway/.

2. Find your newly generated API. It should look something like serverless-exam-dev.

3. Choose Stages.

4. Choose the name of your deployment stage. The default is dev.

5. On the Logs/Tracing tab, select the Enable X-Ray Tracing box.

6. Choose Save Changes.

7. Access the endpoint in your browser. If you used the example Hello World application, it
should display the following.

"Hello, World: https://aws.amazon.com/"

Step 4: View the created trace

In this step you will interact with the X-Ray console to view the trace created by the example
application. For a more detailed walkthrough on trace analysis, see Viewing the Service Map.

X-Ray SDK for Python 308

https://console.aws.amazon.com/apigateway/
https://console.aws.amazon.com/apigateway/
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html#xray-console-servicemap

AWS X-Ray Developer Guide

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. View segments generated by API Gateway, the Lambda function, and the Lambda container.

3. Under the Lambda function segment, view a subsegment named My First Serverless
App. It's followed by a second subsegment named https://aws.amazon.com.

4. During initialization, Lambda might also generate a third subsegment named
initialization.

X-Ray SDK for Python 309

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Step 5: Clean up

Always terminate resources you are no longer using to avoid the accumulation of unexpected costs.
As this tutorial demonstrates, tools such as Zappa streamline serverless redeployment.

To remove your application from Lambda, API Gateway, and Amazon S3, run the following
command in your project directory by using the AWS CLI.

zappa undeploy dev

Next steps

Add more features to your application by adding AWS clients and instrumenting them with X-Ray.
Learn more about serverless computing options at Serverless on AWS.

Instrument your application with .NET

There are two ways to instrument your .NET application to send traces to X-Ray:

• AWS Distro for OpenTelemetry .NET – An AWS distribution that provides a set of open source
libraries for sending correlated metrics and traces to multiple AWS monitoring solutions
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for .NET – A set of libraries for generating and sending traces to X-Ray via the X-
Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry .NET

With the AWS Distro for OpenTelemetry .NET, you can instrument your applications once and send
correlated metrics and traces to multiple AWS monitoring solutions including Amazon CloudWatch,
AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with AWS Distro for OpenTelemetry
requires two components: an OpenTelemetry SDK enabled for use with X-Ray, and the AWS Distro
for OpenTelemetry Collector enabled for use with X-Ray.

To get started, see the AWS Distro for OpenTelemetry .NET documentation.

Instrument with .NET 310

https://aws.amazon.com/serverless
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/dotnet-sdk

AWS X-Ray Developer Guide

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

For more information about language support and usage, see AWS Observability on GitHub.

AWS X-Ray SDK for .NET

The X-Ray SDK for .NET is a library for instrumenting C# .NET web applications, .NET Core web
applications, and .NET Core functions on AWS Lambda. It provides classes and methods for
generating and sending trace data to the X-Ray daemon. This includes information about incoming
requests served by the application, and calls that the application makes to downstream AWS
services, HTTP web APIs, and SQL databases.

Note

The X-Ray SDK for .NET is an open source project. You can follow the project and submit
issues and pull requests on GitHub: github.com/aws/aws-xray-sdk-dotnet

For web applications, start by adding a message handler to your web configuration to trace
incoming requests. The message handler creates a segment for each traced request, and completes
the segment when the response is sent. While the segment is open you can use the SDK client's
methods to add information to the segment and create subsegments to trace downstream calls.
The SDK also automatically records exceptions that your application throws while the segment is
open.

For Lambda functions called by an instrumented application or service, Lambda reads the tracing
header and traces sampled requests automatically. For other functions, you can configure Lambda
to sample and trace incoming requests. In either case, Lambda creates the segment and provides it
to the X-Ray SDK.

Note

On Lambda, the X-Ray SDK is optional. If you don't use it in your function, your service
map will still include a node for the Lambda service, and one for each Lambda function.
By adding the SDK, you can instrument your function code to add subsegments to the

X-Ray SDK for .NET 311

https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction
https://github.com/aws-observability
https://github.com/aws/aws-xray-sdk-dotnet

AWS X-Ray Developer Guide

function segment recorded by Lambda. See AWS Lambda and AWS X-Ray for more
information.

Next, use the X-Ray SDK for .NET to instrument your AWS SDK for .NET clients. Whenever you
make a call to a downstream AWS service or resource with an instrumented client, the SDK records
information about the call in a subsegment. AWS services and the resources that you access
within the services appear as downstream nodes on the trace map to help you identify errors and
throttling issues on individual connections.

The X-Ray SDK for .NET also provides instrumentation for downstream calls to HTTP web APIs and
SQL databases. The GetResponseTraced extension method for System.Net.HttpWebRequest
traces outgoing HTTP calls. You can use the X-Ray SDK for .NET's version of SqlCommand to
instrument SQL queries.

After you start using the SDK, customize its behavior by configuring the recorder and message
handler. You can add plugins to record data about the compute resources running your application,
customize sampling behavior by defining sampling rules, and set the log level to see more or less
information from the SDK in your application logs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have many instrumented clients in your code, a single request segment can contain
a large number of subsegments, one for each call made with an instrumented client. You can
organize and group subsegments by wrapping client calls in custom subsegments. You can create
a custom subsegment for an entire function or any section of code, and record metadata and
annotations on the subsegment instead of writing everything on the parent segment.

X-Ray SDK for .NET 312

AWS X-Ray Developer Guide

For reference documentation about the SDK's classes and methods, see the following:

• AWS X-Ray SDK for .NET API Reference

• AWS X-Ray SDK for .NET Core API Reference

The same package supports both .NET and .NET Core, but the classes that are used vary. Examples
in this chapter link to the .NET API reference unless the class is specific to .NET Core.

Requirements

The X-Ray SDK for .NET requires the .NET Framework 4.5 or later and AWS SDK for .NET.

For .NET Core applications and functions, the SDK requires .NET Core 2.0 or later.

Adding the X-Ray SDK for .NET to your application

Use NuGet to add the X-Ray SDK for .NET to your application.

To install the X-Ray SDK for .NET with NuGet package manager in Visual Studio

1. Choose Tools, NuGet Package Manager, Manage NuGet Packages for Solution.

2. Search for AWSXRayRecorder.

3. Choose the package, and then choose Install.

Dependency management

The X-Ray SDK for .NET is available from Nuget. Install the SDK using the package manager:

Install-Package AWSXRayRecorder -Version 2.10.1

The AWSXRayRecorder v2.10.1 nuget package has the following dependencies:

NET Framework 4.5

AWSXRayRecorder (2.10.1)
|
|-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- AWSSDK.Core (>= 3.3.25.1)

X-Ray SDK for .NET 313

https://docs.aws.amazon.com//xray-sdk-for-dotnet/latest/reference
https://docs.aws.amazon.com//xray-sdk-for-dotnetcore/latest/reference
https://www.nuget.org/packages/AWSXRayRecorder/

AWS X-Ray Developer Guide

|
|-- AWSXRayRecorder.Handlers.AspNet (>= 2.7.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
|
|-- AWSXRayRecorder.Handlers.AwsSdk (>= 2.8.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
|
|-- AWSXRayRecorder.Handlers.EntityFramework (>= 1.1.1)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- EntityFramework (>= 6.2.0)
|
|-- AWSXRayRecorder.Handlers.SqlServer (>= 2.7.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
|
|-- AWSXRayRecorder.Handlers.System.Net (>= 2.7.3)
 |-- AWSXRayRecorder.Core (>= 2.10.1)

NET Framework 2.0

AWSXRayRecorder (2.10.1)
|
|-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- AWSSDK.Core (>= 3.3.25.1)
| |-- Microsoft.AspNetCore.Http (>= 2.0.0)
| |-- Microsoft.Extensions.Configuration (>= 2.0.0)
| |-- System.Net.Http (>= 4.3.4)
|
|-- AWSXRayRecorder.Handlers.AspNetCore (>= 2.7.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- Microsoft.AspNetCore.Http.Extensions (>= 2.0.0)
| |-- Microsoft.AspNetCore.Mvc.Abstractions (>= 2.0.0)
|
|-- AWSXRayRecorder.Handlers.AwsSdk (>= 2.8.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
|
|-- AWSXRayRecorder.Handlers.EntityFramework (>= 1.1.1)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- Microsoft.EntityFrameworkCore.Relational (>= 3.1.0)
|
|-- AWSXRayRecorder.Handlers.SqlServer (>= 2.7.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)

X-Ray SDK for .NET 314

AWS X-Ray Developer Guide

| |-- System.Data.SqlClient (>= 4.4.0)
|
|-- AWSXRayRecorder.Handlers.System.Net (>= 2.7.3)
 |-- AWSXRayRecorder.Core (>= 2.10.1)

For more details about dependency management, refer to Microsoft's documentation about Nuget
dependency and Nuget dependency resolution.

Configuring the X-Ray SDK for .NET

You can configure the X-Ray SDK for .NET with plugins to include information about the service
that your application runs on, modify the default sampling behavior, or add sampling rules that
apply to requests to specific paths.

For .NET web applications, add keys to the appSettings section of your Web.config file.

Example Web.config

<configuration>
 <appSettings>
 <add key="AWSXRayPlugins" value="EC2Plugin"/>
 <add key="SamplingRuleManifest" value="sampling-rules.json"/>
 </appSettings>
</configuration>

For .NET Core, create a file named appsettings.json with a top-level key named XRay.

Example .NET appsettings.json

{
 "XRay": {
 "AWSXRayPlugins": "EC2Plugin",
 "SamplingRuleManifest": "sampling-rules.json"
 }
}

Then, in your application code, build a configuration object and use it to initialize the X-Ray
recorder. Do this before you initialize the recorder.

X-Ray SDK for .NET 315

https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/dependencies
https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/dependencies
https://docs.microsoft.com/en-us/nuget/concepts/dependency-resolution

AWS X-Ray Developer Guide

Example .NET Core Program.cs – Recorder configuration

using Amazon.XRay.Recorder.Core;
...
AWSXRayRecorder.InitializeInstance(configuration);

If you are instrumenting a .NET Core web application, you can also pass the configuration object
to the UseXRay method when you configure the message handler. For Lambda functions, use the
InitializeInstance method as shown above.

For more information on the .NET Core configuration API, see Configure an ASP.NET Core App on
docs.microsoft.com.

Sections

• Plugins

• Sampling rules

• Logging (.NET)

• Logging (.NET Core)

• Environment variables

Plugins

Use plugins to add data about the service that is hosting your application.

Plugins

• Amazon EC2 – EC2Plugin adds the instance ID, Availability Zone, and the CloudWatch Logs
Group.

• Elastic Beanstalk – ElasticBeanstalkPlugin adds the environment name, version label, and
deployment ID.

• Amazon ECS – ECSPlugin adds the container ID.

To use a plugin, configure the X-Ray SDK for .NET client by adding the AWSXRayPlugins setting.
If multiple plugins apply to your application, specify all of them in the same setting, separated by
commas.

X-Ray SDK for .NET 316

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/?tabs=basicconfiguration

AWS X-Ray Developer Guide

Example Web.config - plugins

<configuration>
 <appSettings>
 <add key="AWSXRayPlugins" value="EC2Plugin,ElasticBeanstalkPlugin"/>
 </appSettings>
</configuration>

Example .NET Core appsettings.json – Plugins

{
 "XRay": {
 "AWSXRayPlugins": "EC2Plugin,ElasticBeanstalkPlugin"
 }
}

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional
requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request received at the beginning of each second, and five percent of any additional
requests per host. This can occur if the host doesn't have permission to call sampling APIs,
or can't connect to the X-Ray daemon, which acts as a TCP proxy for API calls made by the
SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{

X-Ray SDK for .NET 317

AWS X-Ray Developer Guide

 "version": 2,
 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

On AWS Lambda, you cannot modify the sampling rate. If your function is called by an
instrumented service, calls that generated requests that were sampled by that service will be
recorded by Lambda. If active tracing is enabled and no tracing header is present, Lambda makes
the sampling decision.

To configure backup rules, tell the X-Ray SDK for .NET to load sampling rules from a file with the
SamplingRuleManifest setting.

Example .NET Web.config - sampling rules

<configuration>
 <appSettings>
 <add key="SamplingRuleManifest" value="sampling-rules.json"/>
 </appSettings>
</configuration>

X-Ray SDK for .NET 318

AWS X-Ray Developer Guide

Example .NET Core appsettings.json – Sampling rules

{
 "XRay": {
 "SamplingRuleManifest": "sampling-rules.json"
 }
}

To use only local rules, build the recorder with a LocalizedSamplingStrategy. If you have
backup rules configured, remove that configuration.

Example .NET global.asax – Local sampling rules

var recorder = new AWSXRayRecorderBuilder().WithSamplingStrategy(new
 LocalizedSamplingStrategy("samplingrules.json")).Build();
AWSXRayRecorder.InitializeInstance(recorder: recorder);

Example .NET Core Program.cs – Local sampling rules

var recorder = new AWSXRayRecorderBuilder().WithSamplingStrategy(new
 LocalizedSamplingStrategy("sampling-rules.json")).Build();
AWSXRayRecorder.InitializeInstance(configuration,recorder);

Logging (.NET)

The X-Ray SDK for .NET uses the same logging mechanism as the AWS SDK for .NET. If you already
configured your application to log AWS SDK for .NET output, the same configuration applies to
output from the X-Ray SDK for .NET.

To configure logging, add a configuration section named aws to your App.config file or
Web.config file.

Example Web.config - logging

...
<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws>
 <logging logTo="Log4Net"/>
 </aws>

X-Ray SDK for .NET 319

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-config-other.html#config-setting-awslogging

AWS X-Ray Developer Guide

</configuration>

For more information, see Configuring Your AWS SDK for .NET Application in the AWS SDK for .NET
Developer Guide.

Logging (.NET Core)

The X-Ray SDK for .NET uses the same logging options as the AWS SDK for .NET.
To configure logging for .NET Core applications, pass the logging option to the
AWSXRayRecorder.RegisterLogger method.

For example, to use log4net, create a configuration file that defines the logger, the output format,
and the file location.

Example .NET Core log4net.config

<?xml version="1.0" encoding="utf-8" ?>
<log4net>
 <appender name="FileAppender" type="log4net.Appender.FileAppender,log4net">
 <file value="c:\logs\sdk-log.txt" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date [%thread] %level %logger - %message%newline" />
 </layout>
 </appender>
 <logger name="Amazon">
 <level value="DEBUG" />
 <appender-ref ref="FileAppender" />
 </logger>
</log4net>

Then, create the logger and apply the configuration in your program code.

Example .NET Core Program.cs – Logging

using log4net;
using Amazon.XRay.Recorder.Core;

class Program
{
 private static ILog log;
 static Program()
 {
 var logRepository = LogManager.GetRepository(Assembly.GetEntryAssembly());

X-Ray SDK for .NET 320

https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-config-other.html#config-setting-awslogging
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm

AWS X-Ray Developer Guide

 XmlConfigurator.Configure(logRepository, new FileInfo("log4net.config"));
 log = LogManager.GetLogger(typeof(Program));
 AWSXRayRecorder.RegisterLogger(LoggingOptions.Log4Net);
 }
 static void Main(string[] args)
 {
 ...
 }
}

For more information on configuring log4net, see Configuration on logging.apache.org.

Environment variables

You can use environment variables to configure the X-Ray SDK for .NET. The SDK supports the
following variables.

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments. Overrides the
service name that you set on the servlet filter's segment naming strategy.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK uses 127.0.0.1:2000 for both trace data (UDP) and sampling (TCP). Use this variable
if you have configured the daemon to listen on a different port or if it is running on a different
host.

Format

• Same port – address:port

• Different ports – tcp:address:port udp:address:port

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

X-Ray SDK for .NET 321

https://logging.apache.org/log4net/release/manual/configuration.html

AWS X-Ray Developer Guide

Instrumenting incoming HTTP requests with the X-Ray SDK for .NET

You can use the X-Ray SDK to trace incoming HTTP requests that your application serves on an EC2
instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

Use a message handler to instrument incoming HTTP requests. When you add the X-Ray
message handler to your application, the X-Ray SDK for .NET creates a segment for each sampled
request. This segment includes timing, method, and disposition of the HTTP request. Additional
instrumentation creates subsegments on this segment.

Note

For AWS Lambda functions, Lambda creates a segment for each sampled request. See AWS
Lambda and AWS X-Ray for more information.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

The message handler creates a segment for each incoming request with an http block that
contains the following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

X-Ray SDK for .NET 322

AWS X-Ray Developer Guide

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

Sections

• Instrumenting incoming requests (.NET)

• Instrumenting incoming requests (.NET Core)

• Configuring a segment naming strategy

Instrumenting incoming requests (.NET)

To instrument requests served by your application, call RegisterXRay in the Init method of
your global.asax file.

Example global.asax - message handler

using System.Web.Http;
using Amazon.XRay.Recorder.Handlers.AspNet;

namespace SampleEBWebApplication
{
 public class MvcApplication : System.Web.HttpApplication
 {
 public override void Init()
 {
 base.Init();
 AWSXRayASPNET.RegisterXRay(this, "MyApp");
 }
 }
}

Instrumenting incoming requests (.NET Core)

To instrument requests served by your application, call UseXRay method before any other
middleware in the Configure method of your Startup class as ideally X-Ray middleware should
be the first middleware to process the request and last middleware to process the response in the
pipeline.

X-Ray SDK for .NET 323

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_AspNet.htm

AWS X-Ray Developer Guide

Note

For .NET Core 2.0, if you have a UseExceptionHandler method in the application, make
sure to call UseXRay after UseExceptionHandler method to ensure exceptions are
recorded.

Example Startup.cs

<caption>.NET Core 2.1 and above</caption>

using Microsoft.AspNetCore.Builder;

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 app.UseXRay("MyApp");
 // additional middleware
 ...
 }

<caption>.NET Core 2.0</caption>

using Microsoft.AspNetCore.Builder;

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 app.UseExceptionHandler("/Error");
 app.UseXRay("MyApp");
 // additional middleware
 ...
 }

The UseXRay method can also take a configuration object as a second argument.

app.UseXRay("MyApp", configuration);

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-

X-Ray SDK for .NET 324

AWS X-Ray Developer Guide

Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
initialize the message handler, as shown in the previous section. This has the same effect as
creating a FixedSegmentNamingStrategy and passing it to the RegisterXRay method.

AWSXRayASPNET.RegisterXRay(this, new FixedSegmentNamingStrategy("MyApp"));

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

A dynamic naming strategy defines a pattern that hostnames should match, and a default name
to use if the hostname in the HTTP request does not match the pattern. To name segments
dynamically, create a DynamicSegmentNamingStrategy and pass it to the RegisterXRay
method.

AWSXRayASPNET.RegisterXRay(this, new DynamicSegmentNamingStrategy("MyApp",
 "*.example.com"));

X-Ray SDK for .NET 325

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/T_Amazon_XRay_Recorder_Core_Strategies_FixedSegmentNamingStrategy.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/T_Amazon_XRay_Recorder_Core_Strategies_DynamicSegmentNamingStrategy.htm

AWS X-Ray Developer Guide

Tracing AWS SDK calls with the X-Ray SDK for .NET

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for .NET tracks the calls downstream in subsegments. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

You can instrument all of your AWS SDK for .NET clients by calling
RegisterXRayForAllServices before you create them.

Example SampleController.cs - DynamoDB client instrumentation

using Amazon;
using Amazon.Util;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DocumentModel;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.AwsSdk;

namespace SampleEBWebApplication.Controllers
{
 public class SampleController : ApiController
 {
 AWSSDKHandler.RegisterXRayForAllServices();
 private static readonly Lazy<AmazonDynamoDBClient> LazyDdbClient = new
 Lazy<AmazonDynamoDBClient>(() =>
 {
 var client = new AmazonDynamoDBClient(EC2InstanceMetadata.Region ??
 RegionEndpoint.USEast1);
 return client;
 });

To instrument clients for some services and not others, call RegisterXRay instead of
RegisterXRayForAllServices. Replace the highlighted text with the name of the service's
client interface.

AWSSDKHandler.RegisterXRay<IAmazonDynamoDB>()

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the service
map.

X-Ray SDK for .NET 326

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_AwsSdk.htm

AWS X-Ray Developer Guide

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the table
name to the segment for calls that target a table. In the console, each table appears as a separate
node in the service map, with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

Tracing calls to downstream HTTP web services with the X-Ray SDK for .NET

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray
SDK for .NET's GetResponseTraced extension method for System.Net.HttpWebRequest to
instrument those calls and add the API to the service graph as a downstream service.

Example HttpWebRequest

using System.Net;

X-Ray SDK for .NET 327

AWS X-Ray Developer Guide

using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.System.Net;

private void MakeHttpRequest()
{
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create("http://names.example.com/
api");
 request.GetResponseTraced();
}

For asynchronous calls, use GetAsyncResponseTraced.

request.GetAsyncResponseTraced();

If you use system.net.http.httpclient, use the HttpClientXRayTracingHandler
delegating handler to record calls.

Example HttpClient

using System.Net.Http;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.System.Net;

private void MakeHttpRequest()
{
 var httpClient = new HttpClient(new HttpClientXRayTracingHandler(new
 HttpClientHandler()));
 httpClient.GetAsync(URL);
}

When you instrument a call to a downstream web API, the X-Ray SDK for .NET records a
subsegment with information about the HTTP request and response. X-Ray uses the subsegment to
generate an inferred segment for the API.

Example Subsegment for a downstream HTTP call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",

X-Ray SDK for .NET 328

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_System_Net.htm
https://msdn.microsoft.com/en-us/library/system.net.http.httpclient.aspx
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_System_Net.htm

AWS X-Ray Developer Guide

 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred segment for a downstream HTTP call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-62be1272-1b71c4274f39f122afa64eab",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Tracing SQL queries with the X-Ray SDK for .NET

The X-Ray SDK for .NET provides a wrapper class for System.Data.SqlClient.SqlCommand,
named TraceableSqlCommand, that you can use in place of SqlCommand. You can initialize an
SQL command with the TraceableSqlCommand class.

X-Ray SDK for .NET 329

AWS X-Ray Developer Guide

Tracing SQL queries with synchronous and asynchronous methods

The following examples show how to use the TraceableSqlCommand to automatically trace SQL
Server queries synchronously and asynchronously.

Example Controller.cs - SQL client instrumentation (synchronous)

using Amazon;
using Amazon.Util;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.SqlServer;

private void QuerySql(int id)
{
 var connectionString = ConfigurationManager.AppSettings["RDS_CONNECTION_STRING"];
 using (var sqlConnection = new SqlConnection(connectionString))
 using (var sqlCommand = new TraceableSqlCommand("SELECT " + id, sqlConnection))
 {
 sqlCommand.Connection.Open();
 sqlCommand.ExecuteNonQuery();
 }
}

You can execute the query asynchronously by using the ExecuteReaderAsync method.

Example Controller.cs - SQL client instrumentation (asynchronous)

using Amazon;
using Amazon.Util;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.SqlServer;
private void QuerySql(int id)
{
 var connectionString = ConfigurationManager.AppSettings["RDS_CONNECTION_STRING"];
 using (var sqlConnection = new SqlConnection(connectionString))
 using (var sqlCommand = new TraceableSqlCommand("SELECT " + id, sqlConnection))
 {
 await sqlCommand.ExecuteReaderAsync();
 }
}

X-Ray SDK for .NET 330

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_SqlServer.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_SqlServer.htm

AWS X-Ray Developer Guide

Collecting SQL queries made to SQL Server

You can enable the capture of SqlCommand.CommandText as part of the subsegment created
by your SQL query. SqlCommand.CommandText appears as the field sanitized_query in the
subsegment JSON. By default, this feature is disabled for security.

Note

Do not enable the collection feature if you are including sensitive information as clear text
in your SQL queries.

You can enable the collection of SQL queries in two ways:

• Set the CollectSqlQueries property to true in the global configuration for your application.

• Set the collectSqlQueries parameter in the TraceableSqlCommand instance to true to
collect calls within the instance.

Enable the global CollectSqlQueries property

The following examples show how to enable the CollectSqlQueries property for .NET and .NET
Core.

.NET

To set the CollectSqlQueries property to true in the global configuration of your
application in .NET, modify the appsettings of your App.config or Web.config file, as
shown.

Example App.config Or Web.config – Enable SQL Query collection globally

<configuration>
<appSettings>
 <add key="CollectSqlQueries" value="true">
</appSettings>
</configuration>

.NET Core

To set the CollectSqlQueries property to true in the global configuration of your
application in .NET Core, modify your appsettings.json file under the X-Ray key, as shown.

X-Ray SDK for .NET 331

AWS X-Ray Developer Guide

Example appsettings.json – Enable SQL Query collection globally

{
 "XRay": {
 "CollectSqlQueries":"true"
 }
}

Enable the collectSqlQueries parameter

You can set the collectSqlQueries parameter in the TraceableSqlCommand instance to
true to collect the SQL query text for SQL Server queries made using that instance. Setting the
parameter to false disables the CollectSqlQuery feature for the TraceableSqlCommand
instance.

Note

The value of collectSqlQueries in the TraceableSqlCommand instance overrides the
value set in the global configuration of the CollectSqlQueries property.

Example Example Controller.cs – Enable SQL Query collection for the instance

using Amazon;
using Amazon.Util;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.SqlServer;

private void QuerySql(int id)
{
 var connectionString = ConfigurationManager.AppSettings["RDS_CONNECTION_STRING"];
 using (var sqlConnection = new SqlConnection(connectionString))
 using (var command = new TraceableSqlCommand("SELECT " + id, sqlConnection,
 collectSqlQueries: true))
 {
 command.ExecuteNonQuery();
 }
}

X-Ray SDK for .NET 332

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_SqlServer.htm

AWS X-Ray Developer Guide

Creating additional subsegments

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information
generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

To manage subsegments, use the BeginSubsegment and EndSubsegment methods. Perform
any work in the subsegment in a try block and use AddException to trace exceptions. Call
EndSubsegment in a finally block to ensure that the subsegment is closed.

Example Controller.cs – Custom subsegment

AWSXRayRecorder.Instance.BeginSubsegment("custom method");
try
{
 DoWork();
}
catch (Exception e)
{
 AWSXRayRecorder.Instance.AddException(e);
}
finally
{
 AWSXRayRecorder.Instance.EndSubsegment();
}

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for .NET
generates an ID for it and records the start time and end time.

Example Subsegment with metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },

X-Ray SDK for .NET 333

AWS X-Ray Developer Guide

Add annotations and metadata to segments with the X-Ray SDK for .NET

You can use annotations and metadata to record additional information about requests, the
environment, or your application. You can add annotations and metadata to the segments that the
X-Ray SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

Sections

• Recording annotations with the X-Ray SDK for .NET

• Recording metadata with the X-Ray SDK for .NET

Recording annotations with the X-Ray SDK for .NET

Use annotations to record information on segments or subsegments that you want indexed for
search.

The following are required for all annotations in X-Ray:

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than the underscore symbol (_).

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations outside of a AWS Lambda function

1. Get an instance of AWSXRayRecorder.

using Amazon.XRay.Recorder.Core;
...

X-Ray SDK for .NET 334

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm

AWS X-Ray Developer Guide

AWSXRayRecorder recorder = AWSXRayRecorder.Instance;

2. Call addAnnotation with a String key and a Boolean, Int32, Int64, Double, or String value.

recorder.AddAnnotation("mykey", "my value");

To record annotations inside of a AWS Lambda function

Both segments and subsegments inside a Lambda function are managed by the Lambda runtime
environment. If you want to add an annotation to a segment or subsegment inside a Lambda
function, you must do the following:

1. Create the segment or subsegment inside the Lambda function.

2. Add the annotation to the segment or subsegment.

3. End the segment or subsegment.

The following code example shows you how to add an annotation to a subsegment inside a
Lambda function:

#Create the subsegment
AWSXRayRecorder.Instance.BeginSubsegment("custom method");
#Add an annotation
AWSXRayRecorder.Instance.AddAnnotation("My", "Annotation");
try
{
 YourProcess(); #Your function
}
catch (Exception e)
{
 AWSXRayRecorder.Instance.AddException(e);
}
finally #End the subsegment
{
 AWSXRayRecorder.Instance.EndSubsegment();
}

The X-Ray SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling the addAnnotation operation twice with the same key overwrites a previously
recorded value on the same segment or subsegment.

X-Ray SDK for .NET 335

AWS X-Ray Developer Guide

To find traces that have annotations with specific values, use the annotations.key keyword in a
filter expression. For more information, see Use filter expressions.

Recording metadata with the X-Ray SDK for .NET

Use metadata to record information on segments or subsegments that you don't need to index for
use inside a search. Metadata values can be strings, numbers, booleans, or any other object that
can be serialized into a JSON object or array.

To record metadata

1. Get an instance of AWSXRayRecorder, as shown in the following code example:

using Amazon.XRay.Recorder.Core;
...
AWSXRayRecorder recorder = AWSXRayRecorder.Instance;

2. Call AddMetadata with a string namespace, string key, and an object value, as shown in the
following code example:

recorder.AddMetadata("my namespace", "my key", "my value");

You can also call the AddMetadata operation using just a key and value pair, as shown in the
following code example:

recorder.AddMetadata("my key", "my value");

If you don't specify a value for the namespace, the X-Ray SDK uses default. Calling the
AddMetadata operation twice with the same key overwrites a previously recorded value on the
same segment or subsegment.

Instrument your application with Ruby

There are two ways to instrument your Ruby application to send traces to X-Ray:

• AWS Distro for OpenTelemetry Ruby – An AWS distribution that provides a set of open source
libraries for sending correlated metrics and traces to multiple AWS monitoring solutions,
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

Instrument with Ruby 336

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector

AWS X-Ray Developer Guide

• AWS X-Ray SDK for Ruby – A set of libraries for generating and sending traces to X-Ray via the X-
Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry Ruby

With the AWS Distro for OpenTelemetry (ADOT) Ruby, you can instrument your applications once
and send correlated metrics and traces to multiple AWS monitoring solutions including Amazon
CloudWatch, AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with ADOT requires
two components: an OpenTelemetry SDK enabled for use with X-Ray, and the AWS Distro for
OpenTelemetry Collector enabled for use with X-Ray.

To get started, see the AWS Distro for OpenTelemetry Ruby documentation.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

For more information about language support and usage, see AWS Observability on GitHub.

AWS X-Ray SDK for Ruby

The X-Ray SDK is a library for Ruby web applications that provides classes and methods for
generating and sending trace data to the X-Ray daemon. Trace data includes information about
incoming HTTP requests served by the application, and calls that the application makes to
downstream services using the AWS SDK, HTTP clients, or an active record client. You can also
create segments manually and add debug information in annotations and metadata.

You can download the SDK by adding it to your gemfile and running bundle install.

Example Gemfile

gem 'aws-sdk'

If you use Rails, start by adding the X-Ray SDK middleware to trace incoming requests. A request
filter creates a segment. While the segment is open, you can use the SDK client's methods to add
information to the segment and create subsegments to trace downstream calls. The SDK also
automatically records exceptions that your application throws while the segment is open. For non-
Rails applications, you can create segments manually.

AWS Distro for OpenTelemetry Ruby 337

https://aws-otel.github.io/docs/getting-started/ruby-sdk
https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction
https://github.com/aws-observability

AWS X-Ray Developer Guide

Next, use the X-Ray SDK to instrument your AWS SDK for Ruby, HTTP, and SQL clients by
configuring the recorder to patch the associated libraries. Whenever you make a call to a
downstream AWS service or resource with an instrumented client, the SDK records information
about the call in a subsegment. AWS services and the resources that you access within the services
appear as downstream nodes on the trace map to help you identify errors and throttling issues on
individual connections.

Once you get going with the SDK, customize its behavior by configuring the recorder. You can add
plugins to record data about the compute resources running your application, customize sampling
behavior by defining sampling rules, and provide a logger to see more or less information from the
SDK in your application logs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have a lot of instrumented clients in your code, a single request segment can contain
a large number of subsegments, one for each call made with an instrumented client. You can
organize and group subsegments by wrapping client calls in custom subsegments. You can create
a custom subsegment for an entire function or any section of code, and record metadata and
annotations on the subsegment instead of writing everything on the parent segment.

For reference documentation for the SDK's classes and methods, see the AWS X-Ray SDK for Ruby
API Reference.

Requirements

The X-Ray SDK requires Ruby 2.3 or later and is compatible with the following libraries:

X-Ray SDK for Ruby 338

https://docs.aws.amazon.com/xray-sdk-for-ruby/latest/reference
https://docs.aws.amazon.com/xray-sdk-for-ruby/latest/reference

AWS X-Ray Developer Guide

• AWS SDK for Ruby version 3.0 or later

• Rails version 5.1 or later

Configuring the X-Ray SDK for Ruby

The X-Ray SDK for Ruby has a class named XRay.recorder that provides the global recorder. You
can configure the global recorder to customize the middleware that creates segments for incoming
HTTP calls.

Sections

• Service plugins

• Sampling rules

• Logging

• Recorder configuration in code

• Recorder configuration with rails

• Environment variables

Service plugins

Use plugins to record information about the service hosting your application.

Plugins

• Amazon EC2 – ec2 adds the instance ID and Availability Zone.

• Elastic Beanstalk – elastic_beanstalk adds the environment name, version label, and
deployment ID.

• Amazon ECS – ecs adds the container ID.

X-Ray SDK for Ruby 339

AWS X-Ray Developer Guide

To use plugins, specify it in the configuration object that you pass to the recorder.

Example main.rb – Plugin configuration

my_plugins = %I[ec2 elastic_beanstalk]

config = {
 plugins: my_plugins,
 name: 'my app',
}

XRay.recorder.configure(config)

You can also use environment variables, which take precedence over values set in code, to
configure the recorder.

The SDK also uses plugin settings to set the origin field on the segment. This indicates the type
of AWS resource that runs your application. When you use multiple plugins, the SDK uses the
following resolution order to determine the origin: ElasticBeanstalk > EKS > ECS > EC2.

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional

X-Ray SDK for Ruby 340

AWS X-Ray Developer Guide

requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request received at the beginning of each second, and five percent of any additional
requests per host. This can occur if the host doesn't have permission to call sampling APIs,
or can't connect to the X-Ray daemon, which acts as a TCP proxy for API calls made by the
SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{
 "version": 2,
 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

X-Ray SDK for Ruby 341

AWS X-Ray Developer Guide

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

To configure backup rules, define a hash for the document in the configuration object that you pass
to the recorder.

Example main.rb – Backup rule configuration

require 'aws-xray-sdk'
my_sampling_rules = {
 version: 1,
 default: {
 fixed_target: 1,
 rate: 0.1
 }
}
config = {
 sampling_rules: my_sampling_rules,
 name: 'my app',
}
XRay.recorder.configure(config)

To store the sampling rules independently, define the hash in a separate file and require the file to
pull it into your application.

Example config/sampling-rules.rb

my_sampling_rules = {
 version: 1,
 default: {
 fixed_target: 1,
 rate: 0.1
 }
}

Example main.rb – Sampling rule from a file

require 'aws-xray-sdk'
require 'config/sampling-rules.rb'

config = {

X-Ray SDK for Ruby 342

AWS X-Ray Developer Guide

 sampling_rules: my_sampling_rules,
 name: 'my app',
}
XRay.recorder.configure(config)

To use only local rules, require the sampling rules and configure the LocalSampler.

Example main.rb – Local rule sampling

require 'aws-xray-sdk'
require 'aws-xray-sdk/sampling/local/sampler'

config = {
 sampler: LocalSampler.new,
 name: 'my app',
}
XRay.recorder.configure(config)

You can also configure the global recorder to disable sampling and instrument all incoming
requests.

Example main.rb – Disable sampling

require 'aws-xray-sdk'
config = {
 sampling: false,
 name: 'my app',
}
XRay.recorder.configure(config)

Logging

By default, the recorder outputs info-level events to $stdout. You can customize logging by
defining a logger in the configuration object that you pass to the recorder.

Example main.rb – Logging

require 'aws-xray-sdk'
config = {
 logger: my_logger,
 name: 'my app',
}

X-Ray SDK for Ruby 343

https://ruby-doc.org/stdlib-2.4.2/libdoc/logger/rdoc/Logger.html

AWS X-Ray Developer Guide

XRay.recorder.configure(config)

Use debug logs to identify issues, such as unclosed subsegments, when you generate subsegments
manually.

Recorder configuration in code

Additional settings are available from the configure method on XRay.recorder.

• context_missing – Set to LOG_ERROR to avoid throwing exceptions when your instrumented
code attempts to record data when no segment is open.

• daemon_address – Set the host and port of the X-Ray daemon listener.

• name – Set a service name that the SDK uses for segments.

• naming_pattern – Set a domain name pattern to use dynamic naming.

• plugins – Record information about your application's AWS resources with plugins.

• sampling – Set to false to disable sampling.

• sampling_rules – Set the hash containing your sampling rules.

Example main.rb – Disable context missing exceptions

require 'aws-xray-sdk'
config = {
 context_missing: 'LOG_ERROR'
}

XRay.recorder.configure(config)

Recorder configuration with rails

If you use the Rails framework, you can configure options on the global recorder in a Ruby file
under app_root/initializers. The X-Ray SDK supports an additional configuration key for use
with Rails.

• active_record – Set to true to record subsegments for Active Record database transactions.

Configure the available settings in a configuration object named
Rails.application.config.xray.

X-Ray SDK for Ruby 344

AWS X-Ray Developer Guide

Example config/initializers/aws_xray.rb

Rails.application.config.xray = {
 name: 'my app',
 patch: %I[net_http aws_sdk],
 active_record: true
}

Environment variables

You can use environment variables to configure the X-Ray SDK for Ruby. The SDK supports the
following variables:

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments. Overrides the
service name that you set on the servlet filter's segment naming strategy.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK sends trace data to 127.0.0.1:2000. Use this variable if you have configured the
daemon to listen on a different port or if it is running on a different host.

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

Environment variables override values set in code.

Tracing incoming requests with the X-Ray SDK for Ruby middleware

You can use the X-Ray SDK to trace incoming HTTP requests that your application serves on an EC2
instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

X-Ray SDK for Ruby 345

AWS X-Ray Developer Guide

If you use Rails, use the Rails middleware to instrument incoming HTTP requests. When you add
the middleware to your application and configure a segment name, the X-Ray SDK for Ruby creates
a segment for each sampled request. Any segments created by additional instrumentation become
subsegments of the request-level segment that provides information about the HTTP request and
response. This information includes timing, method, and disposition of the request.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

When a request is forwarded, the SDK sets an additional field in the segment to indicate this. If the
segment contains the field x_forwarded_for set to true, the client IP was taken from the X-
Forwarded-For header in the HTTP request.

The middleware creates a segment for each incoming request with an http block that contains the
following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

X-Ray SDK for Ruby 346

AWS X-Ray Developer Guide

Using the rails middleware

To use the middleware, update your gemfile to include the required railtie.

Example Gemfile - rails

gem 'aws-xray-sdk', require: ['aws-xray-sdk/facets/rails/railtie']

To use the middleware, you must also configure the recorder with a name that represents the
application in the trace map.

Example config/initializers/aws_xray.rb

Rails.application.config.xray = {
 name: 'my app'
}

Instrumenting code manually

If you don't use Rails, create segments manually. You can create a segment for each incoming
request, or create segments around patched HTTP or AWS SDK clients to provide context for the
recorder to add subsegments.

Start a segment
segment = XRay.recorder.begin_segment 'my_service'
Start a subsegment
subsegment = XRay.recorder.begin_subsegment 'outbound_call', namespace: 'remote'

Add metadata or annotation here if necessary
my_annotations = {
 k1: 'v1',
 k2: 1024
}
segment.annotations.update my_annotations

Add metadata to default namespace
subsegment.metadata[:k1] = 'v1'

Set user for the segment (subsegment is not supported)
segment.user = 'my_name'

End segment/subsegment

X-Ray SDK for Ruby 347

http://api.rubyonrails.org/classes/Rails/Railtie.html

AWS X-Ray Developer Guide

XRay.recorder.end_subsegment
XRay.recorder.end_segment

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
configure the recorder, as shown in the previous sections.

A dynamic naming strategy defines a pattern that hostnames should match, and a default
name to use if the hostname in the HTTP request doesn't match the pattern. To name segments
dynamically, specify a naming pattern in the config hash.

Example main.rb – Dynamic naming

config = {
 naming_pattern: '*mydomain*',
 name: 'my app',

X-Ray SDK for Ruby 348

AWS X-Ray Developer Guide

}

XRay.recorder.configure(config)

You can use '*' in the pattern to match any string, or '?' to match any single character.

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

Patching libraries to instrument downstream calls

To instrument downstream calls, use the X-Ray SDK for Ruby to patch the libraries that your
application uses. The X-Ray SDK for Ruby can patch the following libraries.

Supported Libraries

• net/http – Instrument HTTP clients.

• aws-sdk – Instrument AWS SDK for Ruby clients.

When you use a patched library, the X-Ray SDK for Ruby creates a subsegment for the
call and records information from the request and response. A segment must be available
for the SDK to create the subsegment, either from the SDK middleware or a call to
XRay.recorder.begin_segment.

To patch libraries, specify them in the configuration object that you pass to the X-Ray recorder.

Example main.rb – Patch libraries

require 'aws-xray-sdk'

config = {
 name: 'my app',
 patch: %I[net_http aws_sdk]
}

XRay.recorder.configure(config)

X-Ray SDK for Ruby 349

https://ruby-doc.org/stdlib-2.4.2/libdoc/net/http/rdoc/Net/HTTP.html
https://aws.amazon.com/sdk-for-ruby

AWS X-Ray Developer Guide

Tracing AWS SDK calls with the X-Ray SDK for Ruby

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Ruby tracks the calls downstream in subsegments. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

The X-Ray SDK for Ruby automatically instruments all AWS SDK clients when you patch the aws-
sdk library. You cannot instrument individual clients.

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the service
map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the table
name to the segment for calls that target a table. In the console, each table appears as a separate
node in the service map, with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

X-Ray SDK for Ruby 350

AWS X-Ray Developer Guide

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

Generating custom subsegments with the X-Ray SDK

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information
generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

To manage subsegments, use the begin_subsegment and end_subsegment methods.

subsegment = XRay.recorder.begin_subsegment name: 'annotations', namespace: 'remote'
my_annotations = { id: 12345 }
subsegment.annotations.update my_annotations
XRay.recorder.end_subsegment

To create a subsegment for a function, wrap it in a call to XRay.recorder.capture.

XRay.recorder.capture('name_for_subsegment') do |subsegment|
 resp = myfunc() # myfunc is your function
 subsegment.annotations.update k1: 'v1'
 resp
end

When you create a subsegment within a segment or another subsegment, the X-Ray SDK generates
an ID for it and records the start time and end time.

Example Subsegment with metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }

X-Ray SDK for Ruby 351

AWS X-Ray Developer Guide

 },

Add annotations and metadata to segments with the X-Ray SDK for Ruby

You can use annotations and metadata to record additional information about requests, the
environment, or your application. You can add annotations and metadata to the segments that the
X-Ray SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

In addition to annotations and metadata, you can also record user ID strings on segments. User IDs
are recorded in a separate field on segments and are indexed for use with search.

Sections

• Recording annotations with the X-Ray SDK for Ruby

• Recording metadata with the X-Ray SDK for Ruby

• Recording user IDs with the X-Ray SDK for Ruby

Recording annotations with the X-Ray SDK for Ruby

Use annotations to record information on segments or subsegments that you want indexed for
search.

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than the underscore symbol (_).

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations

1. Get a reference to the current segment or subsegment from xray_recorder.

X-Ray SDK for Ruby 352

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

require 'aws-xray-sdk'
...
document = XRay.recorder.current_segment

or

require 'aws-xray-sdk'
...
document = XRay.recorder.current_subsegment

2. Call update with a hash value.

my_annotations = { id: 12345 }
document.annotations.update my_annotations

The SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling add_annotations twice with the same key overwrites previously recorded
values on the same segment or subsegment.

To find traces that have annotations with specific values, use the annotations.key keyword in a
filter expression.

Recording metadata with the X-Ray SDK for Ruby

Use metadata to record information on segments or subsegments that you don't need indexed for
search. Metadata values can be strings, numbers, Booleans, or any object that can be serialized into
a JSON object or array.

To record metadata

1. Get a reference to the current segment or subsegment from xray_recorder.

require 'aws-xray-sdk'
...
document = XRay.recorder.current_segment

or

require 'aws-xray-sdk'

X-Ray SDK for Ruby 353

AWS X-Ray Developer Guide

...
document = XRay.recorder.current_subsegment

2. Call metadata with a String key; a Boolean, Number, String, or Object value; and a String
namespace.

my_metadata = {
 my_namespace: {
 key: 'value'
 }
}
subsegment.metadata my_metadata

Calling metadata twice with the same key overwrites previously recorded values on the same
segment or subsegment.

Recording user IDs with the X-Ray SDK for Ruby

Record user IDs on request segments to identify the user who sent the request.

To record user IDs

1. Get a reference to the current segment from xray_recorder.

require 'aws-xray-sdk'
...
document = XRay.recorder.current_segment

2. Set the user field on the segment to a String ID of the user who sent the request.

segment.user = 'U12345'

You can set the user in your controllers to record the user ID as soon as your application starts
processing a request.

To find traces for a user ID, use the user keyword in a filter expression.

X-Ray SDK for Ruby 354

AWS X-Ray Developer Guide

Integrate AWS X-Ray with other AWS services

Many AWS services provide varying levels of X-Ray integration, including sampling and adding
headers to incoming requests, running the X-Ray daemon, and automatically sending trace data to
X-Ray. Integration with X-Ray can include the following:

• Active instrumentation – Samples and instruments incoming requests

• Passive instrumentation – Instruments requests that have been sampled by another service

• Request tracing – Adds a tracing header to all incoming requests and propagates it downstream

• Tooling – Runs the X-Ray daemon to receive segments from the X-Ray SDK

Note

The X-Ray SDKs include plugins for additional integration with AWS services. For example,
you can use the X-Ray SDK for Java Elastic Beanstalk plugin to add information about the
Elastic Beanstalk environment that runs your application, including the environment name
and ID.

Here are some examples of AWS services that are integrated with X-Ray:

• AWS Distro for OpenTelemetry (ADOT) – With ADOT, engineers can instrument their applications
once and send correlated metrics and traces to multiple AWS monitoring solutions including
Amazon CloudWatch, AWS X-Ray, Amazon OpenSearch Service, and Amazon Managed Service
for Prometheus.

• AWS Lambda – Active and passive instrumentation of incoming requests on all runtimes. AWS
Lambda adds two nodes to your trace map, one for the AWS Lambda service, and one for the
function. When you enable instrumentation, AWS Lambda also runs the X-Ray daemon on Java
and Node.js runtimes for use with the X-Ray SDK.

• Amazon API Gateway – Active and passive instrumentation. API Gateway uses sampling rules to
determine which requests to record, and adds a node for the gateway stage to your service map.

• AWS Elastic Beanstalk – Tooling. Elastic Beanstalk includes the X-Ray daemon on the following
platforms:

• Java SE – 2.3.0 and later configurations

• Tomcat – 2.4.0 and later configurations

355

AWS X-Ray Developer Guide

• Node.js – 3.2.0 and later configurations

• Windows Server – All configurations other than Windows Server Core that have been released
after December 9th, 2016

You can use the Elastic Beanstalk console to tell Elastic Beanstalk to run the daemon on these
platforms, or use the XRayEnabled option in the aws:elasticbeanstalk:xray namespace.

• Elastic Load Balancing – Request tracing on Application Load Balancers. The Application Load
Balancer adds the trace ID to the request header before sending it to a target group.

• Amazon EventBridge – Passive instrumentation. If a service that publishes events to EventBridge
is instrumented with the X-Ray SDK, event targets will receive the tracing header and can
continue to propagate the original trace ID.

• Amazon Simple Notification Service – Passive instrumentation. If an Amazon SNS publisher
traces its client with the X-Ray SDK, subscribers can retrieve the tracing header and continue to
propagate the original trace from the publisher with the same trace ID.

• Amazon Simple Queue Service – Passive instrumentation. If a service traces requests by using
the X-Ray SDK, Amazon SQS can send the tracing header and continue to propagate the original
trace from the sender to the consumer with a consistent trace ID.

Choose from the following topics to explore the full set of integrated AWS services.

Topics

• AWS Distro for OpenTelemetry and AWS X-Ray

• Amazon API Gateway active tracing support for AWS X-Ray

• Amazon EC2 and AWS App Mesh

• AWS App Runner and X-Ray

• AWS AppSync and AWS X-Ray

• Logging X-Ray API calls with AWS CloudTrail

• CloudWatch integration with X-Ray

• Tracking X-Ray encryption configuration changes with AWS Config

• Amazon Elastic Compute Cloud and AWS X-Ray

• AWS Elastic Beanstalk and AWS X-Ray

• Elastic Load Balancing and AWS X-Ray

• Amazon EventBridge and AWS X-Ray

356

AWS X-Ray Developer Guide

• AWS Lambda and AWS X-Ray

• Amazon SNS and AWS X-Ray

• AWS Step Functions and AWS X-Ray

• Amazon SQS and AWS X-Ray

• Amazon S3 and AWS X-Ray

AWS Distro for OpenTelemetry and AWS X-Ray

Use the AWS Distro for OpenTelemetry (ADOT) to collect and send metrics and traces to AWS X-
Ray and other monitoring solutions, such as Amazon CloudWatch, Amazon OpenSearch Service,
and Amazon Managed Service for Prometheus.

AWS Distro for OpenTelemetry

The AWS Distro for OpenTelemetry (ADOT) is an AWS distribution based on the Cloud Native
Computing Foundation (CNCF) OpenTelemetry project. OpenTelemetry provides a single set of
open source APIs, libraries, and agents to collect distributed traces and metrics. This toolkit is
a distribution of upstream OpenTelemetry components including SDKs, auto-instrumentation
agents, and collectors that are tested, optimized, secured, and supported by AWS.

With ADOT, engineers can instrument their applications once and send correlated metrics and
traces to multiple AWS monitoring solutions including Amazon CloudWatch, AWS X-Ray, Amazon
OpenSearch Service, and Amazon Managed Service for Prometheus.

ADOT is integrated with a growing number of AWS services to simplify sending traces and metrics
to monitoring solutions such as X-Ray. Some examples of services integrated with ADOT include:

• AWS Lambda – AWS managed Lambda layers for ADOT provides a plug-and-play user experience
by automatically instrumenting a Lambda function, packaging OpenTelemetry together with
an out-of-the-box configuration for AWS Lambda and X-Ray in an easy to setup layer. Users can
enable and disable OpenTelemetry for their Lambda function without changing code. For more
information, see AWS Distro for OpenTelemetry Lambda

• Amazon Elastic Container Service (ECS) – Collect metrics and traces from Amazon ECS
applications using the AWS Distro for OpenTelemetry Collector, to send to X-Ray and other
monitoring solutions. For more information, see Collecting application trace data in the Amazon
ECS developer guide.

AWS Distro for OpenTelemetry 357

https://aws-otel.github.io/docs/getting-started/lambda
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/trace-data.html

AWS X-Ray Developer Guide

• AWS App Runner – App Runner supports sending traces to X-Ray using the AWS Distro for
OpenTelemetry (ADOT). Use ADOT SDKs to collect trace data for your containerized applications,
and use X-Ray to analyze and gain insights into your instrumented application. For more
information, see AWS App Runner and X-Ray.

For more information about the AWS Distro for OpenTelemetry, including integration with
additional AWS services, see the AWS Distro for OpenTelemetry Documentation.

For more information about instrumenting your application with AWS Distro for OpenTelemetry
and X-Ray, see Instrumenting your application with the AWS Distro for OpenTelemetry.

Amazon API Gateway active tracing support for AWS X-Ray

You can use X-Ray to trace and analyze user requests as they travel through your Amazon API
Gateway APIs to the underlying services. API Gateway supports X-Ray tracing for all API Gateway
endpoint types: Regional, edge-optimized, and private. You can use X-Ray with Amazon API
Gateway in all AWS Regions where X-Ray is available. For more information, see Trace API Gateway
API Execution with AWS X-Ray in the Amazon API Gateway Developer Guide.

Note

X-Ray only supports tracing for REST APIs through API Gateway.

Amazon API Gateway provides active tracing support for AWS X-Ray. Enable active tracing on your
API stages to sample incoming requests and send traces to X-Ray.

To enable active tracing on an API stage

1. Open the API Gateway console at https://console.aws.amazon.com/apigateway/.

2. Choose an API.

3. Choose a stage.

4. On the Logs/Tracing tab, choose Enable X-Ray Tracing and then choose Save Changes.

5. Choose Resources in the left side navigation panel.

6. To redeploy the API with the new settings, choose the Actions dropdown, and then choose
Deploy API.

API Gateway 358

https://aws-otel.github.io/docs/introduction
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-xray.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-xray.html
https://console.aws.amazon.com/apigateway/

AWS X-Ray Developer Guide

API Gateway uses sampling rules that you define in the X-Ray console to determine which requests
to record. You can create rules that only apply to APIs, or that apply only to requests that contain
certain headers. API Gateway records headers in attributes on the segment, along with details
about the stage and request. For more information, see Configure sampling rules.

Note

When tracing REST APIs with API Gateway HTTP integration, each segment's service name
is set to the request URL path from API Gateway to your HTTP integration endpoint,
resulting in a service node on the X-Ray trace map for each unique URL path. A large
number of URL paths may cause the trace map to exceed the limit of 10,000 nodes,
resulting in an error.
To minimize the number of service nodes created by API Gateway, consider passing
parameters within the URL query string or in the request body via POST. Either approach
will ensure parameters are not part of the URL path, which may result in fewer distinct URL
paths and service nodes.

For all incoming requests, API Gateway adds a tracing header to incoming HTTP requests that don't
already have one.

X-Amzn-Trace-Id: Root=1-5759e988-bd862e3fe1be46a994272793

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

• The version number, which is 1.

• The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

• A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

If active tracing is disabled, the stage still records a segment if the request comes from a service
that sampled the request and started a trace. For example, an instrumented web application can

API Gateway 359

https://docs.aws.amazon.com/apigateway/latest/developerguide/setup-http-integrations.html

AWS X-Ray Developer Guide

call an API Gateway API with an HTTP client. When you instrument an HTTP client with the X-Ray
SDK, it adds a tracing header to the outgoing request that contains the sampling decision. API
Gateway reads the tracing header and creates a segment for sampled requests.

If you use API Gateway to generate a Java SDK for your API, you can instrument the SDK client
by adding a request handler with the client builder, in the same way that you would manually
instrument an AWS SDK client. See Tracing AWS SDK calls with the X-Ray SDK for Java for
instructions.

Amazon EC2 and AWS App Mesh

AWS X-Ray integrates with AWS App Mesh to manage Envoy proxies for microservices. App Mesh
provides a version of Envoy that you can configure to send trace data to the X-Ray daemon running
in a container of the same task or pod. X-Ray supports tracing with the following App Mesh
compatible services:

• Amazon Elastic Container Service (Amazon ECS)

• Amazon Elastic Kubernetes Service (Amazon EKS)

• Amazon Elastic Compute Cloud (Amazon EC2)

Use the following instructions to learn how to enable X-Ray tracing through App Mesh.

App Mesh 360

https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-generate-sdk.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html

AWS X-Ray Developer Guide

To configure the Envoy proxy to send data to X-Ray, set the ENABLE_ENVOY_XRAY_TRACING
environment variable in its container definition.

Note

The App Mesh version of Envoy does not currently send traces based on configured
sampling rules. Instead, it uses a fixed sampling rate of 5% for Envoy version 1.16.3 or
newer, or a 50% sampling rate for Envoy versions prior to 1.16.3.

App Mesh 361

https://docs.aws.amazon.com/app-mesh/latest/userguide/envoy.html#envoy-config
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html

AWS X-Ray Developer Guide

Example Envoy container definition for Amazon ECS

{
 "name": "envoy",
 "image": "public.ecr.aws/appmesh/aws-appmesh-envoy:envoy-version",
 "essential": true,
 "environment": [
 {
 "name": "APPMESH_VIRTUAL_NODE_NAME",
 "value": "mesh/myMesh/virtualNode/myNode"
 },
 {
 "name": "ENABLE_ENVOY_XRAY_TRACING",
 "value": "1"
 }
],
 "healthCheck": {
 "command": [
 "CMD-SHELL",
 "curl -s http://localhost:9901/server_info | cut -d' ' -f3 | grep -q live"
],
 "startPeriod": 10,
 "interval": 5,
 "timeout": 2,
 "retries": 3
 }

Note

To learn more about available Envoy region addresses, see Envoy image in the AWS App
Mesh User Guide.

For details on running the X-Ray daemon in a container, see Running the X-Ray daemon on Amazon
ECS. For a sample application that includes a service mesh, microservice, Envoy proxy, and X-Ray
daemon, deploy the colorapp sample in the App Mesh Examples GitHub repository.

Learn More

• Getting Started with AWS App Mesh

• Getting Started with AWS App Mesh and Amazon ECS

App Mesh 362

https://docs.aws.amazon.com/app-mesh/latest/userguide/envoy.html
https://github.com/aws/aws-app-mesh-examples/tree/master/examples
https://docs.aws.amazon.com/app-mesh/latest/userguide/getting_started.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/mesh-getting-started-ecs.html

AWS X-Ray Developer Guide

AWS App Runner and X-Ray

AWS App Runner is an AWS service that provides a fast, simple, and cost-effective way to deploy
from source code or a container image directly to a scalable and secure web application in the AWS
Cloud. You don't need to learn new technologies, decide which compute service to use, or know
how to provision and configure AWS resources. See What is AWS App Runner for more information.

AWS App Runner sends traces to X-Ray by integrating with the AWS Distro for OpenTelemetry
(ADOT). Use ADOT SDKs to collect trace data for your containerized applications, and use X-Ray to
analyze and gain insights into your instrumented application. For more information, see Tracing for
your App Runner application with X-Ray.

AWS AppSync and AWS X-Ray

You can enable and trace requests for AWS AppSync. For more information, see Tracing with AWS
X-Ray for instructions.

When X-Ray tracing is enabled for an AWS AppSync API, an AWS Identity and Access Management
service-linked role is automatically created in your account with the appropriate permissions. This
allows AWS AppSync to send traces to X-Ray in a secure way.

Logging X-Ray API calls with AWS CloudTrail

AWS X-Ray is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service. CloudTrail captures all API calls for X-Ray as events. The calls
captured include calls from the X-Ray console and code calls to the X-Ray API operations. Using the
information collected by CloudTrail, you can determine the request that was made to X-Ray, the IP
address from which the request was made, when it was made, and additional details.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

App Runner 363

https://docs.aws.amazon.com/apprunner/latest/dg/what-is-apprunner.html
https://docs.aws.amazon.com/apprunner/latest/dg/monitor-xray.html
https://docs.aws.amazon.com/apprunner/latest/dg/monitor-xray.html
https://docs.aws.amazon.com/appsync/latest/devguide/x-ray-tracing.html
https://docs.aws.amazon.com/appsync/latest/devguide/x-ray-tracing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS X-Ray Developer Guide

CloudTrail is active in your AWS account when you create the account and you automatically
have access to the CloudTrail Event history. The CloudTrail Event history provides a viewable,
searchable, downloadable, and immutable record of the past 90 days of recorded management
events in an AWS Region. For more information, see Working with CloudTrail Event history in the
AWS CloudTrail User Guide. There are no CloudTrail charges for viewing the Event history.

For an ongoing record of events in your AWS account past 90 days, create a trail or a CloudTrail
Lake event data store.

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the
AWS Management Console are multi-Region. You can create a single-Region or a multi-Region
trail by using the AWS CLI. Creating a multi-Region trail is recommended because you capture
activity in all AWS Regions in your account. If you create a single-Region trail, you can view only
the events logged in the trail's AWS Region. For more information about trails, see Creating a
trail for your AWS account and Creating a trail for an organization in the AWS CloudTrail User
Guide.

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at no
charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges. For
more information about CloudTrail pricing, see AWS CloudTrail Pricing. For information about
Amazon S3 pricing, see Amazon S3 Pricing.

CloudTrail Lake event data stores

CloudTrail Lake lets you run SQL-based queries on your events. CloudTrail Lake converts existing
events in row-based JSON format to Apache ORC format. ORC is a columnar storage format
that is optimized for fast retrieval of data. Events are aggregated into event data stores, which
are immutable collections of events based on criteria that you select by applying advanced
event selectors. The selectors that you apply to an event data store control which events persist
and are available for you to query. For more information about CloudTrail Lake, see Working
with AWS CloudTrail Lake in the AWS CloudTrail User Guide.

CloudTrail Lake event data stores and queries incur costs. When you create an event data
store, you choose the pricing option you want to use for the event data store. The pricing
option determines the cost for ingesting and storing events, and the default and maximum
retention period for the event data store. For more information about CloudTrail pricing, see
AWS CloudTrail Pricing.

CloudTrail 364

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/s3/pricing/
https://orc.apache.org/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-manage-costs.html#cloudtrail-lake-manage-costs-pricing-option
https://aws.amazon.com/cloudtrail/pricing/

AWS X-Ray Developer Guide

Topics

• X-Ray management events in CloudTrail

• X-Ray data events in CloudTrail

• X-Ray event examples

X-Ray management events in CloudTrail

AWS X-Ray integrates with AWS CloudTrail to record API actions made by a user, a role, or an AWS
service in X-Ray. You can use CloudTrail to monitor X-Ray API requests in real time and store logs in
Amazon S3, Amazon CloudWatch Logs, and Amazon CloudWatch Events. X-Ray supports logging
the following actions as events in CloudTrail log files:

Supported API Actions

• PutEncryptionConfig

• GetEncryptionConfig

• CreateGroup

• UpdateGroup

• DeleteGroup

• GetGroup

• GetGroups

• GetInsight

• GetInsightEvents

• GetInsightImpactGraph

• GetInsightSummaries

• GetSamplingStatisticSummaries

X-Ray data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource (for
example, PutTraceSegments, which uploads segment documents to X-Ray).

These are also known as data plane operations. Data events are often high-volume activities.
By default, CloudTrail doesn’t log data events. The CloudTrail Event history doesn't record data
events.

X-Ray management events in CloudTrail 365

https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html
https://docs.aws.amazon.com/xray/latest/api/API_GetEncryptionConfig.html
https://docs.aws.amazon.com/xray/latest/api/API_CreateGroup.html
https://docs.aws.amazon.com/xray/latest/api/API_UpdateGroup.html
https://docs.aws.amazon.com/xray/latest/api/API_DeleteGroup.html
https://docs.aws.amazon.com/xray/latest/api/API_GetGroup.html
https://docs.aws.amazon.com/xray/latest/api/API_GetGroups.html
https://docs.aws.amazon.com/xray/latest/api/API_GetInsight.html
https://docs.aws.amazon.com/xray/latest/api/API_GetInsightEvents.html
https://docs.aws.amazon.com/xray/latest/api/API_GetInsightImpactGraph.html
https://docs.aws.amazon.com/xray/latest/api/API_GetInsightSummaries.html
https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingStatisticSummaries.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide

Additional charges apply for data events. For more information about CloudTrail pricing, see AWS
CloudTrail Pricing.

You can log data events for the X-Ray resource types by using the CloudTrail console, AWS CLI, or
CloudTrail API operations. For more information about how to log data events, see Logging data
events with the AWS Management Console and Logging data events with the AWS Command Line
Interface in the AWS CloudTrail User Guide.

The following table lists the X-Ray resource types for which you can log data events. The Data
event type (console) column shows the value to choose from the Data event type list on the
CloudTrail console. The resources.type value column shows the resources.type value, which
you would specify when configuring advanced event selectors using the AWS CLI or CloudTrail
APIs. The Data APIs logged to CloudTrail column shows the API calls logged to CloudTrail for the
resource type.

Data event type (console) resources.type value Data APIs logged to
CloudTrail

X-Ray trace AWS::XRay::Trace • PutTraceSegments

• GetTraceSummaries

• GetTraceGraph

• GetServiceGraph

• BatchGetTraces

• GetTimeSeriesServi
ceStatistics

• PutTelemetryRecords

• GetSamplingTargets

You can configure advanced event selectors to filter on the eventName and readOnly fields to
log only those events that are important to you. However, you cannot select events by adding the
resources.ARN field selector, because X-Ray traces do not have ARNs. For more information
about these fields, see AdvancedFieldSelector in the AWS CloudTrail API Reference. The following is
an example of how to run the put-event-selectors AWS CLI command to log data events on a
CloudTrail trail. You must run the command in or specify the Region in which the trail was created;
otherwise, the operation returns an InvalidHomeRegionException exception.

X-Ray data events in CloudTrail 366

https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceGraph.html
https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraphs.html
https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTimeSeriesServiceStatistics.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTimeSeriesServiceStatistics.html
https://docs.aws.amazon.com/xray/latest/api/API_PutTelemetryRecords.html
https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingTargets.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudtrail/put-event-selectors.html

AWS X-Ray Developer Guide

aws cloudtrail put-event-selectors --trail-name myTrail --advanced-event-selectors \
'{
 "AdvancedEventSelectors": [
 {
 "FieldSelectors": [
 { "Field": "eventCategory", "Equals": ["Data"] },
 { "Field": "resources.type", "Equals": ["AWS::XRay::Trace"] },
 { "Field": "eventName", "Equals":
 ["PutTraceSegments","GetSamplingTargets"] }
],
 "Name": "Log X-Ray PutTraceSegments and GetSamplingTargets data events"
 }
]
}'

X-Ray event examples

Management event example, GetEncryptionConfig

The following is an example of the X-Ray GetEncryptionConfig log entry in CloudTrail.

Example

{
 "eventVersion"=>"1.05",
 "userIdentity"=>{
 "type"=>"AssumedRole",
 "principalId"=>"AROAJVHBZWD3DN6CI2MHM:MyName",
 "arn"=>"arn:aws:sts::123456789012:assumed-role/MyRole/MyName",
 "accountId"=>"123456789012",
 "accessKeyId"=>"AKIAIOSFODNN7EXAMPLE",
 "sessionContext"=>{
 "attributes"=>{
 "mfaAuthenticated"=>"false",
 "creationDate"=>"2023-7-01T00:24:36Z"
 },
 "sessionIssuer"=>{
 "type"=>"Role",
 "principalId"=>"AROAJVHBZWD3DN6CI2MHM",
 "arn"=>"arn:aws:iam::123456789012:role/MyRole",
 "accountId"=>"123456789012",
 "userName"=>"MyRole"
 }

X-Ray event examples 367

AWS X-Ray Developer Guide

 }
 },
 "eventTime"=>"2023-7-01T00:24:36Z",
 "eventSource"=>"xray.amazonaws.com",
 "eventName"=>"GetEncryptionConfig",
 "awsRegion"=>"us-east-2",
 "sourceIPAddress"=>"33.255.33.255",
 "userAgent"=>"aws-sdk-ruby2/2.11.19 ruby/2.3.1 x86_64-linux",
 "requestParameters"=>nil,
 "responseElements"=>nil,
 "requestID"=>"3fda699a-32e7-4c20-37af-edc2be5acbdb",
 "eventID"=>"039c3d45-6baa-11e3-2f3e-e5a036343c9f",
 "eventType"=>"AwsApiCall",
 "recipientAccountId"=>"123456789012"
}

Data event example, PutTraceSegments

The following is an example of the X-Ray PutTraceSegments data event log entry in CloudTrail.

Example

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAWYXPW54Y4NEXAMPLE:i-0dzz2ac111c83zz0z",
 "arn": "arn:aws:sts::012345678910:assumed-role/my-service-role/
i-0dzz2ac111c83zz0z",
 "accountId": "012345678910",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAWYXPW54Y4NEXAMPLE",
 "arn": "arn:aws:iam::012345678910:role/service-role/my-service-role",
 "accountId": "012345678910",
 "userName": "my-service-role"
 },
 "attributes": {
 "creationDate": "2024-01-22T17:34:11Z",
 "mfaAuthenticated": "false"
 },

X-Ray event examples 368

AWS X-Ray Developer Guide

 "ec2RoleDelivery": "2.0"
 }
 },
 "eventTime": "2024-01-22T18:22:05Z",
 "eventSource": "xray.amazonaws.com",
 "eventName": "PutTraceSegments",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "198.51.100.0",
 "userAgent": "aws-sdk-ruby3/3.190.0 md/internal ua/2.0 api/xray#1.0.0 os/linux md/
x86_64 lang/ruby#2.7.8 md/2.7.8 cfg/retry-mode#legacy",
 "requestParameters": {
 "traceSegmentDocuments": [
 "trace_id:1-00zzz24z-EXAMPLE4f4e41754c77d0000",
 "trace_id:1-00zzz24z-EXAMPLE4f4e41754c77d0000",
 "trace_id:1-00zzz24z-EXAMPLE4f4e41754c77d0001",
 "trace_id:1-00zzz24z-EXAMPLE4f4e41754c77d0002"
]
 },
 "responseElements": {
 "unprocessedTraceSegments": []
 },
 "requestID": "5zzzzz64-acbd-46ff-z544-451a3ebcb2f8",
 "eventID": "4zz51z7z-77f9-44zz-9bd7-6c8327740f2e",
 "readOnly": false,
 "resources": [
 {
 "type": "AWS::XRay::Trace"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "012345678910",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ZZZZZ-RSA-AAA128-GCM-SHA256",
 "clientProvidedHostHeader": "example.us-west-2.xray.cloudwatch.aws.dev"
 }
}

X-Ray event examples 369

AWS X-Ray Developer Guide

CloudWatch integration with X-Ray

AWS X-Ray integrates with CloudWatch Application Signals, CloudWatch RUM, and CloudWatch
Synthetics to make it easier to monitor the health of your applications. Enable your application
for Application Signals to monitor and troubleshoot the operational health of your services, client
pages, Synthetics canaries, and service dependencies.

By correlating CloudWatch metrics, logs, and X-Ray traces, the X-Ray trace map provides an end-
to-end view of your services to help you quickly pinpoint performance bottlenecks and identify
impacted users.

With CloudWatch RUM, you can perform real user monitoring to collect and view client-side data
about your web application performance from actual user sessions in near-real time. With AWS X-
Ray and CloudWatch RUM, you can analyze and debug the request path starting from end users
of your application through downstream AWS managed services. This helps you identify latency
trends and errors that impact your end users.

Topics

• CloudWatch RUM and AWS X-Ray

• Debugging CloudWatch synthetics canaries using X-Ray

CloudWatch RUM and AWS X-Ray

With Amazon CloudWatch RUM, you can perform real user monitoring to collect and view client-
side data about your web application performance from actual user sessions in near-real time.
With AWS X-Ray and CloudWatch RUM, you can analyze and debug the request path starting from
end users of your application through downstream AWS managed services. This helps you identify
latency trends and errors that impact your end users.

After you turn on X-Ray tracing of user sessions, CloudWatch RUM adds an X-Ray trace header to
allowed HTTP requests, and records an X-Ray segment for allowed HTTP requests. You can then
see traces and segments from these user sessions in the X-Ray and CloudWatch consoles, including
the X-Ray trace map.

Note

CloudWatch RUM doesn't integrate with X-Ray sampling rules. Instead, choose a sampling
percentage when you set up your application to use CloudWatch RUM. Traces sent from

CloudWatch 370

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html

AWS X-Ray Developer Guide

CloudWatch RUM might incur additional costs. For more information, see AWS X-Ray
pricing.

By default, client-side traces sent from CloudWatch RUM aren't connected to server-side traces. To
connect client-side traces with server-side traces, configure the CloudWatch RUM web client to add
an X-Ray trace header to these HTTP requests.

Warning

Configuring the CloudWatch RUM web client to add an X-Ray trace header to HTTP
requests can cause cross-origin resource sharing (CORS) to fail. To avoid this, add the X-
Amzn-Trace-Id HTTP header to the list of allowed headers on your downstream service's
CORS configuration. If you are using API Gateway as your downstream, see Enabling CORS
for a REST API resource. We strongly recommend that you test your application before
adding a client-side X-Ray trace header in a production environment. For more information,
see the CloudWatch RUM web client documentation.

For more information about real user monitoring in CloudWatch, see Use CloudWatch RUM. To set
up your application to use CloudWatch RUM, including tracing user sessions with X-Ray, see Set up
an application to use CloudWatch RUM.

Debugging CloudWatch synthetics canaries using X-Ray

CloudWatch Synthetics is a fully managed service that enables you to monitor your endpoints and
APIs using scripted canaries that run 24 hours per day, once per minute.

You can customize canary scripts to check for changes in:

• Availability

• Latency

• Transactions

• Broken or dead links

• Step-by-step task completions

• Page load errors

• Load Latencies for UI assets

CloudWatch Synthetics 371

https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/xray/pricing/
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-cors.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-cors.html
https://github.com/aws-observability/aws-rum-web/blob/main/docs/cdn_installation.md#http
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-RUM.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-RUM-get-started.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-RUM-get-started.html

AWS X-Ray Developer Guide

• Complex wizard flows

• Checkout flows in your application

Canaries follow the same routes and perform the same actions and behaviors as your customers,
and continually verify the customer experience.

To learn more about setting up Synthetics tests, see Using Synthetics to Create and Manage
Canaries.

The following examples show common use cases for debugging issues that your Synthetics
canaries raise. Each example demonstrates a key strategy for debugging using either the trace map
or the X-Ray Analytics console.

CloudWatch Synthetics 372

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

AWS X-Ray Developer Guide

For more information about how to read and interact with the trace map, see Viewing the Service
Map.

For more information about how to read and interact with the X-Ray Analytics console, see
Interacting with the AWS X-Ray Analytics Console.

Topics

• View canaries with increased error reporting in the trace map

• Use trace details maps for individual traces to view each request in detail

• Determine the root cause of ongoing failures in upstream and downstream services

• Identify performance bottlenecks and trends

• Compare latency and error or fault rates before and after changes

• Determine the required canary coverage for all APIs and URLs

• Use groups to focus on synthetics tests

View canaries with increased error reporting in the trace map

To see which canaries have an increase in errors, faults, throttling rates, or slow response
times within your X-Ray trace map, you can highlight Synthetics canary client nodes using the
Client::Synthetic filter. For more information, see Use filter expressions. Selecting a node
displays the response time distribution of the entire request. Selecting an edge between two nodes
shows details about the requests that traveled that connection. You can also view "remote" inferred
nodes for related downstream services in your trace map.

When you select the Synthetics node, there is a View in Synthetics button on side panel which
redirects you to the Synthetics console where you can check the canary details.

CloudWatch Synthetics 373

https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html#xray-console-servicemap
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html#xray-console-servicemap
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-analytics.html

AWS X-Ray Developer Guide

Use trace details maps for individual traces to view each request in detail

To determine which service results in the most latency or is causing an error, invoke the trace
details map by selecting the trace in the trace map. Individual trace details maps display the end-
to-end path of a single request. Use this to understand the services invoked, and visualize the
upstream and downstream services.

CloudWatch Synthetics 374

AWS X-Ray Developer Guide

Determine the root cause of ongoing failures in upstream and downstream
services

Once you receive a CloudWatch alarm for failures in a Synthetics canary, use the statistical
modeling on trace data in X-Ray to determine the probable root cause of the issue within the X-Ray
Analytics console. In the Analytics console, the Response Time Root Cause table shows recorded
entity paths. X-Ray determines which path in your trace is the most likely cause for the response
time. The format indicates a hierarchy of entities that are encountered, ending in a response time
root cause.

The following example shows that the Synthetics test for API “XXX” running on API Gateway is
failing due to a throughput capacity exception from the Amazon DynamoDB table.

CloudWatch Synthetics 375

AWS X-Ray Developer Guide

CloudWatch Synthetics 376

AWS X-Ray Developer Guide

Identify performance bottlenecks and trends

You can view trends in the performance of your endpoint over time using continuous traffic from
your Synthetics canaries to populate a trace details map over a period of time.

Compare latency and error or fault rates before and after changes

Pinpoint the time a change occurred to correlate that change to an increase in issues caught
by your canaries. Use the X-Ray Analytics console to define the before and after time ranges as
different trace sets, creating a visual differentiation in the response time distribution.

CloudWatch Synthetics 377

AWS X-Ray Developer Guide

Determine the required canary coverage for all APIs and URLs

Use X-Ray Analytics to compare the experience of canaries with the users. The UI below shows a
blue trend line for canaries and a green line for the users. You can also identify that two out of the
three URLs don’t have canary tests.

CloudWatch Synthetics 378

AWS X-Ray Developer Guide

Use groups to focus on synthetics tests

You can create an X-Ray group using a filter expression to focus on a certain set of workflows, such
as a Synthetics tests for application “www” running on AWS Elastic Beanstalk. Use the complex
keywords service() and edge(), to filter through services and edges. For more information, see
the Complex keywords section in Use filter expressions.

Example Group filter expression

"edge(id(name: "www", type: "client::Synthetics"), id(name: "www", type:
 "AWS::ElasticBeanstalk::Environment"))"

CloudWatch Synthetics 379

AWS X-Ray Developer Guide

Tracking X-Ray encryption configuration changes with AWS
Config

AWS X-Ray integrates with AWS Config to record configuration changes made to your X-Ray
encryption resources. You can use AWS Config to inventory X-Ray encryption resources, audit the
X-Ray configuration history, and send notifications based on resource changes.

AWS Config supports logging the following X-Ray encryption resource changes as events:

AWS Config 380

AWS X-Ray Developer Guide

• Configuration changes – Changing or adding an encryption key, or reverting to the default X-
Ray encryption setting.

Use the following instructions to learn how to create a basic connection between X-Ray and AWS
Config.

Creating a Lambda function trigger

You must have the ARN of a custom AWS Lambda function before you can generate a custom
AWS Config rule. Follow these instructions to create a basic function with Node.js that
returns a compliant or non-compliant value back to AWS Config based on the state of the
XrayEncryptionConfig resource.

To create a Lambda function with an AWS::XrayEncryptionConfig change trigger

1. Open the Lambda console. Choose Create function.

2. Choose Blueprints, and then filter the blueprints library for the config-rule-change-triggered
blueprint. Either click the link in the blueprint's name or choose Configure to continue.

3. Define the following fields to configure the blueprint:

• For Name, type a name.

• For Role, choose Create new role from template(s).

• For Role name, type a name.

• For Policy templates, choose AWS Config Rules permissions.

4. Choose Create function to create and display your function in the AWS Lambda console.

5. Edit your function code to replace AWS::EC2::Instance with
AWS::XrayEncryptionConfig. You can also update the description field to reflect this
change.

Default Code

 if (configurationItem.resourceType !== 'AWS::EC2::Instance') {
 return 'NOT_APPLICABLE';
 } else if (ruleParameters.desiredInstanceType ===
 configurationItem.configuration.instanceType) {
 return 'COMPLIANT';
 }

Creating a Lambda function trigger 381

https://console.aws.amazon.com/lambda/home

AWS X-Ray Developer Guide

 return 'NON_COMPLIANT';

Updated Code

 if (configurationItem.resourceType !== 'AWS::XRay::EncryptionConfig') {
 return 'NOT_APPLICABLE';
 } else if (ruleParameters.desiredInstanceType ===
 configurationItem.configuration.instanceType) {
 return 'COMPLIANT';
 }
 return 'NON_COMPLIANT';

6. Add the following to your execution role in IAM for access to X-Ray. These permissions allow
read-only access to your X-Ray resources. Failure to provide access to the appropriate resources
will result in an out of scope message from AWS Config when it evaluates the Lambda function
associated with the rule.

 {
 "Sid": "Stmt1529350291539",
 "Action": [
 "xray:GetEncryptionConfig"
],
 "Effect": "Allow",
 "Resource": "*"
 }

Creating a custom AWS Config rule for x-ray

When the Lambda function is created, note the function's ARN, and go to the AWS Config console
to create your custom rule.

To create an AWS Config rule for X-Ray

1. Open the Rules page of the AWS Config console.

2. Choose Add rule, and then choose Add custom rule.

3. In AWS Lambda Function ARN, insert the ARN associated with the Lambda function you want
to use.

4. Choose the type of trigger to set:

Creating a custom AWS Config rule for x-ray 382

https://console.aws.amazon.com/config/home#/rules/view

AWS X-Ray Developer Guide

• Configuration changes – AWS Config triggers the evaluation when any resource that
matches the rule's scope changes in configuration. The evaluation runs after AWS Config
sends a configuration item change notification.

• Periodic – AWS Config runs evaluations for the rule at a frequency that you choose (for
example, every 24 hours).

5. For Resource type, choose EncryptionConfig in the X-Ray section.

6. Choose Save.

The AWS Config console begins to evaluate the rule's compliance immediately. The evaluation can
take several minutes to complete.

Now that this rule is compliant, AWS Config can begin to compile an audit history. AWS
Config records resource changes in the form of a timeline. For each change in the timeline of
events, AWS Config generates a table in a from/to format to show what changed in the JSON
representation of the encryption key. The two field changes associated with EncryptionConfig are
Configuration.type and Configuration.keyID.

Example results

Following is an example of an AWS Config timeline showing changes made at specific dates and
times.

Following is an example of an AWS Config change entry. The from/to format illustrates what
changed. This example shows that the default X-Ray encryption settings were changed to a defined
encryption key.

Example results 383

AWS X-Ray Developer Guide

Amazon SNS notifications

To be notified of configuration changes, set AWS Config to publish Amazon SNS notifications. For
more information, see Monitoring AWS Config Resource Changes by Email.

Amazon Elastic Compute Cloud and AWS X-Ray

You can install and run the X-Ray daemon on an Amazon EC2 instance with a user data script. See
Running the X-Ray daemon on Amazon EC2 for instructions.

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the daemon permission to send data to X-Ray.

AWS Elastic Beanstalk and AWS X-Ray

AWS Elastic Beanstalk platforms include the X-Ray daemon. You can run the daemon by setting an
option in the Elastic Beanstalk console or with a configuration file.

On the Java SE platform, you can use a Buildfile file to build your application with Maven or Gradle
on-instance. The X-Ray SDK for Java and AWS SDK for Java are available from Maven, so you can
deploy only your application code and build on-instance to avoid bundling and uploading all of
your dependencies.

You can use Elastic Beanstalk environment properties to configure the X-Ray SDK. The method that
Elastic Beanstalk uses to pass environment properties to your application varies by platform. Use
the X-Ray SDK's environment variables or system properties depending on your platform.

• Node.js platform – Use environment variables

• Java SE platform – Use environment variables

• Tomcat platform – Use system properties

Amazon SNS notifications 384

https://docs.aws.amazon.com/config/latest/developerguide/monitoring-resource-changes-by-email.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_nodejs.container.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/java-se-platform.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/java-tomcat-platform.html

AWS X-Ray Developer Guide

For more information, see Configuring AWS X-Ray Debugging in the AWS Elastic Beanstalk
Developer Guide.

Elastic Load Balancing and AWS X-Ray

Elastic Load Balancing application load balancers add a trace ID to incoming HTTP requests in a
header named X-Amzn-Trace-Id.

X-Amzn-Trace-Id: Root=1-5759e988-bd862e3fe1be46a994272793

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

• The version number, which is 1.

• The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

• A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

Load balancers do not send data to X-Ray, and do not appear as a node on your service map.

For more information, see Request Tracing for Your Application Load Balancer in the Elastic Load
Balancing Developer Guide.

Amazon EventBridge and AWS X-Ray

AWS X-Ray integrates with Amazon EventBridge to trace events that are passed through
EventBridge. If a service that is instrumented with the X-Ray SDK sends events to EventBridge,
the trace context is propagated to downstream event targets within the tracing header. The X-Ray
SDK automatically picks up the tracing header and applies it to any subsequent instrumentation.
This continuity enables users to trace, analyze, and debug throughout downstream services and
provides a more complete view of their system.

For more information, see EventBridge X-Ray Integration in the EventBridge User Guide.

Elastic Load Balancing 385

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-configuration-debugging.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-request-tracing.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-xray-integ.html

AWS X-Ray Developer Guide

Viewing source and targets on the X-Ray service map

The X-Ray trace map displays an EventBridge event node that connects source and target services.
For more information, see Use the X-Ray trace map. The following is an example of a trace map:

Propagate the trace context to event targets

The X-Ray SDK enables the EventBridge event source to propagate trace context to downstream
event targets. The following language-specific examples demonstrate calling EventBridge from a
Lambda function on which active tracing is enabled:

Java

Add the necessary dependencies for X-Ray:

• AWS X-Ray SDK for Java

• AWS X-Ray Recorder SDK for Java

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.xray.AWSXRay;
import com.amazonaws.services.eventbridge.AmazonEventBridge;
import com.amazonaws.services.eventbridge.AmazonEventBridgeClientBuilder;
import com.amazonaws.services.eventbridge.model.PutEventsRequest;
import com.amazonaws.services.eventbridge.model.PutEventsRequestEntry;
import com.amazonaws.services.eventbridge.model.PutEventsResult;

Viewing source and targets on the X-Ray service map 386

https://docs.aws.amazon.com/lambda/latest/dg/services-xray.html#services-xray-api
https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-xray/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk/

AWS X-Ray Developer Guide

import com.amazonaws.services.eventbridge.model.PutEventsResultEntry;
import com.amazonaws.xray.handlers.TracingHandler;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.lang.StringBuilder;
import java.util.Map;
import java.util.List;
import java.util.Date;
import java.util.Collections;

/*
 Add the necessary dependencies for XRay:
 https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-xray
 https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk
*/
public class Handler implements RequestHandler<SQSEvent, String>{
 private static final Logger logger = LoggerFactory.getLogger(Handler.class);

 /*
 build EventBridge client
 */
 private static final AmazonEventBridge eventsClient =
 AmazonEventBridgeClientBuilder
 .standard()
 // instrument the EventBridge client with the XRay Tracing Handler.
 // the AWSXRay globalRecorder will retrieve the tracing-context
 // from the lambda function and inject it into the HTTP header.
 // be sure to enable 'active tracing' on the lambda function.
 .withRequestHandlers(new TracingHandler(AWSXRay.getGlobalRecorder()))
 .build();

 @Override
 public String handleRequest(SQSEvent event, Context context)
 {
 PutEventsRequestEntry putEventsRequestEntry0 = new PutEventsRequestEntry();
 putEventsRequestEntry0.setTime(new Date());
 putEventsRequestEntry0.setSource("my-lambda-function");
 putEventsRequestEntry0.setDetailType("my-lambda-event");
 putEventsRequestEntry0.setDetail("{\"lambda-source\":\"sqs\"}");
 PutEventsRequest putEventsRequest = new PutEventsRequest();
 putEventsRequest.setEntries(Collections.singletonList(putEventsRequestEntry0));
 // send the event(s) to EventBridge

Propagate the trace context to event targets 387

AWS X-Ray Developer Guide

 PutEventsResult putEventsResult = eventsClient.putEvents(putEventsRequest);
 try {
 logger.info("Put Events Result: {}", putEventsResult);
 } catch(Exception e) {
 e.getStackTrace();
 }
 return "success";
 }
}

Python

Add the following dependency to your requirements.txt file:

aws-xray-sdk==2.4.3

import boto3
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

apply the XRay handler to all clients.
patch_all()

client = boto3.client('events')

def lambda_handler(event, context):
 response = client.put_events(
 Entries=[
 {
 'Source': 'foo',
 'DetailType': 'foo',
 'Detail': '{\"foo\": \"foo\"}'
 },
]
)
 return response

Go

package main

import (
 "context"

Propagate the trace context to event targets 388

AWS X-Ray Developer Guide

 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-xray-sdk-go/xray"
 "github.com/aws/aws-sdk-go/service/eventbridge"
 "fmt"
)

var client = eventbridge.New(session.New())

func main() {
 //Wrap the eventbridge client in the AWS XRay tracer
 xray.AWS(client.Client)
 lambda.Start(handleRequest)
}

func handleRequest(ctx context.Context, event events.SQSEvent) (string, error) {
 _, err := callEventBridge(ctx)
 if err != nil {
 return "ERROR", err
 }
 return "success", nil
}

func callEventBridge(ctx context.Context) (string, error) {
 entries := make([]*eventbridge.PutEventsRequestEntry, 1)
 detail := "{ \"foo\": \"foo\"}"
 detailType := "foo"
 source := "foo"
 entries[0] = &eventbridge.PutEventsRequestEntry{
 Detail: &detail,
 DetailType: &detailType,
 Source: &source,
 }

 input := &eventbridge.PutEventsInput{
 Entries: entries,
 }

 // Example sending a request using the PutEventsRequest method.
 resp, err := client.PutEventsWithContext(ctx, input)

Propagate the trace context to event targets 389

AWS X-Ray Developer Guide

 success := "yes"
 if err == nil { // resp is now filled
 success = "no"
 fmt.Println(resp)
 }
 return success, err
}

Node.js

const AWSXRay = require('aws-xray-sdk')
//Wrap the aws-sdk client in the AWS XRay tracer
const AWS = AWSXRay.captureAWS(require('aws-sdk'))
const eventBridge = new AWS.EventBridge()

exports.handler = async (event) => {

 let myDetail = { "name": "Alice" }

 const myEvent = {
 Entries: [{
 Detail: JSON.stringify({ myDetail }),
 DetailType: 'myDetailType',
 Source: 'myApplication',
 Time: new Date
 }]
 }

 // Send to EventBridge
 const result = await eventBridge.putEvents(myEvent).promise()

 // Log the result
 console.log('Result: ', JSON.stringify(result, null, 2))

}

C#

Add the following X-Ray packages to your C# dependencies:

<PackageReference Include="AWSXRayRecorder.Core" Version="2.6.2" />
<PackageReference Include="AWSXRayRecorder.Handlers.AwsSdk" Version="2.7.2" />

Propagate the trace context to event targets 390

AWS X-Ray Developer Guide

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Amazon;
using Amazon.Util;
using Amazon.Lambda;
using Amazon.Lambda.Model;
using Amazon.Lambda.Core;
using Amazon.EventBridge;
using Amazon.EventBridge.Model;
using Amazon.Lambda.SQSEvents;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.AwsSdk;
using Newtonsoft.Json;
using Newtonsoft.Json.Serialization;

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.Json.JsonSerializer))]

namespace blankCsharp
{
 public class Function
 {
 private static AmazonEventBridgeClient eventClient;

 static Function() {
 initialize();
 }

 static async void initialize() {
 //Wrap the AWS SDK clients in the AWS XRay tracer
 AWSSDKHandler.RegisterXRayForAllServices();
 eventClient = new AmazonEventBridgeClient();
 }

 public async Task<PutEventsResponse> FunctionHandler(SQSEvent invocationEvent,
 ILambdaContext context)
 {
 PutEventsResponse response;
 try
 {
 response = await callEventBridge();

Propagate the trace context to event targets 391

AWS X-Ray Developer Guide

 }
 catch (AmazonLambdaException ex)
 {
 throw ex;
 }

 return response;
 }

 public static async Task<PutEventsResponse> callEventBridge()
 {
 var request = new PutEventsRequest();
 var entry = new PutEventsRequestEntry();
 entry.DetailType = "foo";
 entry.Source = "foo";
 entry.Detail = "{\"instance_id\":\"A\"}";
 List<PutEventsRequestEntry> entries = new List<PutEventsRequestEntry>();
 entries.Add(entry);
 request.Entries = entries;
 var response = await eventClient.PutEventsAsync(request);
 return response;
 }
 }
}

AWS Lambda and AWS X-Ray

You can use AWS X-Ray to trace your AWS Lambda functions. Lambda runs the X-Ray daemon
and records a segment with details about invoking and running the function. For further
instrumentation, you can bundle the X-Ray SDK with your function to record outgoing calls and
add annotations and metadata.

If your Lambda function is called by another instrumented service, Lambda traces requests that
have already been sampled without any additional configuration. The upstream service can
be an instrumented web application or another Lambda function. Your service can invoke the
function directly with an instrumented AWS SDK client, or by calling an API Gateway API with an
instrumented HTTP client.

AWS X-Ray supports tracing event-driven applications using AWS Lambda and Amazon SQS. Use
the CloudWatch console to see a connected view of each request as it's queued with Amazon SQS
and processed by a downstream Lambda function. Traces from upstream message producers are

Lambda 392

AWS X-Ray Developer Guide

automatically linked to traces from downstream Lambda consumer nodes, creating an end-to-end
view of the application. For more information, see tracing event-driven applications.

Note

If you have traces enabled for a downstream Lambda function, you must also have traces
enabled for the root Lambda function that calls the downstream function in order for the
downstream function to generate traces.

If your Lambda function runs on a schedule, or is invoked by a service that is not instrumented, you
can configure Lambda to sample and record invocations with active tracing.

To configure X-Ray integration on an AWS Lambda function

1. Open the AWS Lambda console.

2. Select Functions from the left navigation bar.

3. Choose your function.

4. On the Configuration tab, scroll down to the Additional monitoring tools card. You can also
find this card by selecting Monitoring and operations tools on the left navigation pane.

5. Select Edit.

6. Under AWS X-Ray, enable Active tracing.

On runtimes with a corresponding X-Ray SDK, Lambda also runs the X-Ray daemon.

X-Ray SDKs on Lambda

• X-Ray SDK for Go – Go 1.7 and newer runtimes

• X-Ray SDK for Java – Java 8 runtime

• X-Ray SDK for Node.js – Node.js 4.3 and newer runtimes

• X-Ray SDK for Python – Python 2.7, Python 3.6, and newer runtimes

• X-Ray SDK for .NET – .NET Core 2.0 and newer runtimes

To use the X-Ray SDK on Lambda, bundle it with your function code each time you create a new
version. You can instrument your Lambda functions with the same methods that you use to

Lambda 393

https://console.aws.amazon.com/lambda

AWS X-Ray Developer Guide

instrument applications running on other services. The primary difference is that you don't use the
SDK to instrument incoming requests, make sampling decisions, and create segments.

The other difference between instrumenting Lambda functions and web applications is that the
segment that Lambda creates and sends to X-Ray can't be modified by your function code. You can
create subsegments and record annotations and metadata on them, but you can't add annotations
and metadata to the parent segment.

For more information, see Using AWS X-Ray in the AWS Lambda Developer Guide.

Amazon SNS and AWS X-Ray

You can use AWS X-Ray with Amazon Simple Notification Service (Amazon SNS) to trace and
analyze requests as they travel through your SNS topics to your SNS-supported subscription
services. Use X-Ray tracing with Amazon SNS to analyze latencies in your messages and their
back-end services, such as how long a request spends in a topic, and how long it takes to deliver
the message to each of the topic’s subscriptions. Amazon SNS supports X-Ray tracing for both
standard and FIFO topics.

If you publish to an Amazon SNS topic from a service that’s already instrumented with X-Ray,
Amazon SNS passes the trace context from publisher to subscribers. In addition, you can turn on
active tracing to send segment data about your Amazon SNS subscriptions to X-Ray for messages
published from an instrumented SNS client. Turn on active tracing for an Amazon SNS topic by
using the Amazon SNS console, or by using the Amazon SNS API or CLI. See Instrumenting your
application for more information about instrumenting your SNS clients.

Configure Amazon SNS active tracing

You can use the Amazon SNS console or the AWS CLI or SDK to configure Amazon SNS active
tracing.

When you use the Amazon SNS console, Amazon SNS attempts to create the necessary permissions
for SNS to call X-Ray. The attempt can be rejected if you don't have sufficient permissions to
modify X-Ray resource policies. For more information about these permissions, see Identity and
access management in Amazon SNS and Example cases for Amazon SNS access control in the
Amazon Simple Notification Service Developer Guide. For more information about turning on
active tracing using the Amazon SNS console, see Enabling active tracing on an Amazon SNS topic
in the Amazon Simple Notification Service Developer Guide.

Amazon SNS 394

https://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/sns/latest/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/sns/latest/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html

AWS X-Ray Developer Guide

When using the AWS CLI or SDK to turn on active tracing, you must manually configure the
permissions using resource-based policies. Use PutResourcePolicy to configure X-Ray with the
necessary resource-based policy to allow Amazon SNS to send traces to X-Ray.

Example Example X-Ray resource-based policy for Amazon SNS active tracing

This example policy document specifies the permissions that Amazon SNS needs to send trace data
to X-Ray:

{
 Version: "2012-10-17",
 Statement: [
 {
 Sid: "SNSAccess",
 Effect: Allow,
 Principal: {
 Service: "sns.amazonaws.com",
 },
 Action: [
 "xray:PutTraceSegments",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets"
],
 Resource: "*",
 Condition: {
 StringEquals: {
 "aws:SourceAccount": "account-id"
 },
 StringLike: {
 "aws:SourceArn": "arn:partition:sns:region:account-id:topic-name"
 }
 }
 }
]
 }

Use the CLI to create a resource-based policy that gives Amazon SNS permissions to send trace
data to X-Ray:

aws xray put-resource-policy --policy-name MyResourcePolicy --policy-document
 '{ "Version": "2012-10-17", "Statement": [{ "Sid": "SNSAccess", "Effect": "Allow",
 "Principal": { "Service": "sns.amazonaws.com" }, "Action": ["xray:PutTraceSegments",
 "xray:GetSamplingRules", "xray:GetSamplingTargets"], "Resource": "*",

Configure Amazon SNS active tracing 395

https://docs.aws.amazon.com/xray/latest/api/API_PutResourcePolicy.html

AWS X-Ray Developer Guide

 "Condition": { "StringEquals": { "aws:SourceAccount": "account-id" }, "StringLike":
 { "aws:SourceArn": "arn:partition:sns:region:account-id:topic-name" } } }] }'

To use these examples, replace partition, region, account-id, and topic-name with your
specific AWS partition, region, account ID, and Amazon SNS topic name. To give all Amazon SNS
topics permission to send trace data to X-Ray, replace the topic name with *.

View Amazon SNS publisher and subscriber traces in the X-Ray console

Use the X-Ray console to view a trace map and trace details that display a connected view of
Amazon SNS publishers and subscribers. When Amazon SNS active tracing is turned on for a topic,
the X-Ray trace map and trace details map displays connected nodes for Amazon SNS publishers,
the Amazon SNS topic, and downstream subscribers:

After choosing a trace that spans an Amazon SNS publisher and subscriber, the X-Ray trace details
page displays a trace details map and segment timeline.

Example Example timeline with Amazon SNS publisher and subscriber

This example shows a timeline that includes an Amazon SNS publisher that sends a message to an
Amazon SNS topic, which is processed by an Amazon SQS subscriber.

View Amazon SNS publisher and subscriber traces in the X-Ray console 396

AWS X-Ray Developer Guide

The example timeline above provides details about the Amazon SNS message flow:

• The SNS segment represents the round-trip duration of the Publish API call from the client.

• The myTopic segment represents the latency of the Amazon SNS response to the publish
request.

• The SQS subsegment represents the round-trip time it takes Amazon SNS to publish the
message to an Amazon SQS queue.

• The time between the myTopic segment and the SQS subsegment represents the time that the
message spends in the Amazon SNS system.

Example Example timeline with batched Amazon SNS messages

If multiple Amazon SNS messages are batched within a single trace, the segment timeline displays
segments that represent each message that's processed.

AWS Step Functions and AWS X-Ray

AWS X-Ray integrates with AWS Step Functions to trace and analyze requests for Step Functions.
You can visualize the components of your state machine, identify performance bottlenecks, and

Step Functions 397

AWS X-Ray Developer Guide

troubleshoot requests that resulted in an error. For more information, see AWS X-Ray and Step
Functions in the AWS Step Functions Developer Guide.

To enable X-Ray tracing when creating a new state machine

1. Open the Step Functions console at https://console.aws.amazon.com/states/.

2. Choose Create a state machine.

3. On the Define state machine page, choose either Author with code snippets or Start with
a template. If you choose to run a sample project, you can't enable X-Ray tracing during
creation. Instead, enable X-Ray tracing after you create your state machine.

4. Choose Next.

5. On the Specify details page, configure your state machine.

6. Choose Enable X-Ray tracing.

To enable X-Ray tracing in an existing state machine

1. In the Step Functions console, select the state machine for which you want to enable tracing.

2. Choose Edit.

3. Choose Enable X-Ray tracing.

4. (Optional) Auto-generate a new role for your state machine to include X-Ray permissions by
choosing Create new role from the Permissions window.

5. Choose Save.

Note

When you create a new state machine, it's automatically traced if the request is sampled
and tracing is enabled in an upstream service such as Amazon API Gateway or AWS
Lambda. For any existing state machine not configured through the console, for example

Step Functions 398

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-xray-tracing.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-xray-tracing.html
https://console.aws.amazon.com/states/

AWS X-Ray Developer Guide

through an AWS CloudFormation template, check that you have an IAM policy that grants
sufficient permissions to enable X-Ray traces.

Amazon SQS and AWS X-Ray

AWS X-Ray integrates with Amazon Simple Queue Service (Amazon SQS) to trace messages that
are passed through an Amazon SQS queue. If a service traces requests by using the X-Ray SDK,
Amazon SQS can send the tracing header and continue to propagate the original trace from the
sender to the consumer with a consistent trace ID. Trace continuity enables users to track, analyze,
and debug throughout downstream services.

AWS X-Ray supports tracing event-driven applications using Amazon SQS and AWS Lambda. Use
the CloudWatch console to see a connected view of each request as it's queued with Amazon SQS
and processed by a downstream Lambda function. Traces from upstream message producers are
automatically linked to traces from downstream Lambda consumer nodes, creating an end-to-end
view of the application. For more information, see tracing event-driven applications.

Amazon SQS supports the following tracing header instrumentation:

• Default HTTP Header – The X-Ray SDK automatically populates the trace header as an HTTP
header when you call Amazon SQS through the AWS SDK. The default trace header is carried
by X-Amzn-Trace-Id and corresponds to all messages included in a SendMessage or
SendMessageBatch request. To learn more about the default HTTP header, see Tracing header.

• AWSTraceHeader System Attribute – The AWSTraceHeader is a message system attribute
reserved by Amazon SQS to carry the X-Ray trace header with messages in the queue.
AWSTraceHeader is available for use even when auto-instrumentation through the X-Ray

Amazon SQS 399

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_MessageSystemAttributeValue.html

AWS X-Ray Developer Guide

SDK is not, for example when building a tracing SDK for a new language. When both header
instrumentations are set, the message system attribute overrides the HTTP trace header.

When running on Amazon EC2, Amazon SQS supports processing one message at a time. This
applies when running on an on-premises host, and when using container services, such as AWS
Fargate, Amazon ECS, or AWS App Mesh.

The trace header is excluded from both Amazon SQS message size and message attribute quotas.
Enabling X-Ray tracing will not exceed your Amazon SQS quotas. To learn more about AWS quotas,
see Amazon SQS Quotas.

Send the HTTP trace header

Sender components in Amazon SQS can send the trace header automatically through the
SendMessageBatch or SendMessage call. When AWS SDK clients are instrumented, they can
be automatically tracked through all languages supported through the X-Ray SDK. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

To learn how to trace AWS SDK calls with your preferred language, see the following topics in the
supported SDKs:

• Go – Tracing AWS SDK calls with the X-Ray SDK for Go

• Java – Tracing AWS SDK calls with the X-Ray SDK for Java

• Node.js – Tracing AWS SDK calls with the X-Ray SDK for Node.js

• Python – Tracing AWS SDK calls with the X-Ray SDK for Python

• Ruby – Tracing AWS SDK calls with the X-Ray SDK for Ruby

• .NET – Tracing AWS SDK calls with the X-Ray SDK for .NET

Retrieve the trace header and recover trace context

If you are using a Lambda downstream consumer, trace context propagation is automatic. To
continue context propagation with other Amazon SQS consumers, you must manually instrument
the handoff to the receiver component.

There are three main steps to recovering the trace context:

Send the HTTP trace header 400

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-limits.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

AWS X-Ray Developer Guide

• Receive the message from the queue for the AWSTraceHeader attribute by calling the
ReceiveMessage API.

• Retrieve the trace header from the attribute.

• Recover the trace ID from the header. Optionally, add more metrics to the segment.

The following is an example implementation written with the X-Ray SDK for Java.

Example : Retrieve the trace header and recover trace context

// Receive the message from the queue, specifying the "AWSTraceHeader"
ReceiveMessageRequest receiveMessageRequest = new ReceiveMessageRequest()
 .withQueueUrl(QUEUE_URL)
 .withAttributeNames("AWSTraceHeader");
List<Message> messages = sqs.receiveMessage(receiveMessageRequest).getMessages();

if (!messages.isEmpty()) {
 Message message = messages.get(0);

 // Retrieve the trace header from the AWSTraceHeader message system attribute
 String traceHeaderStr = message.getAttributes().get("AWSTraceHeader");
 if (traceHeaderStr != null) {
 TraceHeader traceHeader = TraceHeader.fromString(traceHeaderStr);

 // Recover the trace context from the trace header
 Segment segment = AWSXRay.getCurrentSegment();
 segment.setTraceId(traceHeader.getRootTraceId());
 segment.setParentId(traceHeader.getParentId());

 segment.setSampled(traceHeader.getSampled().equals(TraceHeader.SampleDecision.SAMPLED));
 }
}

Amazon S3 and AWS X-Ray

AWS X-Ray integrates with Amazon S3 to trace upstream requests to update your application's
S3 buckets. If a service traces requests by using the X-Ray SDK, Amazon S3 can send the tracing
headers to downstream event subscribers such as AWS Lambda, Amazon SQS, and Amazon SNS. X-
Ray enables trace messages for Amazon S3 event notifications.

Amazon S3 401

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

AWS X-Ray Developer Guide

You can use the X-Ray trace map to view the connections between Amazon S3 and other services
that your application uses. You can also use the console to view metrics such as average latency
and failure rates. For more information about the X-Ray console, see Explore the X-Ray console.

Amazon S3 supports the default http header instrumentation. The X-Ray SDK automatically
populates the trace header as an HTTP header when you call Amazon S3 through the AWS SDK.
The default trace header is carried by X-Amzn-Trace-Id. To learn more about tracing headers,
see Tracing header on the concept page. Amazon S3 trace context propagation supports the
following subscribers: Lambda, SQS and SNS. Because SQS and SNS don't emit segment data
themselves, they won't appear in your trace or trace map when triggered by S3, even though they
will propagate the tracing header to downstream services.

Configure Amazon S3 event notifications

With the Amazon S3 notification feature, you receive notifications when certain events happen in
your bucket. These notifications can then be propagated to the following destinations within your
application:

• Amazon Simple Notification Service (Amazon SNS)

• Amazon Simple Queue Service (Amazon SQS)

• AWS Lambda

For a list of supported events, see Supported event types in the Amazon S3 developer guide.

Amazon SNS and Amazon SQS

To publish notifications to an SNS topic or an SQS queue, you must first grant Amazon S3
permissions. To grant these permissions, you attach an AWS Identity and Access Management (IAM)
policy to the destination SNS topic or SQS queue. To learn more about the IAM policies required,
see Granting permissions to publish messages to an SNS topic or an SQS queue.

For information about integrating SNS and SQS with X-Ray see, Amazon SNS and AWS X-Ray and
Amazon SQS and AWS X-Ray.

AWS Lambda

When you use the Amazon S3 console to configure event notifications on an S3 bucket for a
Lambda function, the console sets up the necessary permissions on the Lambda function so that

Configure Amazon S3 event notifications 402

https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html#supported-notification-event-types
https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html#grant-sns-sqs-permission-for-s3

AWS X-Ray Developer Guide

Amazon S3 has permissions to invoke the function from the bucket. For more information, see How
Do I Enable and Configure Event Notifications for an S3 Bucket? in the Amazon Simple Storage
Service Console User Guide.

You can also grant Amazon S3 permissions from AWS Lambda to invoke your Lambda function. For
more information, see Tutorial: Using AWS Lambda with Amazon S3 in the AWS Lambda Developer
Guide.

For more information about integrating Lambda with X-Ray, see Instrumenting Java code in AWS
Lambda.

Configure Amazon S3 event notifications 403

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html
https://docs.aws.amazon.com/lambda/latest/dg/java-tracing.html
https://docs.aws.amazon.com/lambda/latest/dg/java-tracing.html

AWS X-Ray Developer Guide

Manage resources in X-Ray

This guide shows you how to manage resources in X-Ray using a template by configuring resources
and tagging resources using a key and optional value pair.

You can set up and manage your resources and infrastructure automatically using an AWS
CloudFormation template. Use this template in either JSON or YAML format to create an X-
Ray group, a sampling rule or a resource policy in a single file. For example, you can use a AWS
CloudFormation template for the following:

• Use a single template to consistently configure resources across multiple deployments and avoid
making manual configuration errors.

• Use a template file to manage resources across AWS accounts, development environments, and
share template files between teams.

• Control and track changes to your template using version control and revert changes when
necessary.

You can also assign tags to your resource so that you can search and filter resources based on tags,
and enforce tag-based permissions. For example, you can use tags for the following:

• Tag a specific team, department, or application use to track what resources they use.

• Tag resources that require special handling such as sensitive documents.

• Manage tagged resources automatically using scripts to stop use during peak hours.

The following sections provide additional information about managing resources with AWS
CloudFormation templates and tagged resources.

Topics

• Creating X-Ray resources with AWS CloudFormation

• Tagging X-Ray sampling rules and groups

Creating X-Ray resources with AWS CloudFormation

AWS X-Ray is integrated with AWS CloudFormation, a service that helps you to model and set up
your AWS resources so that you can spend less time creating and managing your resources and

Creating X-Ray resources with CloudFormation 404

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html

AWS X-Ray Developer Guide

infrastructure. You create a template that describes all the AWS resources that you want to use,
and AWS CloudFormation provisions and configures those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your X-Ray resources
consistently and repeatedly. Describe your resources once, and then provision the same resources
over and over in multiple AWS accounts and regions.

X-Ray and AWS CloudFormation templates

To provision and configure resources for X-Ray and related services, use a AWS CloudFormation
template. Templates are text files that are formatted in JSON or YAML. These templates describe
the resources that you want to provision in your AWS CloudFormation stacks. If you're unfamiliar
with JSON or YAML, you can use AWS CloudFormation Designer to help you get started with AWS
CloudFormation templates. For more information, see What is AWS CloudFormation Designer? in
the AWS CloudFormation User Guide.

X-Ray supports creating AWS::XRay::Group, AWS::XRay::SamplingRule, and
AWS::XRay::ResourcePolicy resources in AWS CloudFormation. For more information, including
examples of JSON and YAML templates, see the X-Ray resource type reference in the AWS
CloudFormation User Guide.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

Tagging X-Ray sampling rules and groups

Tags are words or phrases that you can use to identify and organize your AWS resources. You can
add multiple tags to each resource. Each tag includes a key and an optional value that you define.
For example, a tag key might be domain, and the tag value might be example.com. You can
search and filter your resources based on tags that you add. For more information about ways to
use tags, see Tagging AWS resources in the AWS General Reference.

X-Ray and AWS CloudFormation templates 405

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-xray-group.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-xray-samplingrule.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-xray-resourcepolicy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_XRay.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html
https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html

AWS X-Ray Developer Guide

You can use tags to enforce tag-based permissions on CloudFront distributions. For more
information, see Controlling Access to AWS Resources Using Resource Tags.

Note

Tag Editor and AWS Resource Groups do not currently support X-Ray resources. You add
and manage tags by using the AWS X-Ray console or API.

You can apply tags to resources by using the X-Ray console, API, AWS CLI, SDKs, and AWS Tools for
Windows PowerShell. For more information, see the following documentation:

• X-Ray API – See the following operations in the AWS X-Ray API Reference:

• ListTagsForResource

• CreateSamplingRule

• CreateGroup

• TagResource

• UntagResource

• AWS CLI – See xray in the AWS CLI Command Reference

• SDKs – See the applicable SDK documentation on the AWS Documentation page

Note

If you cannot add or change tags on an X-Ray resource, or you cannot add a resource that
has specific tags, you might not have permissions to perform this operation. To request
access, contact an AWS user in your enterprise who has Administrator permissions in X-Ray.

Topics

• Tag restrictions

• Managing tags in the console

• Managing tags in the AWS CLI

• Control access to X-Ray resources based on tags

Tagging 406

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html
https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.aws.amazon.com/xray/latest/api/API_ListTagsForResource.html
https://docs.aws.amazon.com/xray/latest/api/API_CreateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_CreateGroup.html
https://docs.aws.amazon.com/xray/latest/api/API_TagResource.html
https://docs.aws.amazon.com/xray/latest/api/API_UntagResource.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/index.html
https://docs.aws.amazon.com/

AWS X-Ray Developer Guide

Tag restrictions

The following restrictions apply to tags.

• Maximum number of tags per resource – 50

• Maximum key length – 128 Unicode characters

• Maximum value length – 256 Unicode characters

• Valid values for key and value – a-z, A-Z, 0-9, space, and the following characters: _ . : / = + - and
@

• Tag keys and values are case sensitive.

• Don't use aws: as a prefix for keys; it's reserved for AWS use.

Note

You cannot edit or delete system tags.

Managing tags in the console

You can add optional tags as you create an X-Ray group or sampling rule. Tags can also be changed
or deleted in the console later.

The following procedures explain how to add, edit, and delete tags for your groups and sampling
rules in the X-Ray console.

Topics

• Add tags to a new group (console)

• Add tags to a new sampling rule (console)

• Edit or delete tags for a group (console)

• Edit or delete tags for a sampling rule (console)

Add tags to a new group (console)

As you create a new X-Ray group, you can add optional tags on the Create group page.

Tag restrictions 407

AWS X-Ray Developer Guide

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. In the navigation pane, expand Configuration, and choose Groups.

3. Choose Create group.

4. On the Create group page, specify a name and filter expression for the group. For more
information about these properties, see Configure groups.

5. In Tags, enter a tag key, and optionally, a tag value. For example, you can enter a tag key of
Stage, and a tag value of Production, to indicate that this group is for production use. As
you add a tag, a new line appears for you to add another tag, if needed. See Tag restrictions in
this topic for limitations on tags.

6. When you are finished adding tags, choose Create group.

Add tags to a new sampling rule (console)

As you create a new X-Ray sampling rule, you can add tags on the Create sampling rule page.

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. In the navigation pane, expand Configuration, and choose Sampling.

3. Choose Create sampling rule.

4. On the Create sampling rule page, specify a name, priority, limits, matching criteria, and
matching attributes. For more information about these properties, see Configure sampling
rules.

5. In Tags, enter a tag key, and optionally, a tag value. For example, you can enter a tag key of
Stage, and a tag value of Production, to indicate that this sampling rule is for production
use. As you add a tag, a new line appears for you to add another tag, if needed. See Tag
restrictions in this topic for limitations on tags.

6. When you are finished adding tags, choose Create sampling rule.

Edit or delete tags for a group (console)

You can change or delete tags on an X-Ray group on the Edit group page.

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

Managing tags in the console 408

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

2. In the navigation pane, expand Configuration, and choose Groups.

3. In the Groups table, choose the name of a group.

4. On the Edit group page, in Tags, edit tag keys and values. You cannot have duplicate tag keys.
Tag values are optional; you can delete values if desired. For more information about other
properties on the Edit group page, see Configure groups. See Tag restrictions in this topic for
limitations on tags.

5. To delete a tag, choose X at the right of the tag.

6. When you are finished editing or deleting tags, choose Update group.

Edit or delete tags for a sampling rule (console)

You can change or delete tags on an X-Ray sampling rule on the Edit sampling rule page.

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. In the navigation pane, expand Configuration, and choose Sampling.

3. In the Sampling rules table, choose the name of a sampling rule.

4. In Tags, edit tag keys and values. You cannot have duplicate tag keys. Tag values are optional;
you can delete values if desired. For more information about other properties on the Edit
sampling rule page, see Configure sampling rules. See Tag restrictions in this topic for
limitations on tags.

5. To delete a tag, choose X at the right of the tag.

6. When you are finished editing or deleting tags, choose Update sampling rule.

Managing tags in the AWS CLI

You can add tags when you create an X-Ray group or sampling rule. You can also use the AWS CLI
to create and manage tags. To update tags on an existing group or sampling rule, use the AWS X-
Ray console, or the TagResource or UntagResource APIs.

Topics

• Add tags to a new X-Ray group or sampling rule (CLI)

• Add tags to an existing resource (CLI)

• List tags on a resource (CLI)

Managing tags in the AWS CLI 409

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://docs.aws.amazon.com/xray/latest/api/API_TagResource.html
https://docs.aws.amazon.com/xray/latest/api/API_UntagResource.html

AWS X-Ray Developer Guide

• Delete tags on a resource (CLI)

Add tags to a new X-Ray group or sampling rule (CLI)

To add optional tags as you're creating a new X-Ray group or sampling rule, use one of the
following commands.

• To add tags to a new group, run the following command, replacing group_name with the name
of your group, mydomain.com with the endpoint of your service, key_name with a tag key,
and optionally, value with a tag value. For more information about how to create a group, see
Configuring sampling, groups, and encryption settings with the X-Ray API.

aws xray create-group \
 --group-name "group_name" \
 --filter-expression "service(\"mydomain.com\") {fault OR error}" \
 --tags [{"Key": "key_name","Value": "value"},{"Key": "key_name","Value": "value"}]

The following is an example.

aws xray create-group \
 --group-name "AdminGroup" \
 --filter-expression "service(\"mydomain.com\") {fault OR error}" \
 --tags [{"Key": "Stage","Value": "Prod"},{"Key": "Department","Value": "QA"}]

• To add tags to a new sampling rule, run the following command, replacing key_name with
a tag key, and optionally, value with a tag value. This command specifies the values in the
--sampling-rule parameter as a JSON file. For more information about how to create a
sampling rule, see Configuring sampling, groups, and encryption settings with the X-Ray API.

aws xray create-sampling-rule \
 --cli-input-json file://file_name.json

The following are the contents of the JSON file file_name.json that is specified by the --
cli-input-json parameter.

{
 "SamplingRule": {
 "RuleName": "rule_name",
 "RuleARN": "string",

Managing tags in the AWS CLI 410

AWS X-Ray Developer Guide

 "ResourceARN": "string",
 "Priority": integer,
 "FixedRate": double,
 "ReservoirSize": integer,
 "ServiceName": "string",
 "ServiceType": "string",
 "Host": "string",
 "HTTPMethod": "string",
 "URLPath": "string",
 "Version": integer,
 "Attributes": {"attribute_name": "value","attribute_name": "value"...}
 }
 "Tags": [
 {
 "Key":"key_name",
 "Value":"value"
 },
 {
 "Key":"key_name",
 "Value":"value"
 }
]
}

The following command is an example.

aws xray create-sampling-rule \
 --cli-input-json file://9000-base-scorekeep.json

The following are the contents of the example 9000-base-scorekeep.json file specified by
the --cli-input-json parameter.

{
 "SamplingRule": {
 "RuleName": "base-scorekeep",
 "ResourceARN": "*",
 "Priority": 9000,
 "FixedRate": 0.1,
 "ReservoirSize": 5,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",

Managing tags in the AWS CLI 411

AWS X-Ray Developer Guide

 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1
 }
 "Tags": [
 {
 "Key":"Stage",
 "Value":"Prod"
 },
 {
 "Key":"Department",
 "Value":"QA"
 }
]
}

Add tags to an existing resource (CLI)

You can run the tag-resource command to add tags to an existing X-Ray group or sampling
rule This method might be simpler than adding tags by running update-group or update-
sampling-rule.

To add tags to a group or a sampling rule, run the following command, replacing the ARN with the
ARN of the resource, and specifying the keys and optional values of tags that you want to add.

aws xray tag-resource \
 --resource-arn "ARN" \
 --tag-keys [{"Key":"key_name","Value":"value"}, {"Key":"key_name","Value":"value"}]

The following is an example.

aws xray tag-resource \
 --resource-arn "arn:aws:xray:us-east-2:01234567890:group/AdminGroup" \
 --tag-keys [{"Key": "Stage","Value": "Prod"},{"Key": "Department","Value": "QA"}]

List tags on a resource (CLI)

You can run the list-tags-for-resource command to list tags of an X-Ray group or sampling
rule.

Managing tags in the AWS CLI 412

AWS X-Ray Developer Guide

To list the tags that are associated with a group or a sampling rule, run the following command,
replacing the ARN with the ARN of the resource.

aws xray list-tags-for-resource \
 --resource-arn "ARN"

The following is an example.

aws xray list-tags-for-resource \
 --resource-arn "arn:aws:xray:us-east-2:01234567890:group/AdminGroup"

Delete tags on a resource (CLI)

You can run the untag-resource command to remove tags from an X-Ray group or sampling
rule.

To remove tags from a group or a sampling rule, run the following command, replacing the ARN
with the ARN of the resource, and specifying the keys of tags that you want to remove.

You can remove only entire tags with the untag-resource command. To remove tag values, use
the X-Ray console, or delete tags and add new tags with the same keys, but different or empty
values.

aws xray untag-resource \
 --resource-arn "ARN" \
 --tag-keys ["key_name","key_name"]

The following is an example.

aws xray untag-resource \
 --resource-arn "arn:aws:xray:us-east-2:01234567890:group/group_name" \
 --tag-keys ["Stage","Department"]

Control access to X-Ray resources based on tags

You can attach tags to X-Ray groups or sampling rules, or pass tags in a request to X-Ray. To
control access based on tags, you provide tag information in the condition element of a policy
using the xray:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys

Control access to X-Ray resources based on tags 413

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS X-Ray Developer Guide

condition keys. To learn more about these condition keys, see Controlling access to AWS resources
using resource tags.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Managing access to X-Ray groups and sampling rules based on tags.

Control access to X-Ray resources based on tags 414

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

AWS X-Ray Developer Guide

AWS X-Ray sample application

The AWS X-Ray eb-java-scorekeep sample app, available on GitHub, shows the use of the AWS X-
Ray SDK to instrument incoming HTTP calls, DynamoDB SDK clients, and HTTP clients. The sample
app uses AWS CloudFormation to create DynamoDB tables, compile Java code on instance, and run
the X-Ray daemon without any additional configuration.

See the Scorekeep tutorial to start installing and using an instrumented sample application, using
the AWS Management Console or the AWS CLI.

The sample includes a front-end web app, the API that it calls, and the DynamoDB tables that it
uses to store data. Basic instrumentation with filters, plugins, and instrumented AWS SDK clients
is shown in the project's xray-gettingstarted branch. This is the branch that you deploy in the
getting started tutorial. Because this branch only includes the basics, you can diff it against the
master branch to quickly understand the basics.

415

https://github.com/awslabs/eb-java-scorekeep/tree/xray

AWS X-Ray Developer Guide

The sample application shows basic instrumentation in these files:

• HTTP request filter – WebConfig.java

• AWS SDK client instrumentation – build.gradle

416

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/WebConfig.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/build.gradle

AWS X-Ray Developer Guide

The xray branch of the application includes the use of HTTPClient, Annotations, SQL queries,
custom subsegments, an instrumented AWS Lambda function, and instrumented initialization code
and scripts.

To support user log-in and AWS SDK for JavaScript use in the browser, the xray-cognito branch
adds Amazon Cognito to support user authentication and authorization. With credentials retrieved
from Amazon Cognito, the web app also sends trace data to X-Ray to record request information
from the client's point of view. The browser client appears as its own node on the trace map, and
records additional information, including the URL of the page that the user is viewing, and the
user's ID.

Finally, the xray-worker branch adds an instrumented Python Lambda function that runs
independently, processing items from an Amazon SQS queue. Scorekeep adds an item to the queue
each time a game ends. The Lambda worker, triggered by CloudWatch Events, pulls items from the
queue every few minutes and processes them to store game records in Amazon S3 for analysis.

Topics

• Getting started with the Scorekeep sample application

• Manually instrumenting AWS SDK clients

• Creating additional subsegments

• Recording annotations, metadata, and user IDs

• Instrumenting outgoing HTTP calls

• Instrumenting calls to a PostgreSQL database

• Instrumenting AWS Lambda functions

• Instrumenting startup code

• Instrumenting scripts

• Instrumenting a web app client

• Using instrumented clients in worker threads

Getting started with the Scorekeep sample application

This tutorial uses the xray-gettingstarted branch of the Scorekeep sample application, which
uses AWS CloudFormation to create and configure the resources that run the sample application
and X-Ray daemon on Amazon ECS. The application uses the Spring framework to implement a

Scorekeep tutorial 417

AWS X-Ray Developer Guide

JSON web API and the AWS SDK for Java to persist data to Amazon DynamoDB. A servlet filter in
the application instruments all incoming requests served by the application, and a request handler
on the AWS SDK client instruments downstream calls to DynamoDB.

You can follow this tutorial using either the AWS Management Console or the AWS CLI.

Sections

• Prerequisites

• Install the Scorekeep application using CloudFormation

• Generate trace data

• View the trace map in the AWS Management Console

• Configuring Amazon SNS notifications

• Explore the sample application

• Optional: Least privilege policy

• Clean up

• Next steps

Prerequisites

This tutorial uses AWS CloudFormation to create and configure the resources that run the sample
application and X-Ray daemon. The following prerequisites are required to install and run through
the tutorial:

1. If you use an IAM user with limited permissions, add the following user policies in the IAM
console:

• AWSCloudFormationFullAccess – to access and use CloudFormation

• AmazonS3FullAccess – to upload a template file to CloudFormation using the AWS
Management Console

• IAMFullAccess – to create the Amazon ECS and Amazon EC2 instance roles

• AmazonEC2FullAccess – to create the Amazon EC2 resources

• AmazonDynamoDBFullAccess – to create the DynamoDB tables

• AmazonECS_FullAccess – to create Amazon ECS resources

• AmazonSNSFullAccess – to create the Amazon SNS topic

Prerequisites 418

https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam

AWS X-Ray Developer Guide

• AWSXrayReadOnlyAccess – for permission to view the trace map and traces in the X-Ray
console

2. To run through the tutorial using the AWS CLI, install the CLI version 2.7.9 or later, and
configure the CLI with the user from the previous step. Make sure the region is configured
when configuring the AWS CLI with the user. If a region is not configured, you will need to
append --region AWS-REGION to every CLI command.

3. Ensure that Git is installed, in order to clone the sample application repo.

4. Use the following code example to clone the xray-gettingstarted branch of the
Scorekeep repository:

git clone https://github.com/aws-samples/eb-java-scorekeep.git xray-scorekeep -b
 xray-gettingstarted

Install the Scorekeep application using CloudFormation

AWS Management Console

Install the sample application using the AWS Management Console

1. Open the CloudFormation console

2. Choose Create stack and then choose With new resources from the drop-down menu.

3. In the Specify template section, choose Upload a template file.

4. Select Choose file, navigate to the xray-scorekeep/cloudformation folder that was
created when you cloned the git repo, and choose the cf-resources.yaml file.

5. Choose Next to continue.

6. Enter scorekeep into the Stack name textbox, and then choose Next at the bottom
of the page to continue. Note that the rest of this tutorial assumes the stack is named
scorekeep.

7. Scroll to the bottom of the Configure stack options page and choose Next to continue.

8. Scroll to the bottom of the Review page, choose the check-box acknowledging that
CloudFormation may create IAM resources with custom names, and choose Create stack.

9. The CloudFormation stack is now being created. The stack status will be
CREATE_IN_PROGRESS for about five minutes before changing to CREATE_COMPLETE. The
status will refresh periodically, or you can refresh the page.

Install the Scorekeep application using CloudFormation 419

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://github.com/git-guides/install-git
https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

AWS CLI

Install the sample application using the AWS CLI

1. Navigate to the cloudformation folder of the xray-scorekeep repository that you
cloned earlier in the tutorial:

cd xray-scorekeep/cloudformation/

2. Enter the following AWS CLI command to create the CloudFormation stack:

aws cloudformation create-stack --stack-name scorekeep --capabilities
 "CAPABILITY_NAMED_IAM" --template-body file://cf-resources.yaml

3. Wait until the CloudFormation stack status is CREATE_COMPLETE, which will take about
five minutes. Use the following AWS CLI command to check on the status:

aws cloudformation describe-stacks --stack-name scorekeep --query
 "Stacks[0].StackStatus"

Generate trace data

The sample application includes a front-end web app. Use the web app to generate traffic to the
API and send trace data to X-Ray. First, retrieve the web app URL using the AWS Management
Console or the AWS CLI:

AWS Management Console

Find the application URL using the AWS Management Console

1. Open the CloudFormation console

2. Choose the scorekeep stack from the list.

3. Choose the Outputs tab on the scorekeep stack page, and choose the
LoadBalancerUrl URL link to open the web application.

Generate trace data 420

https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

AWS CLI

Find the application URL using the AWS CLI

1. Use the following command to display the URL of the web application:

aws cloudformation describe-stacks --stack-name scorekeep --query
 "Stacks[0].Outputs[0].OutputValue"

2. Copy this URL and open in a browser to display the Scorekeep web application.

Use the web application to generate trace data

1. Choose Create to create a user and session.

2. Type a game name, set the Rules to Tic Tac Toe, and then choose Create to create a game.

3. Choose Play to start the game.

4. Choose a tile to make a move and change the game state.

Each of these steps generates HTTP requests to the API, and downstream calls to DynamoDB to
read and write user, session, game, move, and state data.

View the trace map in the AWS Management Console

You can see the trace map and traces generated by the sample application in the X-Ray and
CloudWatch consoles.

X-Ray console

Use the X-Ray console

1. Open the trace map page of the X-Ray console.

2. The console shows a representation of the service graph that X-Ray generates from
the trace data sent by the application. Be sure to adjust the time period of the trace
map if needed, to make sure that it will display all traces since you first started the web
application.

View the trace map in the AWS Management Console 421

https://console.aws.amazon.com/xray/home#/service-map

AWS X-Ray Developer Guide

The trace map shows the web app client, the API running in Amazon ECS, and each DynamoDB
table that the application uses. Every request to the application, up to a configurable maximum
number of requests per second, is traced as it hits the API, generates requests to downstream
services, and completes.

You can choose any node in the service graph to view traces for requests that generated traffic
to that node. Currently, the Amazon SNS node is yellow. Drill down to find out why.

View the trace map in the AWS Management Console 422

AWS X-Ray Developer Guide

To find the cause of the error

1. Choose the node named SNS. The node details panel is displayed.

2. Choose View traces to access the Trace overview screen.

3. Choose the trace from the Trace list. This trace doesn't have a method or URL because it
was recorded during startup instead of in response to an incoming request.

View the trace map in the AWS Management Console 423

AWS X-Ray Developer Guide

4. Choose the error status icon within the Amazon SNS segment at the bottom of the page, to
open the Exceptions page for the SNS subsegment.

View the trace map in the AWS Management Console 424

AWS X-Ray Developer Guide

5. The X-Ray SDK automatically captures exceptions thrown by instrumented AWS SDK clients
and records the stack trace.

CloudWatch console

Use the CloudWatch console

1. Open the X-Ray trace map page of the CloudWatch console.

2. The console shows a representation of the service graph that X-Ray generates from
the trace data sent by the application. Be sure to adjust the time period of the trace

View the trace map in the AWS Management Console 425

https://console.aws.amazon.com/cloudwatch/home#xray:service-map/map

AWS X-Ray Developer Guide

map if needed, to make sure that it will display all traces since you first started the web
application.

The trace map shows the web app client, the API running in Amazon EC2, and each DynamoDB
table that the application uses. Every request to the application, up to a configurable maximum
number of requests per second, is traced as it hits the API, generates requests to downstream
services, and completes.

You can choose any node in the service graph to view traces for requests that generated traffic
to that node. Currently, the Amazon SNS node is orange. Drill down to find out why.

View the trace map in the AWS Management Console 426

AWS X-Ray Developer Guide

View the trace map in the AWS Management Console 427

AWS X-Ray Developer Guide

To find the cause of the error

1. Choose the node named SNS. The SNS node details panel is displayed below the map.

2. Choose View traces to access the Traces page.

3. Add the bottom of the page, choose the trace from the Traces list. This trace doesn't have
a method or URL because it was recorded during startup instead of in response to an
incoming request.

4. Choose the Amazon SNS subsegment at the bottom of the segments timeline, and choose
the Exceptions tab for the SNS subsegment to view the exception details.

View the trace map in the AWS Management Console 428

AWS X-Ray Developer Guide

The cause indicates that the email address provided in a call to createSubscription made in
the WebConfig class was invalid. In the next section, we'll fix that.

Configuring Amazon SNS notifications

Scorekeep uses Amazon SNS to send notifications when users complete a game. When
the application starts up, it tries to create a subscription for an email address defined in a
CloudFormation stack parameter. That call is currently failing. Configure a notification email to
enable notifications, and resolve the failures highlighted in the trace map.

AWS Management Console

To configure Amazon SNS notifications using the AWS Management Console

1. Open the CloudFormation console

2. Choose the radio button next to the scorekeep stack name in the list, and then choose
Update.

3. Make sure that Use current template is chosen, and then click Next on the Update stack
page.

4. Find the Email parameter in the list, and replace the default value with a valid email
address.

5. Scroll to the bottom of the page and choose Next.

6. Scroll to the bottom of the Review page, choose the check-box acknowledging that
CloudFormation may create IAM resources with custom names, and choose Update stack.

7. The CloudFormation stack is now being updated. The stack status will be
UPDATE_IN_PROGRESS for about five minutes before changing to UPDATE_COMPLETE. The
status will refresh periodically, or you can refresh the page.

Configuring Amazon SNS notifications 429

https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

AWS CLI

To configure Amazon SNS notifications using the AWS CLI

1. Navigate to the xray-scorekeep/cloudformation/ folder you previously created, and
open the cf-resources.yaml file in a text editor.

2. Find the Default value within the Email parameter and change it from UPDATE_ME to a
valid email address.

Parameters:
 Email:
 Type: String
 Default: UPDATE_ME # <- change to a valid abc@def.xyz email address

3. From the cloudformation folder, update the CloudFormation stack with the following
AWS CLI command:

aws cloudformation update-stack --stack-name scorekeep --capabilities
 "CAPABILITY_NAMED_IAM" --template-body file://cf-resources.yaml

4. Wait until the CloudFormation stack status is UPDATE_COMPLETE, which will take a few
minutes. Use the following AWS CLI command to check on the status:

aws cloudformation describe-stacks --stack-name scorekeep --query
 "Stacks[0].StackStatus"

When the update completes, Scorekeep restarts and creates a subscription to the SNS topic. Check
your email and confirm the subscription to see updates when you complete a game. Open the trace
map to verify that the calls to SNS are no longer failing.

Explore the sample application

The sample application is an HTTP web API in Java that is configured to use the X-Ray SDK for Java.
When you deploy the application with the CloudFormation template, it creates the DynamoDB
tables, Amazon ECS Cluster, and other services required to run Scorekeep on ECS. A task definition
file for ECS is created through CloudFormation. This file defines the container images used per task
in an ECS cluster. These images are obtained from the official X-Ray public ECR. The scorekeep API
container image has the API compiled with Gradle. The container image of the Scorekeep frontend

Explore the sample application 430

AWS X-Ray Developer Guide

container serves the frontend using the nginx proxy server. This server routes requests to paths
starting with /api to the API.

To instrument incoming HTTP requests, the application adds the TracingFilter provided by the
SDK.

Example src/main/java/scorekeep/WebConfig.java - servlet filter

import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
...

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter("Scorekeep");
 }
...

This filter sends trace data about all incoming requests that the application serves, including
request URL, method, response status, start time, and end time.

The application also makes downstream calls to DynamoDB using the AWS SDK for Java.
To instrument these calls, the application simply takes the AWS SDK-related submodules as
dependencies, and the X-Ray SDK for Java automatically instruments all AWS SDK clients.

The application uses Docker to build the source code on-instance with the Gradle Docker
Image and the Scorekeep API Dockerfile file to run the executable JAR that Gradle
generates at its ENTRYPOINT.

Example use of Docker to build via Gradle Docker Image

docker run --rm -v /PATH/TO/SCOREKEEP_REPO/home/gradle/project -w /home/gradle/project
 gradle:4.3 gradle build

Example Dockerfile ENTRYPOINT

ENTRYPOINT ["sh", "-c", "java -Dserver.port=5000 -jar scorekeep-api-1.0.0.jar"]

Explore the sample application 431

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html

AWS X-Ray Developer Guide

The build.gradle file downloads the SDK submodules from Maven during compilation by
declaring them as dependencies.

Example build.gradle -- dependencies

...
dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile('org.springframework.boot:spring-boot-starter-test')
 compile('com.amazonaws:aws-java-sdk-dynamodb')
 compile("com.amazonaws:aws-xray-recorder-sdk-core")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk-instrumentor")
 ...
}
dependencyManagement {
 imports {
 mavenBom("com.amazonaws:aws-java-sdk-bom:1.11.67")
 mavenBom("com.amazonaws:aws-xray-recorder-sdk-bom:2.11.0")
 }
}

The core, AWS SDK, and AWS SDK Instrumentor submodules are all that's required to automatically
instrument any downstream calls made with the AWS SDK.

To relay the raw segment data to the X-Ray API, the X-Ray daemon is required to listen for traffic
on UDP port 2000. To do so, the application has the X-Ray daemon run in a container that is
deployed alongside the Scorekeep application on ECS as a sidecar container. Check out the X-Ray
daemon topic for more information.

Example X-Ray Daemon Container Definition in an ECS Task Definition

...
Resources:
 ScorekeepTaskDefinition:
 Type: AWS::ECS::TaskDefinition
 Properties:
 ContainerDefinitions:
 ...

 - Cpu: '256'
 Essential: true

Explore the sample application 432

AWS X-Ray Developer Guide

 Image: amazon/aws-xray-daemon
 MemoryReservation: '128'
 Name: xray-daemon
 PortMappings:
 - ContainerPort: '2000'
 HostPort: '2000'
 Protocol: udp
 ...

The X-Ray SDK for Java provides a class named AWSXRay that provides the global recorder, a
TracingHandler that you can use to instrument your code. You can configure the global recorder
to customize the AWSXRayServletFilter that creates segments for incoming HTTP calls. The
sample includes a static block in the WebConfig class that configures the global recorder with
plugins and sampling rules.

Example src/main/java/scorekeep/WebConfig.java - recorder

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
import com.amazonaws.xray.plugins.ECSPlugin;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.strategy.sampling.LocalizedSamplingStrategy;
...

@Configuration
public class WebConfig {
 ...

 static {
 AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder.standard().withPlugin(new
 ECSPlugin()).withPlugin(new EC2Plugin());

 URL ruleFile = WebConfig.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new LocalizedSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
 ...

 }
}

Explore the sample application 433

AWS X-Ray Developer Guide

This example uses the builder to load sampling rules from a file named sampling-rules.json.
Sampling rules determine the rate at which the SDK records segments for incoming requests.

Example src/main/java/resources/sampling-rules.json

{
 "version": 1,
 "rules": [
 {
 "description": "Resource creation.",
 "service_name": "*",
 "http_method": "POST",
 "url_path": "/api/*",
 "fixed_target": 1,
 "rate": 1.0
 },
 {
 "description": "Session polling.",
 "service_name": "*",
 "http_method": "GET",
 "url_path": "/api/session/*",
 "fixed_target": 0,
 "rate": 0.05
 },
 {
 "description": "Game polling.",
 "service_name": "*",
 "http_method": "GET",
 "url_path": "/api/game/*/*",
 "fixed_target": 0,
 "rate": 0.05
 },
 {
 "description": "State polling.",
 "service_name": "*",
 "http_method": "GET",
 "url_path": "/api/state/*/*/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1

Explore the sample application 434

AWS X-Ray Developer Guide

 }
}

The sampling rules file defines four custom sampling rules and the default rule. For each incoming
request, the SDK evaluates the custom rules in the order in which they are defined. The SDK applies
the first rule that matches the request's method, path, and service name. For Scorekeep, the first
rule catches all POST requests (resource creation calls) by applying a fixed target of one request per
second and a rate of 1.0, or 100 percent of requests after the fixed target is satisfied.

The other three custom rules apply a five percent rate with no fixed target to session, game, and
state reads (GET requests). This minimizes the number of traces for periodic calls that the front end
makes automatically every few seconds to ensure the content is up to date. For all other requests,
the file defines a default rate of one request per second and a rate of 10 percent.

The sample application also shows how to use advanced features such as manual SDK client
instrumentation, creating additional subsegments, and outgoing HTTP calls. For more information,
see AWS X-Ray sample application.

Optional: Least privilege policy

The Scorekeep ECS containers access resources using full access policies, such as
AmazonSNSFullAccess and AmazonDynamoDBFullAccess. Using full access policies is not
the best practice for production applications. The following example updates the DynamoDB IAM
policy to improve the security of the application. To learn more about security best practices in IAM
policies, see Identity and access management for AWS X-Ray.

Example cf-resources.yaml template ECSTaskRole definition

ECSTaskRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: "Allow"
 Principal:
 Service:
 - "ecs-tasks.amazonaws.com"
 Action:

Optional: Least privilege policy 435

AWS X-Ray Developer Guide

 - "sts:AssumeRole"
 ManagedPolicyArns:
 - "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess"
 - "arn:aws:iam::aws:policy/AmazonSNSFullAccess"
 - "arn:aws:iam::aws:policy/AWSXrayFullAccess"
 RoleName: "scorekeepRole"

To update your policy, first you identify the ARN of your DynamoDB resources. Then you use the
ARN in a custom IAM policy. Finally, you apply that policy to your instance profile.

To identify the ARN of your DynamoDB resource:

1. Open the DynamoDB console.

2. Choose Tables from the left navigation bar.

3. Choose any of the scorekeep-* to display the table detail page.

4. Under the Overview tab, choose Additional info to expand the section and view the Amazon
Resource Name (ARN). Copy this value.

5. Insert the ARN into the following IAM policy, replacing the AWS_REGION and
AWS_ACCOUNT_ID values with your specific region and account ID. This new policy allows only
the actions specified, instead of the AmazonDynamoDBFullAccess policy which allows any
action.

Example

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ScorekeepDynamoDB",
 "Effect": "Allow",
 "Action": [
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:Scan",
 "dynamodb:Query"
],
 "Resource": "arn:aws:dynamodb:<AWS_REGION>:<AWS_ACCOUNT_ID>:table/
scorekeep-*"

Optional: Least privilege policy 436

https://console.aws.amazon.com/dynamodbv2

AWS X-Ray Developer Guide

 }
]
}

The tables that the application creates follow a consistent naming convention. You can use the
scorekeep-* format to indicate all Scorekeep tables.

Change your IAM policy

1. Open the Scorekeep task role (scorekeepRole) from the IAM console.

2. Choose the check box next to the AmazonDynamoDBFullAccess policy and choose Remove
to remove this policy.

3. Choose Add permissions, and then Attach policies, and finally Create policy.

4. Choose the JSON tab and paste in the policy created above.

5. Choose Next: Tags at the bottom of the page.

6. Choose Next: Review at the bottom of the page.

7. For Name, assign a name for the policy.

8. Choose Create policy at the bottom of the page.

9. Attach the newly created policy to the scorekeepRole role. It may take a few minutes for the
attached policy to take effect.

If you have attached the new policy to the scorekeepRole role, you must detach it before
deleting the CloudFormation stack, since this attached policy will block the stack from being
deleted. The policy can be automatically detached by deleting the policy.

Remove your custom IAM policy

1. Open the IAM console.

2. Choose Policies from the left navigation bar.

3. Search for the custom policy name you created earlier in this section, and choose the radio
button next to the policy name to highlight it.

4. Choose the Actions drop-down and then choose Delete.

5. Type the name of the custom policy and then choose Delete to confirm deletion . This will
automatically detach the policy from the scorekeepRole role.

Optional: Least privilege policy 437

https://console.aws.amazon.com/iamv2/home#/roles/details/scorekeepRole
https://console.aws.amazon.com/iam

AWS X-Ray Developer Guide

Clean up

Follow these steps to delete the Scorekeep application resources:

Note

If you created and attached custom policies using the prior section of this tutorial, you
must remove the policy from the scorekeepRole before deleting the CloudFormation
stack.

AWS Management Console

Delete the sample application using the AWS Management Console

1. Open the CloudFormation console

2. Choose the radio button next to the scorekeep stack name in the list, and then choose
Delete.

3. The CloudFormation stack is now being deleted. The stack status will be
DELETE_IN_PROGRESS for a few minutes until all resources are deleted. The status will
refresh periodically, or you can refresh the page.

AWS CLI

Delete the sample application using the AWS CLI

1. Enter the following AWS CLI command to delete the CloudFormation stack:

aws cloudformation delete-stack --stack-name scorekeep

2. Wait until the CloudFormation stack no longer exists, which will take about five minutes.
Use the following AWS CLI command to check on the status:

aws cloudformation describe-stacks --stack-name scorekeep --query
 "Stacks[0].StackStatus"

Clean up 438

https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

Next steps

Learn more about X-Ray in the next chapter, Concepts.

To instrument your own app, learn more about the X-Ray SDK for Java or one of the other X-Ray
SDKs:

• X-Ray SDK for Java – AWS X-Ray SDK for Java

• X-Ray SDK for Node.js – AWS X-Ray SDK for Node.js

• X-Ray SDK for .NET – AWS X-Ray SDK for .NET

To run the X-Ray daemon locally or on AWS, see AWS X-Ray daemon.

To contribute to the sample application on GitHub, see eb-java-scorekeep.

Manually instrumenting AWS SDK clients

The X-Ray SDK for Java automatically instruments all AWS SDK clients when you include the AWS
SDK Instrumentor submodule in your build dependencies.

You can disable automatic client instrumentation by removing the Instrumentor submodule. This
enables you to instrument some clients manually while ignoring others, or use different tracing
handlers on different clients.

To illustrate support for instrumenting specific AWS SDK clients, the application passes a tracing
handler to AmazonDynamoDBClientBuilder as a request handler in the user, game, and session
model. This code change tells the SDK to instrument all calls to DynamoDB using those clients.

Example src/main/java/scorekeep/SessionModel.java – Manual AWS SDK client
instrumentation

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.handlers.TracingHandler;

public class SessionModel {
 private AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Constants.REGION)
 .withRequestHandlers(new TracingHandler(AWSXRay.getGlobalRecorder()))
 .build();
 private DynamoDBMapper mapper = new DynamoDBMapper(client);

Next steps 439

https://github.com/awslabs/eb-java-scorekeep/tree/xray-gettingstarted
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/SessionModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/handlers/TracingHandler.html

AWS X-Ray Developer Guide

If you remove the AWS SDK Instrumentor submodule from project dependencies, only the
manually instrumented AWS SDK clients appear in the trace map.

Creating additional subsegments

In the user model class, the application manually creates subsegments to group all downstream
calls made within the saveUser function and adds metadata.

Example src/main/java/scorekeep/UserModel.java - Custom subsegments

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Subsegment;
...
 public void saveUser(User user) {
 // Wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("## UserModel.saveUser");
 try {
 mapper.save(user);
 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

Recording annotations, metadata, and user IDs

In the game model class, the application records Game objects in a metadata block each time it
saves a game in DynamoDB. Separately, the application records game IDs in annotations for use
with filter expressions.

Example src/main/java/scorekeep/GameModel.java – Annotations and metadata

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
import com.amazonaws.xray.entities.Subsegment;
...
 public void saveGame(Game game) throws SessionNotFoundException {
 // wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("## GameModel.saveGame");

Custom subsegments 440

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/UserModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/GameModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

 try {
 // check session
 String sessionId = game.getSession();
 if (sessionModel.loadSession(sessionId) == null) {
 throw new SessionNotFoundException(sessionId);
 }
 Segment segment = AWSXRay.getCurrentSegment();
 subsegment.putMetadata("resources", "game", game);
 segment.putAnnotation("gameid", game.getId());
 mapper.save(game);
 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

In the move controller, the application records user IDs with setUser. User IDs are recorded in a
separate field on segments and are indexed for use with search.

Example src/main/java/scorekeep/MoveController.java – User ID

import com.amazonaws.xray.AWSXRay;
...
 @RequestMapping(value="/{userId}", method=RequestMethod.POST)
 public Move newMove(@PathVariable String sessionId, @PathVariable String
 gameId, @PathVariable String userId, @RequestBody String move) throws
 SessionNotFoundException, GameNotFoundException, StateNotFoundException,
 RulesException {
 AWSXRay.getCurrentSegment().setUser(userId);
 return moveFactory.newMove(sessionId, gameId, userId, move);
 }

Instrumenting outgoing HTTP calls

The user factory class shows how the application uses the X-Ray SDK for Java's version of
HTTPClientBuilder to instrument outgoing HTTP calls.

Example src/main/java/scorekeep/UserFactory.java – HTTPClient instrumentation

import com.amazonaws.xray.proxies.apache.http.HttpClientBuilder;

HTTP clients 441

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/MoveController.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/UserFactory.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/proxies/apache/http/HttpClientBuilder.html

AWS X-Ray Developer Guide

 public String randomName() throws IOException {
 CloseableHttpClient httpclient = HttpClientBuilder.create().build();
 HttpGet httpGet = new HttpGet("http://uinames.com/api/");
 CloseableHttpResponse response = httpclient.execute(httpGet);
 try {
 HttpEntity entity = response.getEntity();
 InputStream inputStream = entity.getContent();
 ObjectMapper mapper = new ObjectMapper();
 Map<String, String> jsonMap = mapper.readValue(inputStream, Map.class);
 String name = jsonMap.get("name");
 EntityUtils.consume(entity);
 return name;
 } finally {
 response.close();
 }
 }

If you currently use org.apache.http.impl.client.HttpClientBuilder,
you can simply swap out the import statement for that class with one for
com.amazonaws.xray.proxies.apache.http.HttpClientBuilder.

Instrumenting calls to a PostgreSQL database

The application-pgsql.properties file adds the X-Ray PostgreSQL tracing interceptor to the
data source created in RdsWebConfig.java.

Example application-pgsql.properties – PostgreSQL database instrumentation

spring.datasource.continue-on-error=true
spring.jpa.show-sql=false
spring.jpa.hibernate.ddl-auto=create-drop
spring.datasource.jdbc-interceptors=com.amazonaws.xray.sql.postgres.TracingInterceptor
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQL94Dialect

Note

See Configuring Databases with Elastic Beanstalk in the AWS Elastic Beanstalk Developer
Guide for details on how to add a PostgreSQL database to the application environment.

SQL clients 442

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/RdsWebConfig.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/resources/application-pgsql.properties
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.db.html

AWS X-Ray Developer Guide

The X-Ray demo page in the xray branch includes a demo that uses the instrumented data source
to generate traces that show information about the SQL queries that it generates. Navigate to the
/#/xray path in the running application or choose Powered by AWS X-Ray in the navigation bar
to see the demo page.

SQL clients 443

AWS X-Ray Developer Guide

SQL clients 444

AWS X-Ray Developer Guide

Choose Trace SQL queries to simulate game sessions and store the results in the attached
database. Then, choose View traces in AWS X-Ray to see a filtered list of traces that hit the API's /
api/history route.

Choose one of the traces from the list to see the timeline, including the SQL query.

Instrumenting AWS Lambda functions

Scorekeep uses two AWS Lambda functions. The first is a Node.js function from the lambda branch
that generates random names for new users. When a user creates a session without entering a
name, the application calls a function named random-name with the AWS SDK for Java. The X-
Ray SDK for Java records information about the call to Lambda in a subsegment like any other call
made with an instrumented AWS SDK client.

Note

Running the random-name Lambda function requires the creation of additional resources
outside of the Elastic Beanstalk environment. See the readme for more information and
instructions: AWS Lambda Integration.

The second function, scorekeep-worker, is a Python function that runs independently of the
Scorekeep API. When a game ends, the API writes the session ID and game ID to an SQS queue. The
worker function reads items from the queue, and calls the Scorekeep API to construct complete
records of each game session for storage in Amazon S3.

Scorekeep includes AWS CloudFormation templates and scripts to create both functions.
Because you need to bundle the X-Ray SDK with the function code, the templates create the

AWS Lambda functions 445

https://github.com/awslabs/eb-java-scorekeep/tree/xray/README.md#aws-lambda-integration

AWS X-Ray Developer Guide

functions without any code. When you deploy Scorekeep, a configuration file included in the
.ebextensions folder creates a source bundle that includes the SDK, and updates the function
code and configuration with the AWS Command Line Interface.

Functions

• Random name

• Worker

Random name

Scorekeep calls the random name function when a user starts a game session without signing in
or specifying a user name. When Lambda processes the call to random-name, it reads the tracing
header, which contains the trace ID and sampling decision written by the X-Ray SDK for Java.

For each sampled request, Lambda runs the X-Ray daemon and writes two segments. The first
segment records information about the call to Lambda that invokes the function. This segment
contains the same information as the subsegment recorded by Scorekeep, but from the Lambda
point of view. The second segment represents the work that the function does.

Lambda passes the function segment to the X-Ray SDK through the function context. When you
instrument a Lambda function, you don't use the SDK to create a segment for incoming requests.
Lambda provides the segment, and you use the SDK to instrument clients and write subsegments.

Random name 446

AWS X-Ray Developer Guide

The random-name function is implemented in Node.js. It uses the SDK for JavaScript in
Node.js to send notifications with Amazon SNS, and the X-Ray SDK for Node.js to instrument
the AWS SDK client. To write annotations, the function creates a custom subsegment with
AWSXRay.captureFunc, and writes annotations in the instrumented function. In Lambda, you
can't write annotations directly to the function segment, only to a subsegment that you create.

Example function/index.js -- Random name Lambda function

var AWSXRay = require('aws-xray-sdk-core');
var AWS = AWSXRay.captureAWS(require('aws-sdk'));

AWS.config.update({region: process.env.AWS_REGION});
var Chance = require('chance');

var myFunction = function(event, context, callback) {
 var sns = new AWS.SNS();
 var chance = new Chance();
 var userid = event.userid;
 var name = chance.first();

 AWSXRay.captureFunc('annotations', function(subsegment){

Random name 447

https://github.com/awslabs/eb-java-scorekeep/tree/xray/function/index.js

AWS X-Ray Developer Guide

 subsegment.addAnnotation('Name', name);
 subsegment.addAnnotation('UserID', event.userid);
 });

 // Notify
 var params = {
 Message: 'Created randon name "' + name + '"" for user "' + userid + '".',
 Subject: 'New user: ' + name,
 TopicArn: process.env.TOPIC_ARN
 };
 sns.publish(params, function(err, data) {
 if (err) {
 console.log(err, err.stack);
 callback(err);
 }
 else {
 console.log(data);
 callback(null, {"name": name});
 }
 });
};

exports.handler = myFunction;

This function is created automatically when you deploy the sample application to Elastic Beanstalk.
The xray branch includes a script to create a blank Lambda function. Configuration files in the
.ebextensions folder build the function package with npm install during deployment, and
then update the Lambda function with the AWS CLI.

Worker

The instrumented worker function is provided in its own branch, xray-worker, as it cannot
run unless you create the worker function and related resources first. See the branch readme for
instructions.

The function is triggered by a bundled Amazon CloudWatch Events event every 5 minutes. When
it runs, the function pulls an item from an Amazon SQS queue that Scorekeep manages. Each
message contains information about a completed game.

The worker pulls the game record and documents from other tables that the game record
references. For example, the game record in DynamoDB includes a list of moves that were executed

Worker 448

https://github.com/awslabs/eb-java-scorekeep/tree/xray-worker/README.md

AWS X-Ray Developer Guide

during the game. The list does not contain the moves themselves, but rather IDs of moves that are
stored in a separate table.

Sessions, and states are stored as references as well. This keeps the entries in the game table from
being too large, but requires additional calls to get all of the information about the game. The
worker dereferences all of these entries and constructs a complete record of the game as a single
document in Amazon S3. When you want to do analytics on the data, you can run queries on it
directly in Amazon S3 with Amazon Athena without running read-heavy data migrations to get
your data out of DynamoDB.

The worker function has active tracing enabled in its configuration in AWS Lambda. Unlike the
random name function, the worker does not receive a request from an instrumented application, so
AWS Lambda doesn't receive a tracing header. With active tracing, Lambda creates the trace ID and
makes sampling decisions.

The X-Ray SDK for Python is just a few lines at the top of the function that import the SDK and run
its patch_all function to patch the AWS SDK for Python (Boto) and HTTclients that it uses to call
Amazon SQS and Amazon S3. When the worker calls the Scorekeep API, the SDK adds the tracing
header to the request to trace calls through the API.

Worker 449

AWS X-Ray Developer Guide

Example _lambda/scorekeep-worker/scorekeep-worker.py -- Worker Lambda function

import os
import boto3
import json
import requests
import time
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

patch_all()
queue_url = os.environ['WORKER_QUEUE']

def lambda_handler(event, context):
 # Create SQS client
 sqs = boto3.client('sqs')
 s3client = boto3.client('s3')

 # Receive message from SQS queue
 response = sqs.receive_message(
 QueueUrl=queue_url,
 AttributeNames=[
 'SentTimestamp'
],
 MaxNumberOfMessages=1,
 MessageAttributeNames=[
 'All'
],
 VisibilityTimeout=0,
 WaitTimeSeconds=0
)
 ...

Instrumenting startup code

The X-Ray SDK for Java automatically creates segments for incoming requests. As long as a request
is in scope, you can use instrumented clients and record subsegments without issue. If you try to
use an instrumented client in startup code, though, you'll get a SegmentNotFoundException.

Startup code runs outside of the standard request/response flow of a web application, so you need
to create segments manually to instrument it. Scorekeep shows the instrumentation of startup
code in its WebConfig files. Scorekeep calls an SQL database and Amazon SNS during startup.

Instrumenting startup code 450

https://github.com/awslabs/eb-java-scorekeep/tree/xray-worker/_lambda/scorekeep-worker/scorekeep-worker.py
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/exceptions/SegmentNotFoundException.html

AWS X-Ray Developer Guide

The default WebConfig class creates an Amazon SNS subscription for notifications. To provide
a segment for the X-Ray SDK to write to when the Amazon SNS client is used, Scorekeep calls
beginSegment and endSegment on the global recorder.

Example src/main/java/scorekeep/WebConfig.java – Instrumented AWS SDK client in
startup code

AWSXRay.beginSegment("Scorekeep-init");
if (System.getenv("NOTIFICATION_EMAIL") != null){
 try { Sns.createSubscription(); }
 catch (Exception e) {
 logger.warn("Failed to create subscription for email "+
 System.getenv("NOTIFICATION_EMAIL"));
 }
}
AWSXRay.endSegment();

Instrumenting startup code 451

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/WebConfig.java#L49

AWS X-Ray Developer Guide

In RdsWebConfig, which Scorekeep uses when an Amazon RDS database is connected, the
configuration also creates a segment for the SQL client that Hibernate uses when it applies the
database schema during startup.

Example src/main/java/scorekeep/RdsWebConfig.java – Instrumented SQL database
client in startup code

@PostConstruct
public void schemaExport() {
 EntityManagerFactoryImpl entityManagerFactoryImpl = (EntityManagerFactoryImpl)
 localContainerEntityManagerFactoryBean.getNativeEntityManagerFactory();
 SessionFactoryImplementor sessionFactoryImplementor =
 entityManagerFactoryImpl.getSessionFactory();
 StandardServiceRegistry standardServiceRegistry =
 sessionFactoryImplementor.getSessionFactoryOptions().getServiceRegistry();
 MetadataSources metadataSources = new MetadataSources(new
 BootstrapServiceRegistryBuilder().build());
 metadataSources.addAnnotatedClass(GameHistory.class);
 MetadataImplementor metadataImplementor = (MetadataImplementor)
 metadataSources.buildMetadata(standardServiceRegistry);
 SchemaExport schemaExport = new SchemaExport(standardServiceRegistry,
 metadataImplementor);

 AWSXRay.beginSegment("Scorekeep-init");
 schemaExport.create(true, true);
 AWSXRay.endSegment();
}

SchemaExport runs automatically and uses an SQL client. Since the client is instrumented,
Scorekeep must override the default implementation and provide a segment for the SDK to use
when the client is invoked.

Instrumenting scripts

You can also instrument code that isn't part of your application. When the X-Ray daemon is
running, it will relay any segments that it receives to X-Ray, even if they are not generated by the
X-Ray SDK. Scorekeep uses its own scripts to instrument the build that compiles the application
during deployment.

Instrumenting scripts 452

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/RdsWebConfig.java#L83

AWS X-Ray Developer Guide

Example bin/build.sh – Instrumented build script

SEGMENT=$(python bin/xray_start.py)
gradle build --quiet --stacktrace &> /var/log/gradle.log; GRADLE_RETURN=$?
if ((GRADLE_RETURN != 0)); then
 echo "Gradle failed with exit status $GRADLE_RETURN" >&2
 python bin/xray_error.py "$SEGMENT" "$(cat /var/log/gradle.log)"
 exit 1
fi
python bin/xray_success.py "$SEGMENT"

xray_start.py, xray_error.py and xray_success.py are simple Python scripts that
construct segment objects, convert them to JSON documents, and send them to the daemon over
UDP. If the Gradle build fails, you can find the error message by clicking on the scorekeep-build
node in the X-Ray console trace map.

Instrumenting scripts 453

https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/build.sh
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/xray_start.py
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/xray_error.py
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/xray_success.py

AWS X-Ray Developer Guide

Instrumenting a web app client

In the xray-cognito branch, Scorekeep uses Amazon Cognito to enable users to create an
account and sign in with it to retrieve their user information from an Amazon Cognito user pool.
When a user signs in, Scorekeep uses an Amazon Cognito identity pool to get temporary AWS
credentials for use with the AWS SDK for JavaScript.

The identity pool is configured to let signed-in users write trace data to AWS X-Ray. The web app
uses these credentials to record the signed-in user's ID, the browser path, and the client's view of
calls to the Scorekeep API.

Most of the work is done in a service class named xray. This service class provides methods
for generating the required identifiers, creating in-progress segments, finalizing segments, and
sending segment documents to the X-Ray API.

Example public/xray.js – Record and upload segments

...
 service.beginSegment = function() {
 var segment = {};
 var traceId = '1-' + service.getHexTime() + '-' + service.getHexId(24);

Instrumenting web clients 454

https://github.com/awslabs/eb-java-scorekeep/tree/xray-cognito
https://github.com/awslabs/eb-java-scorekeep/tree/xray-cognito/public/app/xray.js

AWS X-Ray Developer Guide

 var id = service.getHexId(16);
 var startTime = service.getEpochTime();

 segment.trace_id = traceId;
 segment.id = id;
 segment.start_time = startTime;
 segment.name = 'Scorekeep-client';
 segment.in_progress = true;
 segment.user = sessionStorage['userid'];
 segment.http = {
 request: {
 url: window.location.href
 }
 };

 var documents = [];
 documents[0] = JSON.stringify(segment);
 service.putDocuments(documents);
 return segment;
 }

 service.endSegment = function(segment) {
 var endTime = service.getEpochTime();
 segment.end_time = endTime;
 segment.in_progress = false;
 var documents = [];
 documents[0] = JSON.stringify(segment);
 service.putDocuments(documents);
 }

 service.putDocuments = function(documents) {
 var xray = new AWS.XRay();
 var params = {
 TraceSegmentDocuments: documents
 };
 xray.putTraceSegments(params, function(err, data) {
 if (err) {
 console.log(err, err.stack);
 } else {
 console.log(data);
 }
 })

Instrumenting web clients 455

AWS X-Ray Developer Guide

 }

These methods are called in header and transformResponse functions in the resource services
that the web app uses to call the Scorekeep API. To include the client segment in the same trace
as the segment that the API generates, the web app must include the trace ID and segment ID in
a tracing header (X-Amzn-Trace-Id) that the X-Ray SDK can read. When the instrumented Java
application receives a request with this header, the X-Ray SDK for Java uses the same trace ID and
makes the segment from the web app client the parent of its segment.

Example public/app/services.js – Recording segments for angular resource calls and
writing tracing headers

var module = angular.module('scorekeep');
module.factory('SessionService', function($resource, api, XRay) {
 return $resource(api + 'session/:id', { id: '@_id' }, {
 segment: {},
 get: {
 method: 'GET',
 headers: {
 'X-Amzn-Trace-Id': function(config) {
 segment = XRay.beginSegment();
 return XRay.getTraceHeader(segment);
 }
 },
 transformResponse: function(data) {
 XRay.endSegment(segment);
 return angular.fromJson(data);
 },
 },
...

The resulting trace map includes a node for the web app client.

Instrumenting web clients 456

https://github.com/awslabs/eb-java-scorekeep/tree/xray-cognito/public/app/services.js

AWS X-Ray Developer Guide

Traces that include segments from the web app show the URL that the user sees in the browser
(paths starting with /#/). Without client instrumentation, you only get the URL of the API resource
that the web app calls (paths starting with /api/).

Instrumenting web clients 457

AWS X-Ray Developer Guide

Using instrumented clients in worker threads

Scorekeep uses a worker thread to publish a notification to Amazon SNS when a user wins a game.
Publishing the notification takes longer than the rest of the request operations combined, and
doesn't affect the client or user. Therefore, performing the task asynchronously is a good way to
improve response time.

However, the X-Ray SDK for Java doesn't know which segment was active when the thread is
created. As a result, when you try to use the instrumented AWS SDK for Java client within the
thread, it throws a SegmentNotFoundException, crashing the thread.

Example Web-1.error.log

Exception in thread "Thread-2" com.amazonaws.xray.exceptions.SegmentNotFoundException:
 Failed to begin subsegment named 'AmazonSNS': segment cannot be found.
 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
 at
 sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
 at
 sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
...

To fix this, the application uses GetTraceEntity to get a reference to the segment in the main
thread, and Entity.run() to safely run the worker thread code with access to the segment's
context.

Example src/main/java/scorekeep/MoveFactory.java – Passing trace context to a worker
thread

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorder;
import com.amazonaws.xray.entities.Entity;
import com.amazonaws.xray.entities.Segment;
import com.amazonaws.xray.entities.Subsegment;
...
 Entity segment = recorder.getTraceEntity();
 Thread comm = new Thread() {
 public void run() {
 segment.run(() -> {
 Subsegment subsegment = AWSXRay.beginSubsegment("## Send notification");
 Sns.sendNotification("Scorekeep game completed", "Winner: " + userId);

Worker threads 458

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/MoveFactory.java#L70
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Entity.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

 AWSXRay.endSubsegment();
 }
 }

Because the request is now resolved before the call to Amazon SNS, the application creates a
separate subsegment for the thread. This prevents the X-Ray SDK from closing the segment before
it records the response from Amazon SNS. If no subsegment is open when Scorekeep resolved the
request, the response from Amazon SNS could be lost.

See Passing segment context between threads in a multithreaded application for more information
about multithreading.

Worker threads 459

AWS X-Ray Developer Guide

Troubleshooting AWS X-Ray

This topic lists common errors and issues that you might encounter when using the X-Ray API,
console, or SDKs. If you find an issue that is not listed here, you can use the Feedback button on
this page to report it.

Sections

• X-Ray trace map and trace details pages

• X-Ray SDK for Java

• X-Ray SDK for Node.js

• The X-Ray daemon

X-Ray trace map and trace details pages

The following sections can help if you're having issues using the X-Ray trace map and Trace details
page:

I don't see all of my CloudWatch logs

How to configure logs so that they appear in the X-Ray trace map and trace details pages depends
on the service.

• API Gateway logs appear if logging is turned on in API Gateway.

Not all service map nodes support viewing the associated logs. View logs for the following node
types:

• Lambda context

• Lambda function

• API Gateway stage

• Amazon ECS cluster

• Amazon ECS instance

• Amazon ECS service

• Amazon ECS task

X-Ray trace map and trace details pages 460

AWS X-Ray Developer Guide

• Amazon EKS cluster

• Amazon EKS namespace

• Amazon EKS node

• Amazon EKS pod

• Amazon EKS service

I don't see all of my alarms on the X-Ray trace map

The X-Ray trace map shows only the alert icon for a node if any alarms that are associated with
that node are in the ALARM state.

The trace map associates alarms with nodes using the following logic:

• If the node represents an AWS service, then all alarms with the namespace associated with that
service are associated with the node. For example, a node of type AWS::Kinesis is linked with
all alarms that are based on metrics in the CloudWatch namespace AWS/Kinesis.

• If the node represents an AWS resource, then the alarms on that specific resource are linked.
For example, a node of type AWS::DynamoDB::Table with the name “MyTable” is linked to all
alarms that are based on a metric with the namespace AWS/DynamoDB and have the TableName
dimension set to MyTable.

• If the node is of unknown type, which is identified by a dashed border around the name, then no
alarms are associated with that node.

I don't see some AWS resources on the trace map

Not every AWS resource is represented by a dedicated node. Some AWS services are represented by
a single node for all requests to the service. The following resource types are displayed with a node
per resource:

• AWS::DynamoDB::Table

• AWS::Lambda::Function

Lambda functions are represented by two nodes—one for the Lambda container, and one for the
function. This helps to identify cold start problems with Lambda functions. Lambda container
nodes are associated with alarms and dashboards in the same way as Lambda function nodes.

• AWS::ApiGateway::Stage

I don't see all of my alarms on the X-Ray trace map 461

AWS X-Ray Developer Guide

• AWS::SQS::Queue

• AWS::SNS::Topic

There are too many nodes on the trace map

Use X-Ray groups to break your map into multiple maps. For more information, see Using Filter
Expressions with Groups.

X-Ray SDK for Java

Error: Exception in thread "Thread-1" com.amazonaws.xray.exceptions.SegmentNotFoundException:
Failed to begin subsegment named 'AmazonSNS': segment cannot be found.

This error indicates that the X-Ray SDK attempted to record an outgoing call to AWS, but couldn't
find an open segment. This can occur in the following situations:

• A servlet filter is not configured – The X-Ray SDK creates segments for incoming requests with
a filter named AWSXRayServletFilter. Configure a servlet filter to instrument incoming
requests.

• You're using instrumented clients outside of servlet code – If you use an instrumented client to
make calls in startup code or other code that doesn't run in response to an incoming request, you
must create a segment manually. See Instrumenting startup code for examples.

• You're using instrumented clients in worker threads – When you create a new thread, the X-
Ray recorder loses its reference to the open segment. You can use the getTraceEntity and
setTraceEntity methods to get a reference to the current segment or subsegment (Entity),
and pass it back to the recorder inside of the thread. See Using instrumented clients in worker
threads for an example.

X-Ray SDK for Node.js

Issue: CLS does not work with Sequelize

Pass the X-Ray SDK for Node.js namespace to Sequelize with the cls method.

var AWSXRay = require('aws-xray-sdk');
const Sequelize = require('sequelize');
Sequelize.cls = AWSXRay.getNamespace();

There are too many nodes on the trace map 462

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html#getTraceEntity--
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html#setTraceEntity--
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Entity.html

AWS X-Ray Developer Guide

const sequelize = new Sequelize(...);

Issue: CLS does not work with Bluebird

Use cls-bluebird to get Bluebird working with CLS.

var AWSXRay = require('aws-xray-sdk');
var Promise = require('bluebird');
var clsBluebird = require('cls-bluebird');
clsBluebird(AWSXRay.getNamespace());

The X-Ray daemon

Issue: The daemon is using the wrong credentials

The daemon uses the AWS SDK to load credentials. If you use multiple methods of providing
credentials, the method with the highest precedence is used. See Running the daemon for more
information.

The X-Ray daemon 463

AWS X-Ray Developer Guide

Security in AWS X-Ray

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. The
effectiveness of our security is regularly tested and verified by third-party auditors as part of the
AWS compliance programs. To learn about the compliance programs that apply to X-Ray, see
AWS services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization’s
requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when
using X-Ray. The following topics show you how to configure X-Ray to meet your security and
compliance objectives. You'll also learn how to use other AWS services that can help you to monitor
and secure your X-Ray resources.

Topics

• Data protection in AWS X-Ray

• Identity and access management for AWS X-Ray

• Compliance validation for AWS X-Ray

• Resilience in AWS X-Ray

• Infrastructure security in AWS X-Ray

Data protection in AWS X-Ray

AWS X-Ray always encrypts traces and related data at rest. When you need to audit and disable
encryption keys for compliance or internal requirements, you can configure X-Ray to use an AWS
Key Management Service (AWS KMS) key to encrypt data.

Data protection 464

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS X-Ray Developer Guide

X-Ray provides an AWS managed key named aws/xray. Use this key when you just want to audit
key usage in AWS CloudTrail and don't need to manage the key itself. When you need to manage
access to the key or configure key rotation, you can create a customer managed key.

When you change encryption settings, X-Ray spends some time generating and propagating data
keys. While the new key is being processed, X-Ray may encrypt data with a combination of the new
and old settings. Existing data is not re-encrypted when you change encryption settings.

Note

AWS KMS charges when X-Ray uses a KMS key to encrypt or decrypt trace data.

• Default encryption – Free.

• AWS managed key – Pay for key use.

• customer managed key – Pay for key storage and use.

See AWS Key Management Service Pricing for details.

Note

X-Ray insights notifications sends events to Amazon EventBridge, which does not currently
support customer managed keys. For more information, see Data Protection in Amazon
EventBridge.

You must have user-level access to a customer managed key to configure X-Ray to use it, and to
then view encrypted traces. See User permissions for encryption for more information.

CloudWatch console

To configure X-Ray to use a KMS key for encryption using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Encryption within the X-Ray traces section.

4. Choose Edit in the Encryption configuration section.

Data protection 465

https://docs.aws.amazon.com/kms/latest/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/kms/latest/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/eventbridge/latest/userguide/data-protection.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/data-protection.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

5. Choose Use a KMS key.

6. Choose a key from the dropdown menu:

• aws/xray – Use the AWS managed key.

• key alias – Use a customer managed key in your account.

• Manually enter a key ARN – Use a customer managed key in a different account. Enter
the full Amazon Resource Name (ARN) of the key in the field that appears.

7. Choose Update encryption.

X-Ray console

To configure X-Ray to use a KMS key for encryption using the X-Ray console

1. Open the X-Ray console.

2. Choose Encryption.

3. Choose Use a KMS key.

4. Choose a key from the dropdown menu:

• aws/xray – Use the AWS managed key.

• key alias – Use a customer managed key in your account.

• Manually enter a key ARN – Use a customer managed key in a different account. Enter
the full Amazon Resource Name (ARN) of the key in the field that appears.

5. Choose Apply.

Note

X-Ray does not support asymmetric KMS keys.

If X-Ray is unable to access your encryption key, it stops storing data. This can happen if your user
loses access to the KMS key, or if you disable a key that's currently in use. When this happens, X-Ray
shows a notification in the navigation bar.

To configure encryption settings with the X-Ray API, see Configuring sampling, groups, and
encryption settings with the X-Ray API.

Data protection 466

https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

Identity and access management for AWS X-Ray

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use X-Ray resources. IAM is an AWS service that you can use
with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS X-Ray works with IAM

• AWS X-Ray identity-based policy examples

• Troubleshooting AWS X-Ray identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in X-Ray.

Service user – If you use the X-Ray service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more X-Ray features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in X-Ray, see
Troubleshooting AWS X-Ray identity and access.

Service administrator – If you're in charge of X-Ray resources at your company, you probably have
full access to X-Ray. It's your job to determine which X-Ray features and resources your service
users should access. You must then submit requests to your IAM administrator to change the
permissions of your service users. Review the information on this page to understand the basic
concepts of IAM. To learn more about how your company can use IAM with X-Ray, see How AWS X-
Ray works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to X-Ray. To view example X-Ray identity-based policies that
you can use in IAM, see AWS X-Ray identity-based policy examples.

Identity and access management 467

AWS X-Ray Developer Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 468

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

AWS X-Ray Developer Guide

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

Authenticating with identities 469

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS X-Ray Developer Guide

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

Authenticating with identities 470

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS X-Ray Developer Guide

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Managing access using policies 471

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline

AWS X-Ray Developer Guide

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to

Managing access using policies 472

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS X-Ray Developer Guide

any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS X-Ray works with IAM

Before you use IAM to manage access to X-Ray, you should understand what IAM features are
available to use with X-Ray. To get a high-level view of how X-Ray and other AWS services work
with IAM, see AWS services That Work with IAM in the IAM User Guide.

You can use AWS Identity and Access Management (IAM) to grant X-Ray permissions to users and
compute resources in your account. IAM controls access to the X-Ray service at the API level to
enforce permissions uniformly, regardless of which client (console, AWS SDK, AWS CLI) your users
employ.

To use the X-Ray console to view trace maps and segments, you only need read permissions. To
enable console access, add the AWSXrayReadOnlyAccess managed policy to your IAM user.

For local development and testing, create an IAM role with read and write permissions. Assume
the role and store temporary credentials for the role. You can use these credentials with the X-Ray
daemon, the AWS CLI, and the AWS SDK. See using temporary security credentials with the AWS
CLI for more information.

To deploy your instrumented app to AWS, create an IAM role with write permissions and assign it
to the resources running your application. AWSXRayDaemonWriteAccess includes permission to
upload traces, and some read permissions as well to support the use of sampling rules. For more
information, see Configure sampling rules.

How AWS X-Ray works with IAM 473

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli

AWS X-Ray Developer Guide

The read and write policies do not include permission to configure encryption key settings and
sampling rules. Use AWSXrayFullAccess to access these settings, or add configuration APIs in a
custom policy. For encryption and decryption with a customer managed key that you create, you
also need permission to use the key.

Topics

• X-Ray identity-based policies

• X-Ray resource-based policies

• Authorization based on X-Ray tags

• Running your application locally

• Running your application in AWS

• User permissions for encryption

X-Ray identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. X-Ray supports specific actions,
resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see
IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in X-Ray use the following prefix before the action: xray:. For example, to grant
someone permission to retrieve group resource details with the X-Ray GetGroup API operation,
you include the xray:GetGroup action in their policy. Policy statements must include either an
Action or NotAction element. X-Ray defines its own set of actions that describe tasks that you
can perform with this service.

How AWS X-Ray works with IAM 474

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS X-Ray Developer Guide

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "xray:action1",
 "xray:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Get, include the following action:

"Action": "xray:Get*"

To see a list of X-Ray actions, see Actions Defined by AWS X-Ray in the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

You can control access to resources by using an IAM policy. For actions that support resource-level
permissions, you use an Amazon Resource Name (ARN) to identify the resource that the policy
applies to.

All X-Ray actions can be used in an IAM policy to grant or deny users permission to use that action.
However, not all X-Ray actions support resource-level permissions, which enable you to specify the
resources on which an action can be performed.

For actions that don't support resource-level permissions, you must use "*" as the resource.

The following X-Ray actions support resource-level permissions:

• CreateGroup

How AWS X-Ray works with IAM 475

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/xray/latest/api/API_Operations.html

AWS X-Ray Developer Guide

• GetGroup

• UpdateGroup

• DeleteGroup

• CreateSamplingRule

• UpdateSamplingRule

• DeleteSamplingRule

The following is an example of an identity-based permissions policy for a CreateGroup action.
The example shows the use of an ARN relating to Group name local-users with the unique ID as
a wildcard. The unique ID is generated when the group is created, and so it can't be predicted in the
policy in advance. When using GetGroup, UpdateGroup, or DeleteGroup, you can define this as
either a wildcard or the exact ARN, including ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:CreateGroup"
],
 "Resource": [
 "arn:aws:xray:eu-west-1:123456789012:group/local-users/*"
]
 }
]
}

The following is an example of an identity-based permissions policy for a CreateSamplingRule
action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:CreateSamplingRule"
],

How AWS X-Ray works with IAM 476

AWS X-Ray Developer Guide

 "Resource": [
 "arn:aws:xray:eu-west-1:123456789012:sampling-rule/base-scorekeep"
]
 }
]
}

Note

The ARN of a sampling rule is defined by its name. Unlike group ARNs, sampling rules have
no uniquely generated ID.

To see a list of X-Ray resource types and their ARNs, see Resources Defined by AWS X-Ray in the
IAM User Guide. To learn with which actions you can specify the ARN of each resource, see Actions
Defined by AWS X-Ray.

Condition keys

X-Ray does not provide any service-specific condition keys, but it does support using some global
condition keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the
IAM User Guide.

Examples

To view examples of X-Ray identity-based policies, see AWS X-Ray identity-based policy examples.

X-Ray resource-based policies

X-Ray supports resource-based policies for current and future AWS service integration, such
as Amazon SNS active tracing. X-Ray resource-based policies can be updated by other AWS
Management Consoles, or through the AWS SDK or CLI. For example, the Amazon SNS console
attempts to automatically configure resource-based policy for sending traces to X-Ray. The
following policy document provides an example of manually configuring X-Ray resource-based
policy.

Example Example X-Ray resource-based policy for Amazon SNS active tracing

This example policy document specifies the permissions that Amazon SNS needs to send trace data
to X-Ray:

How AWS X-Ray works with IAM 477

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html#awsx-ray-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html

AWS X-Ray Developer Guide

{
 Version: "2012-10-17",
 Statement: [
 {
 Sid: "SNSAccess",
 Effect: Allow,
 Principal: {
 Service: "sns.amazonaws.com",
 },
 Action: [
 "xray:PutTraceSegments",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets"
],
 Resource: "*",
 Condition: {
 StringEquals: {
 "aws:SourceAccount": "account-id"
 },
 StringLike: {
 "aws:SourceArn": "arn:partition:sns:region:account-id:topic-name"
 }
 }
 }
]
 }

Use the CLI to create a resource-based policy that gives Amazon SNS permissions to send trace
data to X-Ray:

aws xray put-resource-policy --policy-name MyResourcePolicy --policy-document
 '{ "Version": "2012-10-17", "Statement": [{ "Sid": "SNSAccess", "Effect": "Allow",
 "Principal": { "Service": "sns.amazonaws.com" }, "Action": ["xray:PutTraceSegments",
 "xray:GetSamplingRules", "xray:GetSamplingTargets"], "Resource": "*",
 "Condition": { "StringEquals": { "aws:SourceAccount": "account-id" }, "StringLike":
 { "aws:SourceArn": "arn:partition:sns:region:account-id:topic-name" } } }] }'

To use these examples, replace partition, region, account-id, and topic-name with your
specific AWS partition, region, account ID, and Amazon SNS topic name. To give all Amazon SNS
topics permission to send trace data to X-Ray, replace the topic name with *.

How AWS X-Ray works with IAM 478

AWS X-Ray Developer Guide

Authorization based on X-Ray tags

You can attach tags to X-Ray groups or sampling rules, or pass tags in a request to X-Ray. To
control access based on tags, you provide tag information in the condition element of a policy
using the xray:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys. For more information about tagging X-Ray resources, see Tagging X-Ray sampling
rules and groups.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Managing access to X-Ray groups and sampling rules based on tags.

Running your application locally

Your instrumented application sends trace data to the X-Ray daemon. The daemon buffers
segment documents and uploads them to the X-Ray service in batches. The daemon needs write
permissions to upload trace data and telemetry to the X-Ray service.

When you run the daemon locally, create an IAM role, assume the role and store temporary
credentials in environment variables, or in a file named credentials within a folder named
.aws in your user folder. See using temporary security credentials with the AWS CLI for more
information.

Example ~/.aws/credentials

[default]
aws_access_key_id={access key ID}
aws_secret_access_key={access key}
aws_session_token={AWS session token}

If you already configured credentials for use with the AWS SDK or AWS CLI, the daemon can use
those. If multiple profiles are available, the daemon uses the default profile.

Running your application in AWS

When you run your application on AWS, use a role to grant permission to the Amazon EC2 instance
or Lambda function that runs the daemon.

• Amazon Elastic Compute Cloud (Amazon EC2) – Create an IAM role and attach it to the EC2
instance as an instance profile.

How AWS X-Ray works with IAM 479

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS X-Ray Developer Guide

• Amazon Elastic Container Service (Amazon ECS) – Create an IAM role and attach it to container
instances as a container instance IAM role.

• AWS Elastic Beanstalk (Elastic Beanstalk) – Elastic Beanstalk includes X-Ray permissions in its
default instance profile. You can use the default instance profile, or add write permissions to a
custom instance profile.

• AWS Lambda (Lambda) – Add write permissions to your function's execution role.

To create a role for use with X-Ray

1. Open the IAM console.

2. Choose Roles.

3. Choose Create New Role.

4. For Role Name, type xray-application. Choose Next Step.

5. For Role Type, choose Amazon EC2.

6. Attach the following managed policy to give your application access to AWS services:

• AWSXRayDaemonWriteAccess – Gives the X-Ray daemon permission to upload trace data.

If your application uses the AWS SDK to access other services, add policies that grant access to
those services.

7. Choose Next Step.

8. Choose Create Role.

User permissions for encryption

X-Ray encrypts all trace data and by default, and you can configure it to use a key that you
manage. If you choose a AWS Key Management Service customer managed key, you need to ensure
that the key's access policy lets you grant permission to X-Ray to use it to encrypt. Other users in
your account also need access to the key to view encrypted trace data in the X-Ray console.

For a customer managed key, configure your key with an access policy that allows the following
actions:

• User who configures the key in X-Ray has permission to call kms:CreateGrant and
kms:DescribeKey.

How AWS X-Ray works with IAM 480

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts-roles.html#concepts-roles-instance
https://console.aws.amazon.com/iam/home

AWS X-Ray Developer Guide

• Users who can access encrypted trace data have permission to call kms:Decrypt.

When you add a user to the Key users group in the key configuration section of the IAM console,
they have permission for both of these operations. Permission only needs to be set on the key
policy, so you don't need any AWS KMS permissions on your users, groups, or roles. For more
information, see Using Key Policies in the AWS KMS Developer Guide.

For default encryption, or if you choose the AWS managed CMK (aws/xray), permission is based
on who has access to X-Ray APIs. Anyone with access to PutEncryptionConfig, included in
AWSXrayFullAccess, can change the encryption configuration. To prevent a user from changing
the encryption key, do not give them permission to use PutEncryptionConfig.

AWS X-Ray identity-based policy examples

By default, users and roles don't have permission to create or modify X-Ray resources. They also
can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An administrator
must create IAM policies that grant users and roles permission to perform specific API operations
on the specified resources they need. The administrator must then attach those policies to the
users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating Policies on the JSON Tab in the IAM User Guide.

Topics

• Policy best practices

• Using the X-Ray console

• Allow users to view their own permissions

• Managing access to X-Ray groups and sampling rules based on tags

• IAM managed policies for X-Ray

• X-Ray updates to AWS managed policies

• Specifying a resource within an IAM policy

Policy best practices

Identity-based policies determine whether someone can create, access, or delete X-Ray resources in
your account. These actions can incur costs for your AWS account. When you create or edit identity-
based policies, follow these guidelines and recommendations:

Identity-based policy examples 481

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html
https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

AWS X-Ray Developer Guide

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the X-Ray console

To access the AWS X-Ray console, you must have a minimum set of permissions. These permissions
must allow you to list and view details about the X-Ray resources in your AWS account. If you
create an identity-based policy that is more restrictive than the minimum required permissions, the
console won't function as intended for entities (users or roles) with that policy.

Identity-based policy examples 482

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS X-Ray Developer Guide

To ensure that those entities can still use the X-Ray console, attach the AWSXRayReadOnlyAccess
AWS managed policy to the entities. This policy is described in more detail in IAM managed policies
for X-Ray. For more information, see Adding Permissions to a User in the IAM User Guide.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"

Identity-based policy examples 483

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS X-Ray Developer Guide

 }
]
}

Managing access to X-Ray groups and sampling rules based on tags

You can use conditions in your identity-based policy to control access to X-Ray groups and
sampling rules based on tags. The following example policy could be used to deny a user role the
permissions to create, delete, or update groups with the tags stage:prod or stage:preprod.
For more information about tagging X-Ray sampling rules and groups, see Tagging X-Ray sampling
rules and groups.

To deny a user access to create, update, or delete a group with a tag stage:prod or
stage:preprod, assign the user a role with a policy similar to the following.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAllXRay",
 "Effect": "Allow",
 "Action": "xray:*",
 "Resource": "*"
 },
 {
 "Sid": "DenyCreateGroupWithStage",
 "Effect": "Deny",
 "Action": [
 "xray:CreateGroup"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/stage": [
 "preprod",
 "prod"
]
 }
 }
 },
 {
 "Sid": "DenyUpdateGroupWithStage",

Identity-based policy examples 484

AWS X-Ray Developer Guide

 "Effect": "Deny",
 "Action": [
 "xray:UpdateGroup",
 "xray:DeleteGroup"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": [
 "preprod",
 "prod"
]
 }
 }
 }
]
}

To deny the creation of a sampling rule, use aws:RequestTag to indicate tags that cannot
be passed as part of a creation request. To deny the update or deletion of a sampling rule, use
aws:ResourceTag to deny actions based on the tags on those resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAllXRay",
 "Effect": "Allow",
 "Action": "xray:*",
 "Resource": "*"
 },
 {
 "Sid": "DenyCreateSamplingRuleWithStage",
 "Effect": "Deny",
 "Action": "xray:CreateSamplingRule",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/stage": [
 "preprod",
 "prod"
]
 }

Identity-based policy examples 485

AWS X-Ray Developer Guide

 }
 },
 {
 "Sid": "DenyUpdateSamplingRuleWithStage",
 "Effect": "Deny",
 "Action": [
 "xray:UpdateSamplingRule",
 "xray:DeleteSamplingRule"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/stage": [
 "preprod",
 "prod"
]
 }
 }
 }
]
}

You can attach these policies (or combine them into a single policy, then attach the policy) to the
users in your account. For the user to make changes to a group or sampling rule, the group or
sampling rule must not be tagged stage=prepod or stage=prod. The condition tag key Stage
matches both Stage and stage because condition key names are not case-sensitive. For more
information about the condition block, see IAM JSON Policy Elements: Condition in the IAM User
Guide.

A user with a role that has the following policy attached cannot add the tag role:admin to
resources, and cannot remove tags from a resource that has role:admin associated with it.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAllXRay",
 "Effect": "Allow",
 "Action": "xray:*",
 "Resource": "*"
 },
 {

Identity-based policy examples 486

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS X-Ray Developer Guide

 "Sid": "DenyRequestTagAdmin",
 "Effect": "Deny",
 "Action": "xray:TagResource",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/role": "admin"
 }
 }
 },
 {
 "Sid": "DenyResourceTagAdmin",
 "Effect": "Deny",
 "Action": "xray:UntagResource",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/role": "admin"
 }
 }
 }
]
}

IAM managed policies for X-Ray

To make granting permissions easy, IAM supports managed policies for each service. A service
can update these managed policies with new permissions when it releases new APIs. AWS X-Ray
provides managed policies for read only, write only, and administrator use cases.

• AWSXrayReadOnlyAccess – Read permissions for using the X-Ray console, AWS CLI, or
AWS SDK to get trace data, trace maps, insights, and X-Ray configuration from the X-Ray API.
Includes Observability Access Manager (OAM) oam:ListSinks and oam:ListAttachedSinks
permissions to allow the console to view traces shared from source accounts as part
of CloudWatch cross-account observability. The BatchGetTraceSummaryById and
GetDistinctTraceGraphs API actions are not intended to be called by your code, and not
included in the AWS CLI and AWS SDKs.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Identity-based policy examples 487

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

 "Effect": "Allow",
 "Action": [
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets",
 "xray:GetSamplingStatisticSummaries",
 "xray:BatchGetTraces",
 "xray:BatchGetTraceSummaryById",
 "xray:GetDistinctTraceGraphs",
 "xray:GetServiceGraph",
 "xray:GetTraceGraph",
 "xray:GetTraceSummaries",
 "xray:GetGroups",
 "xray:GetGroup",
 "xray:ListTagsForResource",
 "xray:ListResourcePolicies",
 "xray:GetTimeSeriesServiceStatistics",
 "xray:GetInsightSummaries",
 "xray:GetInsight",
 "xray:GetInsightEvents",
 "xray:GetInsightImpactGraph",
 "oam:ListSinks"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "oam:ListAttachedLinks"
],
 "Resource": "arn:aws:oam:*:*:sink/*"
 }

}

• AWSXRayDaemonWriteAccess – Write permissions for using the X-Ray daemon, AWS CLI,
or AWS SDK to upload segment documents and telemetry to the X-Ray API. Includes read
permissions to get sampling rules and report sampling results. For more information, see
Configure sampling rules.

{
 "Version": "2012-10-17",

Identity-based policy examples 488

AWS X-Ray Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:PutTraceSegments",
 "xray:PutTelemetryRecords",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets",
 "xray:GetSamplingStatisticSummaries"
],
 "Resource": [
 "*"
]
 }
]
}

• AWSXrayCrossAccountSharingConfiguration – Grants permissions to create, manage, and
view Observability Access Manager links for sharing X-Ray resources between accounts. Used to
enable CloudWatch cross-account observability between source and monitoring accounts.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:Link",
 "oam:ListLinks"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "oam:DeleteLink",
 "oam:GetLink",
 "oam:TagResource"
],
 "Resource": "arn:aws:oam:*:*:link/*"
 },
 {
 "Effect": "Allow",

Identity-based policy examples 489

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

 "Action": [
 "oam:CreateLink",
 "oam:UpdateLink"
],
 "Resource": [
 "arn:aws:oam:*:*:link/*",
 "arn:aws:oam:*:*:sink/*"
]
 }
]

}

• AWSXrayFullAccess – Permission to use all X-Ray APIs, including read permissions, write
permissions, and permission to configure encryption key settings and sampling rules. Includes
Observability Access Manager (OAM) oam:ListSinks and oam:ListAttachedSinks
permissions to allow the console to view traces shared from source accounts as part of
CloudWatch cross-account observability.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:*",
 "oam:ListSinks"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "oam:ListAttachedLinks"
],
 "Resource": "arn:aws:oam:*:*:sink/*"
 }
]
}

Identity-based policy examples 490

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

To add a managed policy to an IAM user, group, or role

1. Open the IAM console.

2. Open the role associated with your instance profile, an IAM user, or an IAM group.

3. Under Permissions, attach the managed policy.

X-Ray updates to AWS managed policies

View details about updates to AWS managed policies for X-Ray since this service began tracking
these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the
X-Ray Document history page.

Change Description Date

IAM managed policies for X-
Ray – Added new AWSXrayCr
ossAccountSharingC
onfiguration , and
updated AWSXrayRe
adOnlyAccess and
AWSXrayFullAccess
policies.

X-Ray added Observabi
lity Access Manager (OAM)
permissions oam:ListS
inks and oam:ListA
ttachedSinks to these
policies to allow the console
to view traces shared from
source accounts as part of
CloudWatch cross-account
observability.

November 27, 2022

IAM managed policies for X-
Ray – Update to AWSXrayRe
adOnlyAccess policy.

X-Ray added an API action,
ListResourcePolicies .

November 15, 2022

Using the X-Ray console
– Update to AWSXrayRe
adOnlyAccess policy

X-Ray added two new
API actions, BatchGetT
raceSummaryById and
GetDistinctTraceGr
aphs .

These actions are not
intended to be called by your

November 11, 2022

Identity-based policy examples 491

https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

Change Description Date

code. Therefore, these API
actions are not included in
the AWS CLI and AWS SDKs.

Specifying a resource within an IAM policy

You can control access to resources by using an IAM policy. For actions that support resource-level
permissions, you use an Amazon Resource Name (ARN) to identify the resource that the policy
applies to.

All X-Ray actions can be used in an IAM policy to grant or deny users permission to use that action.
However, not all X-Ray actions support resource-level permissions, which enable you to specify the
resources on which an action can be performed.

For actions that don't support resource-level permissions, you must use "*" as the resource.

The following X-Ray actions support resource-level permissions:

• CreateGroup

• GetGroup

• UpdateGroup

• DeleteGroup

• CreateSamplingRule

• UpdateSamplingRule

• DeleteSamplingRule

The following is an example of an identity-based permissions policy for a CreateGroup action.
The example shows the use of an ARN relating to Group name local-users with the unique ID as
a wildcard. The unique ID is generated when the group is created, and so it can't be predicted in the
policy in advance. When using GetGroup, UpdateGroup, or DeleteGroup, you can define this as
either a wildcard or the exact ARN, including ID.

{
 "Version": "2012-10-17",

Identity-based policy examples 492

https://docs.aws.amazon.com/xray/latest/api/API_Operations.html

AWS X-Ray Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:CreateGroup"
],
 "Resource": [
 "arn:aws:xray:eu-west-1:123456789012:group/local-users/*"
]
 }
]
}

The following is an example of an identity-based permissions policy for a CreateSamplingRule
action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:CreateSamplingRule"
],
 "Resource": [
 "arn:aws:xray:eu-west-1:123456789012:sampling-rule/base-scorekeep"
]
 }
]
}

Note

The ARN of a sampling rule is defined by its name. Unlike group ARNs, sampling rules have
no uniquely generated ID.

Troubleshooting AWS X-Ray identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with X-Ray and IAM.

Troubleshooting 493

AWS X-Ray Developer Guide

Topics

• I Am not authorized to perform an action in X-Ray

• I Am not authorized to perform iam:PassRole

• I'm an administrator and want to allow others to access X-Ray

• I want to allow people outside of my AWS account to access my X-Ray resources

I Am not authorized to perform an action in X-Ray

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your sign-in credentials.

The following example error occurs when the mateojackson user tries to use the console to view
details about a sampling rule but does not have xray:GetSamplingRules permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to
 perform: xray:GetSamplingRules on resource: arn:${Partition}:xray:${Region}:
${Account}:sampling-rule/${SamplingRuleName}

In this case, Mateo asks his administrator to update his policies to allow him to access the sampling
rule resource using the xray:GetSamplingRules action.

I Am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to X-Ray.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in X-Ray. However, the action requires the service to have permissions that are
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

Troubleshooting 494

AWS X-Ray Developer Guide

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I'm an administrator and want to allow others to access X-Ray

To allow others to access X-Ray, you must create an IAM entity (user or role) for the person or
application that needs access. They will use the credentials for that entity to access AWS. You must
then attach a policy to the entity that grants them the correct permissions in X-Ray.

To get started right away, see Creating your first IAM delegated user and group in the IAM User
Guide.

I want to allow people outside of my AWS account to access my X-Ray resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether X-Ray supports these features, see How AWS X-Ray works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Logging and monitoring in AWS X-Ray

Monitoring is an important part of maintaining the reliability, availability, and performance of your
AWS solutions. You should collect monitoring data from all of the parts of your AWS solution so
that you can more easily debug a multi-point failure if one occurs. AWS provides several tools for
monitoring your X-Ray resources and responding to potential incidents:

Logging and monitoring 495

https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-delegated-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS X-Ray Developer Guide

AWS CloudTrail Logs

AWS X-Ray integrates with AWS CloudTrail to record API actions made by a user, a role, or an
AWS service in X-Ray. You can use CloudTrail to monitor X-Ray API requests in real time and
store logs in Amazon S3, Amazon CloudWatch Logs, and Amazon CloudWatch Events. For more
information, see Logging X-Ray API calls with AWS CloudTrail.

AWS Config Tracking

AWS X-Ray integrates with AWS Config to record configuration changes made to your X-Ray
encryption resources. You can use AWS Config to inventory X-Ray encryption resources, audit
the X-Ray configuration history, and send notifications based on resource changes. For more
information, see Tracking X-Ray encryption configuration changes with AWS Config.

Amazon CloudWatch Monitoring

You can use the X-Ray SDK for Java to publish unsampled Amazon CloudWatch metrics from
your collected X-Ray segments. These metrics are derived from the segment’s start and end
time, and the error, fault and throttled status flags. Use these trace metrics to expose retries
and dependency issues within subsegments. For more information, see AWS X-Ray metrics for
the X-Ray SDK for Java.

Compliance validation for AWS X-Ray

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Compliance validation 496

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html

AWS X-Ray Developer Guide

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS X-Ray

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

Resilience 497

https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html

AWS X-Ray Developer Guide

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in AWS X-Ray

As a managed service, AWS X-Ray is protected by AWS global network security. For information
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To
design your AWS environment using the best practices for infrastructure security, see Infrastructure
Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access X-Ray through the network. Clients must support the
following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Using AWS X-Ray with VPC endpoints

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a private connection between your VPC and X-Ray. This enables resources in your Amazon
VPC to communicate with the X-Ray service without going through the public internet.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network
that you define. With a VPC, you have control over your network settings, such as the IP address
range, subnets, route tables, and network gateways. To connect your VPC to X-Ray, you define an
interface VPC endpoint. The endpoint provides reliable, scalable connectivity to X-Ray without
requiring an internet gateway, network address translation (NAT) instance, or VPN connection. For
more information, see What Is Amazon VPC in the Amazon VPC User Guide.

Interface VPC endpoints are powered by AWS PrivateLink, an AWS technology that enables
private communication between AWS services by using an elastic network interface with private IP
addresses. For more information, see the New – AWS PrivateLink for AWS services blog post and
Getting Started in the Amazon VPC User Guide.

Infrastructure security 498

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://aws.amazon.com/blogs/aws/new-aws-privatelink-endpoints-kinesis-ec2-systems-manager-and-elb-apis-in-your-vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html

AWS X-Ray Developer Guide

To ensure you can create a VPC endpoint for X-Ray in your chosen AWS Region, see Supported
Regions.

Creating a VPC endpoint for X-Ray

To start using X-Ray with your VPC, create an interface VPC endpoint for X-Ray.

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Navigate to Endpoints within the navigation pane and choose Create Endpoint.

3. Search for and select the name of the AWS X-Ray service: com.amazonaws.region.xray.

4. Select the VPC you want and then select a subnet in your VPC to use the interface endpoint.
An endpoint network interface is created in the selected subnet. You can specify more than
one subnet in different Availability Zones (as supported by the service) to help ensure that
your interface endpoint is resilient to Availability Zone failures. If you do so, an interface
network interface is created in each subnet that you specify.

Creating a VPC endpoint for X-Ray 499

https://console.aws.amazon.com/vpc/

AWS X-Ray Developer Guide

5. (Optional) Private DNS is enabled by default for the endpoint, so that you can make requests
to X-Ray using its default DNS hostname. You can choose to disable it.

6. Specify the security groups to associate with the endpoint network interface.

7. (Optional) Specify custom policy to control permissions to access the X-Ray service. By default,
full access is allowed.

Controlling access to your X-Ray VPC endpoint

A VPC endpoint policy is an IAM resource policy that you attach to an endpoint when you create
or modify the endpoint. If you don't attach a policy when you create an endpoint, Amazon VPC
attaches a default policy for you that allows full access to the service. An endpoint policy doesn't
override or replace IAM user policies or service-specific policies. It's a separate policy for controlling
access from the endpoint to the specified service. Endpoint policies must be written in JSON
format. For more information, see Controlling Access to Services with VPC Endpoints in the
Amazon VPC User Guide.

VPC endpoint policy enables you to control permissions to various X-Ray actions. For example,
you can create a policy to allow only PutTraceSegment and deny all other actions. This restricts
workloads and services in the VPC to send only trace data to X-Ray and deny any other action such
as retrieve data, change encryption config, or create/update groups.

Controlling access to your X-Ray VPC endpoint 500

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS X-Ray Developer Guide

The following is an example of an endpoint policy for X-Ray. This policy allows users connecting to
X-Ray through the VPC to send segment data to X-Ray, and also prevents them from performing
other X-Ray actions.

 {"Statement": [
 {"Sid": "Allow PutTraceSegments",
 "Principal": "*",
 "Action": [
 "xray:PutTraceSegments"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
 }

To edit the VPC endpoint policy for X-Ray

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints.

3. If you haven't already created the endpoint for X-Ray, follow the steps in Creating a VPC
endpoint for X-Ray.

4. Select the com.amazonaws.region.xray endpoint, and then choose the Policy tab.

5. Choose Edit Policy, and then make your changes.

Supported Regions

X-Ray currently supports VPC endpoints in the following AWS Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

Supported Regions 501

https://console.aws.amazon.com/vpc/

AWS X-Ray Developer Guide

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Stockholm)

• Middle East (Bahrain)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

Supported Regions 502

AWS X-Ray Developer Guide

Document History for AWS X-Ray

The following table describes the important changes to the documentation for AWS X-Ray. For
notification about updates to this documentation, you can subscribe to an RSS feed.

Latest documentation update: February 8, 2023

Change Description Date

Added functionality X-Ray now logs data events,
including PutTraceS
egments , GetTraceS
ummaries , and BatchGetT
races to AWS CloudTrai
l. X-Ray also now logs the
GetSamplingStatist
icSummaries managemen
t event to CloudTrail. For
more information, see
Logging X-Ray API calls with
AWS CloudTrail.

March 7, 2024

Added functionality X-Ray now supports trace
IDs created via OpenTelem
etry or any other framework
which conforms to the W3C
Trace Context specification.
For more information, see the
Sending trace data to X-Ray.

October 25, 2023

Added functionality You can now configure
Amazon SNS active tracing,
enabling you to trace
and analyze requests as
they travel through your
Amazon SNS topics. For more

February 8, 2023

503

https://docs.aws.amazon.com/xray/latest/devguide/xray-api-cloudtrail.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-api-cloudtrail.html
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-api.html#xray-api-sendingdata

AWS X-Ray Developer Guide

information, see Amazon SNS
and AWS X-Ray.

Updated X-Ray SDK for
Node.js topic

Added details for instrumen
ting clients using the AWS
SDK for JavaScript V3. For
details, see Tracing AWS SDK
calls with the X-Ray SDK for
Node.js.

February 7, 2023

Updated IAM managed policy
details

Added IAM permission for
cross-account observability to
the AWSXRayReadOnlyAcc
ess , AWSXRayFullAccess
and AWSXrayCrossAccoun
tSharingConfigurat
ion managed policies. For
details, see IAM managed
policies for X-Ray.

February 7, 2023

Added functionality AWS X-Ray now supports
cross-account observability,
enabling you to monitor and
troubleshoot applications
that span across multiple
accounts within an AWS
Region. For details, see Cross-
account tracing.

November 27, 2022

504

https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-nodejs-awssdkclients.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-nodejs-awssdkclients.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-nodejs-awssdkclients.html
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-managedpolicies
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-managedpolicies
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-crossaccount
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-crossaccount

AWS X-Ray Developer Guide

Added functionality You can now view linked
traces between message
producers, an Amazon SQS
queue, and consumers,
providing a connected view
of traces sent from event-dri
ven applications. For more
information, see Trace event-
driven applications.

November 20, 2022

Updated IAM managed policy
details

Added IAM permission for
listing resource policies to
the AWSXRayReadOnlyAcc
ess managed policy. For
details, see IAM managed
policies for X-Ray.

November 15, 2022

Updated IAM console
permissions and managed
policy details

The set of IAM permissions
the X-Ray console uses has
been updated, along with the
description of the AWSXRayRe
adOnlyAccess managed
policy. For details, see Using
the X-Ray console.

November 11, 2022

Added AWS Distro for
OpenTelemetry Ruby

AWS Distro for OpenTelem
etry (ADOT) provides a single
set of open source APIs,
libraries, and agents to collect
distributed traces and metrics.
ADOT Ruby enables you
to instrument your Ruby
application for X-Ray and
other tracing back-ends. For
more information, see AWS
Distro for OpenTelemetry
Ruby.

February 7, 2022

505

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-tracelinking
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-tracelinking
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-managedpolicies
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-managedpolicies
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://docs.aws.amazon.com/xray/latest/devguide/xray-ruby-opentel-sdk.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-ruby-opentel-sdk.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-ruby-opentel-sdk.html

AWS X-Ray Developer Guide

Added functionality You can now view traces and
configure X-Ray from the
CloudWatch console. For
more information, see X-Ray
console.

January 24, 2022

Integrated CloudWatch RUM With AWS X-Ray and
CloudWatch RUM, you can
analyze and debug the
request path starting from
end users of your applicati
on through downstream AWS
managed services. For more
information, see CloudWatch
RUM and AWS X-Ray.

December 3, 2021

Integrated AWS Distro for
OpenTelemetry

The AWS Distro for
OpenTelemetry (ADOT)
provides a single set of open
source APIs, libraries, and
agents to collect distribut
ed traces and metrics. ADOT
enables you to instrument
your application for X-Ray
and other tracing back-ends
. For more information, see
Instrumenting your app.

September 23, 2021

Added functionality AWS X-Ray now integrates
with Amazon Virtual Private
Cloud, enabling resources
in your Amazon VPC to
communicate with the X-Ray
service without going through
the public internet. For more
information, see Using AWS
X-Ray with VPC endpoints.

May 20, 2021

506

https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-RUM.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-RUM.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-security-vpc-endpoint.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-security-vpc-endpoint.html

AWS X-Ray Developer Guide

Added functionality AWS X-Ray now integrates
with AWS CloudFormation,
enabling you to provision and
configure X-Ray resources
. For more information, see
Creating X-Ray resources with
CloudFormation.

May 6, 2021

Added functionality AWS X-Ray now integrate
s with Amazon EventBrid
ge to trace events that are
passed through EventBrid
ge. This provides users with a
more complete view of their
system. For more information,
see Amazon EventBridge and
AWS X-Ray.

March 2, 2021

Added daemon to ECR The daemon can now be
downloaded from Amazon
ECR. For more informati
on, see Downloading the
daemon.

March 1, 2021

Added functionality AWS X-Ray now supports
insights related notificat
ions to Amazon EventBrid
ge. This allows you to take
automatic actions on insights
using EventBridge. For more
information, see Enable
Insights notifications in Use
X-Ray Insights.

October 15, 2020

507

https://docs.aws.amazon.com/xray/latest/devguide/creating-resources-with-cloudformation.html
https://docs.aws.amazon.com/xray/latest/devguide/creating-resources-with-cloudformation.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-eventbridge.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-eventbridge.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html#xray-daemon-downloading
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html#xray-daemon-downloading
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-insights
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-insights

AWS X-Ray Developer Guide

Added Downloadable
Daemons

AWS X-Ray introduce
s support daemon for
Linux ARM64. For more
information, see AWS X-Ray
daemonbrazil ws

October 1, 2020

Added functionality AWS X-Ray now supports
active integration with
Amazon CloudWatch
Synthetics. This allows you to
see details about a Synthetic
s canary client node such as
response time and status.
You can also do analysis
in the Analytics console
based on information from
a Synthetics canary client
node. For more information,
see Debugging CloudWatch
synthetics canaries using X-
Ray .

September 24, 2020

Added functionality AWS X-Ray now supports
tracing end-to-end workflows
for AWS Step Functions
. You can visualize the
components of your state
machine, identify performan
ce bottlenecks, and troublesh
oot requests that resulted in
an error. For more informati
on, see AWS Step Functions
and AWS X-Ray.

September 14, 2020

508

https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-cloudwatch-synthetics.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-cloudwatch-synthetics.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-cloudwatch-synthetics.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-stepfunctions.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-stepfunctions.html

AWS X-Ray Developer Guide

Added functionality AWS X-Ray introduces
insights to continuously
analyze trace data in your
account to identify emergent
issues in your applications.
Insights records incidents and
track incident impact until
resolution. For more informati
on, see Use X-Ray Insights.

September 3, 2020

Added functionality AWS X-Ray introduces the
Java auto-instrumentation
agent, enabling customers
to collect trace data without
having to modify existing
Java-based application. You
can now trace Java web
and servlet based applicati
ons with minimal configura
tion change and no code
change. For more informati
on, see AWS X-Ray auto-inst
rumentation agent for Java.

September 3, 2020

Added functionality AWS X-Ray has added a new
Groups page to the X-Ray
console to help ease the
creation and management
of groups of traces. For more
information, see Configure
 groups in the X-Ray console.

August 24, 2020

509

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-insights
https://docs.aws.amazon.com/xray/latest/devguide/aws-x-ray-auto-instrumentation-agent-for-java.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-x-ray-auto-instrumentation-agent-for-java.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-groups
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-groups

AWS X-Ray Developer Guide

Added functionality AWS X-Ray now lets you
add tags to groups and
sampling rules. You can also
control access to groups and
sampling rules based on tags.
For more information, see
Tagging X-Ray sampling rules
and groups and Managing
access to X-Ray groups and
sampling rules based on tags.

August 24, 2020

510

https://docs.aws.amazon.com/xray/latest/devguide/xray-tagging.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-tagging.html
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-manage-sampling-tags
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-manage-sampling-tags
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-manage-sampling-tags

	AWS X-Ray
	Table of Contents
	What is AWS X-Ray?
	How X-Ray works
	How X-Ray interacts with your instrumented application

	Concepts
	Segments
	Subsegments
	Service graph
	Traces
	Sampling
	Tracing header
	Filter expressions
	Groups
	Annotations and metadata
	Errors, faults, and exceptions

	Get started with X-Ray
	Choose an interface
	Use an AWS Management Console
	Use the Amazon CloudWatch console
	Use the X-Ray console
	Explore the X-Ray console
	Use the X-Ray trace map
	Viewing the trace map
	Filtering the trace map by group
	Trace map legend and options

	View traces and trace details
	Viewing traces
	Exploring the trace timeline
	Viewing segment details
	Viewing subsegment details

	Use filter expressions
	Filter expression details
	Use filter expressions with groups
	Filter expression syntax
	Boolean keywords
	Number keywords
	String keywords
	Complex keywords
	id function

	Cross-account tracing
	Configure cross-account observability
	Viewing cross-account traces
	Trace map
	Traces
	Trace details

	Trace event-driven applications
	View linked traces in the trace map
	View linked trace details
	Select a single trace within a set of linked traces

	Use latency histograms
	Latency
	Interpreting service details

	Use X-Ray Insights
	Enable Insights in the X-Ray console
	Enable insights notifications
	Insight overview
	Review an insight's progress

	Interact with the Analytics console
	Console features
	Features

	Response time distribution
	Time series activity
	Workflow examples
	Observe faults on the service graph
	Identify response time peaks
	View all traces marked with a status code
	View all items in a subgroup and associated to a user
	Compare two sets of traces with different criteria
	Identify a trace of interest and view its details

	Configure groups
	Create a group
	Apply a group
	Edit a group
	Clone a group
	Delete a group
	View group metrics in Amazon CloudWatch

	Configure sampling rules
	Configure sampling rules
	Customizing sampling rules
	Sampling rule options
	Sampling rule examples
	Configure your service to use sampling rules
	Viewing sampling results
	Next steps

	Console deep linking
	Traces
	Filter expressions
	Time range
	Region
	Combined

	Use an SDK
	Use the ADOT SDK
	Use the X-Ray SDK

	Use the X-Ray API
	Explore the X-Ray API
	Using the X-Ray API with the AWS CLI
	Prerequisites
	Generate trace data
	Use the X-Ray API
	Cleanup

	Sending trace data to X-Ray
	Generating trace IDs
	Using PutTraceSegments
	Sending segment documents to the X-Ray daemon

	Getting data from X-Ray
	Retrieving the service graph
	Retrieving the service graph by group
	Retrieving traces
	Retrieving and refining root cause analytics

	Configuring sampling, groups, and encryption settings with the X-Ray API
	Encryption settings
	Sampling rules
	Groups

	Using sampling rules with the X-Ray API
	X-Ray segment documents
	Segment fields
	Subsegments
	HTTP request data
	Annotations
	Metadata
	AWS resource data
	Errors and exceptions
	SQL queries

	AWS X-Ray daemon
	Downloading the daemon
	Verifying the daemon archive's signature
	Running the daemon
	Giving the daemon permission to send data to X-Ray
	X-Ray daemon logs
	Configuring the AWS X-Ray daemon
	Supported environment variables
	Using command line options
	Using a configuration file

	Running the X-Ray daemon locally
	Running the X-Ray daemon on Linux
	Running the X-Ray daemon in a Docker container
	Running the X-Ray daemon on Windows
	Running the X-Ray daemon on OS X

	Running the X-Ray daemon on AWS Elastic Beanstalk
	Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemon
	Downloading and running the X-Ray daemon manually (advanced)

	Running the X-Ray daemon on Amazon EC2
	Running the X-Ray daemon on Amazon ECS
	Using the official Docker image
	Create and build a Docker image
	Configure command line options in the Amazon ECS console

	Instrument your application for AWS X-Ray
	Instrumenting your application with the AWS Distro for OpenTelemetry
	Instrumenting your application with AWS X-Ray SDKs
	Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs
	Instrument your application with Go
	AWS Distro for OpenTelemetry Go
	AWS X-Ray SDK for Go
	Requirements
	Reference documentation
	Configuring the X-Ray SDK for Go
	Service plugins
	Sampling rules
	Logging
	Environment variables
	Using configure

	Instrumenting incoming HTTP requests with the X-Ray SDK for Go
	Configuring a segment naming strategy

	Tracing AWS SDK calls with the X-Ray SDK for Go
	Tracing calls to downstream HTTP web services with the X-Ray SDK for Go
	Tracing SQL queries with the X-Ray SDK for Go
	Generating custom subsegments with the X-Ray SDK for Go
	Add annotations and metadata to segments with the X-Ray SDK for Go
	Recording annotations with the X-Ray SDK for Go
	Recording metadata with the X-Ray SDK for Go
	Recording user IDs with the X-Ray SDK for Go

	Instrument your application with Java
	AWS Distro for OpenTelemetry Java
	AWS X-Ray SDK for Java
	Submodules
	Requirements
	Dependency management
	AWS X-Ray auto-instrumentation agent for Java
	Sample application
	Getting started
	Configuration
	Configuration specification
	Logging configuration
	Manual instrumentation

	Troubleshooting
	Problem: I’ve enabled the Java agent on my application but don’t see anything on the X-Ray console
	Problem: Some of the segments I expect do not appear on the X-Ray console

	Configuring the X-Ray SDK for Java
	Service plugins
	Sampling rules
	Logging
	Trace ID injection into logs

	Segment listeners
	Environment variables
	System properties

	Tracing incoming requests with the X-Ray SDK for Java
	Adding a tracing filter to your application (Tomcat)
	Adding a tracing filter to your application (spring)
	Configuring a segment naming strategy

	Tracing AWS SDK calls with the X-Ray SDK for Java
	Tracing calls to downstream HTTP web services with the X-Ray SDK for Java
	Tracing SQL queries with the X-Ray SDK for Java
	SQL Interceptors
	Native SQL Tracing Decorator

	Generating custom subsegments with the X-Ray SDK for Java
	Add annotations and metadata to segments with the X-Ray SDK for Java
	Recording annotations with the X-Ray SDK for Java
	Recording metadata with the X-Ray SDK for Java
	Recording user IDs with the X-Ray SDK for Java

	AWS X-Ray metrics for the X-Ray SDK for Java
	X-Ray CloudWatch metrics
	X-Ray CloudWatch dimensions
	Enable X-Ray CloudWatch metrics

	Passing segment context between threads in a multithreaded application
	Using X-Ray with Asynchronous Programming

	AOP with Spring and the X-Ray SDK for Java
	Configuring Spring
	Configuring Spring Boot
	Adding a tracing filter to your application
	Jakarta Support
	Annotating your code or implementing an interface
	Activating X-Ray in your application
	Example

	Instrument your application with Node.js
	AWS Distro for OpenTelemetry JavaScript
	AWS X-Ray SDK for Node.js
	Requirements
	Dependency management
	Node.js samples
	Configuring the X-Ray SDK for Node.js
	Service plugins
	Sampling rules
	Logging
	X-Ray daemon address
	Environment variables

	Tracing incoming requests with the X-Ray SDK for Node.js
	Tracing incoming requests with Express
	Tracing incoming requests with restify
	Configuring a segment naming strategy

	Tracing AWS SDK calls with the X-Ray SDK for Node.js
	Tracing calls to downstream HTTP web services using the X-Ray SDK for Node.js
	Tracing SQL queries with the X-Ray SDK for Node.js
	Including additional data in SQL subsegments

	Generating custom subsegments with the X-Ray SDK for Node.js
	Custom Express subsegments
	Custom Lambda subsegments

	Add annotations and metadata to segments with the X-Ray SDK for Node.js
	Recording annotations with the X-Ray SDK for Node.js
	Recording metadata with the X-Ray SDK for Node.js
	Recording user IDs with the X-Ray SDK for Node.js

	Instrument your application with Python
	AWS Distro for OpenTelemetry Python
	AWS X-Ray SDK for Python
	Requirements
	Dependency management
	Configuring the X-Ray SDK for Python
	Service plugins
	Sampling rules
	Logging
	Recorder configuration in code
	Recorder configuration with Django
	Environment variables

	Tracing incoming requests with the X-Ray SDK for Python middleware
	Adding the middleware to your application (Django)
	Adding the middleware to your application (flask)
	Adding the middleware to your application (Bottle)
	Instrumenting Python code manually
	Configuring a segment naming strategy

	Patching libraries to instrument downstream calls
	Tracing context for asynchronous work

	Tracing AWS SDK calls with the X-Ray SDK for Python
	Tracing calls to downstream HTTP web services using the X-Ray SDK for Python
	Generating custom subsegments with the X-Ray SDK for Python
	Add annotations and metadata to segments with the X-Ray SDK for Python
	Recording annotations with the X-Ray SDK for Python
	Recording metadata with the X-Ray SDK for Python
	Recording user IDs with the X-Ray SDK for Python

	Instrumenting web frameworks deployed to serverless environments
	Prerequisites
	Step 1: Create an environment
	Step 2: Create and deploy a zappa environment
	Step 3: Enable X-Ray tracing for API Gateway
	Step 4: View the created trace
	Step 5: Clean up
	Next steps

	Instrument your application with .NET
	AWS Distro for OpenTelemetry .NET
	AWS X-Ray SDK for .NET
	Requirements
	Adding the X-Ray SDK for .NET to your application
	Dependency management
	NET Framework 4.5
	NET Framework 2.0

	Configuring the X-Ray SDK for .NET
	Plugins
	Sampling rules
	Logging (.NET)
	Logging (.NET Core)
	Environment variables

	Instrumenting incoming HTTP requests with the X-Ray SDK for .NET
	Instrumenting incoming requests (.NET)
	Instrumenting incoming requests (.NET Core)
	Configuring a segment naming strategy

	Tracing AWS SDK calls with the X-Ray SDK for .NET
	Tracing calls to downstream HTTP web services with the X-Ray SDK for .NET
	Tracing SQL queries with the X-Ray SDK for .NET
	Tracing SQL queries with synchronous and asynchronous methods
	Collecting SQL queries made to SQL Server
	Enable the global CollectSqlQueries property
	Enable the collectSqlQueries parameter

	Creating additional subsegments
	Add annotations and metadata to segments with the X-Ray SDK for .NET
	Recording annotations with the X-Ray SDK for .NET
	Recording metadata with the X-Ray SDK for .NET

	Instrument your application with Ruby
	AWS Distro for OpenTelemetry Ruby
	AWS X-Ray SDK for Ruby
	Requirements
	Configuring the X-Ray SDK for Ruby
	Service plugins
	Sampling rules
	Logging
	Recorder configuration in code
	Recorder configuration with rails
	Environment variables

	Tracing incoming requests with the X-Ray SDK for Ruby middleware
	Using the rails middleware
	Instrumenting code manually
	Configuring a segment naming strategy

	Patching libraries to instrument downstream calls
	Tracing AWS SDK calls with the X-Ray SDK for Ruby
	Generating custom subsegments with the X-Ray SDK
	Add annotations and metadata to segments with the X-Ray SDK for Ruby
	Recording annotations with the X-Ray SDK for Ruby
	Recording metadata with the X-Ray SDK for Ruby
	Recording user IDs with the X-Ray SDK for Ruby

	Integrate AWS X-Ray with other AWS services
	AWS Distro for OpenTelemetry and AWS X-Ray
	AWS Distro for OpenTelemetry

	Amazon API Gateway active tracing support for AWS X-Ray
	Amazon EC2 and AWS App Mesh
	AWS App Runner and X-Ray
	AWS AppSync and AWS X-Ray
	Logging X-Ray API calls with AWS CloudTrail
	X-Ray management events in CloudTrail
	X-Ray data events in CloudTrail
	X-Ray event examples
	Management event example, GetEncryptionConfig
	Data event example, PutTraceSegments

	CloudWatch integration with X-Ray
	CloudWatch RUM and AWS X-Ray
	Debugging CloudWatch synthetics canaries using X-Ray
	View canaries with increased error reporting in the trace map
	Use trace details maps for individual traces to view each request in detail
	Determine the root cause of ongoing failures in upstream and downstream services
	Identify performance bottlenecks and trends
	Compare latency and error or fault rates before and after changes
	Determine the required canary coverage for all APIs and URLs
	Use groups to focus on synthetics tests

	Tracking X-Ray encryption configuration changes with AWS Config
	Creating a Lambda function trigger
	Creating a custom AWS Config rule for x-ray
	Example results
	Amazon SNS notifications

	Amazon Elastic Compute Cloud and AWS X-Ray
	AWS Elastic Beanstalk and AWS X-Ray
	Elastic Load Balancing and AWS X-Ray
	Amazon EventBridge and AWS X-Ray
	Viewing source and targets on the X-Ray service map
	Propagate the trace context to event targets

	AWS Lambda and AWS X-Ray
	Amazon SNS and AWS X-Ray
	Configure Amazon SNS active tracing
	View Amazon SNS publisher and subscriber traces in the X-Ray console

	AWS Step Functions and AWS X-Ray
	Amazon SQS and AWS X-Ray
	Send the HTTP trace header
	Retrieve the trace header and recover trace context

	Amazon S3 and AWS X-Ray
	Configure Amazon S3 event notifications
	Amazon SNS and Amazon SQS
	AWS Lambda

	Manage resources in X-Ray
	Creating X-Ray resources with AWS CloudFormation
	X-Ray and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Tagging X-Ray sampling rules and groups
	Tag restrictions
	Managing tags in the console
	Add tags to a new group (console)
	Add tags to a new sampling rule (console)
	Edit or delete tags for a group (console)
	Edit or delete tags for a sampling rule (console)

	Managing tags in the AWS CLI
	Add tags to a new X-Ray group or sampling rule (CLI)
	Add tags to an existing resource (CLI)
	List tags on a resource (CLI)
	Delete tags on a resource (CLI)

	Control access to X-Ray resources based on tags

	AWS X-Ray sample application
	Getting started with the Scorekeep sample application
	Prerequisites
	Install the Scorekeep application using CloudFormation
	Generate trace data
	View the trace map in the AWS Management Console
	Configuring Amazon SNS notifications
	Explore the sample application
	Optional: Least privilege policy
	Clean up
	Next steps

	Manually instrumenting AWS SDK clients
	Creating additional subsegments
	Recording annotations, metadata, and user IDs
	Instrumenting outgoing HTTP calls
	Instrumenting calls to a PostgreSQL database
	Instrumenting AWS Lambda functions
	Random name
	Worker

	Instrumenting startup code
	Instrumenting scripts
	Instrumenting a web app client
	Using instrumented clients in worker threads

	Troubleshooting AWS X-Ray
	X-Ray trace map and trace details pages
	I don't see all of my CloudWatch logs
	I don't see all of my alarms on the X-Ray trace map
	I don't see some AWS resources on the trace map
	There are too many nodes on the trace map

	X-Ray SDK for Java
	X-Ray SDK for Node.js
	The X-Ray daemon

	Security in AWS X-Ray
	
	Data protection in AWS X-Ray
	Identity and access management for AWS X-Ray
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS X-Ray works with IAM
	X-Ray identity-based policies
	Actions
	Resources
	Condition keys
	Examples

	X-Ray resource-based policies
	Authorization based on X-Ray tags
	Running your application locally
	Running your application in AWS
	User permissions for encryption

	AWS X-Ray identity-based policy examples
	Policy best practices
	Using the X-Ray console
	Allow users to view their own permissions
	Managing access to X-Ray groups and sampling rules based on tags
	IAM managed policies for X-Ray
	X-Ray updates to AWS managed policies
	Specifying a resource within an IAM policy

	Troubleshooting AWS X-Ray identity and access
	I Am not authorized to perform an action in X-Ray
	I Am not authorized to perform iam:PassRole
	I'm an administrator and want to allow others to access X-Ray
	I want to allow people outside of my AWS account to access my X-Ray resources

	Logging and monitoring in AWS X-Ray
	Compliance validation for AWS X-Ray
	Resilience in AWS X-Ray
	Infrastructure security in AWS X-Ray
	Using AWS X-Ray with VPC endpoints
	Creating a VPC endpoint for X-Ray
	Controlling access to your X-Ray VPC endpoint
	Supported Regions

	Document History for AWS X-Ray

