Há mais AWS SDK exemplos disponíveis no GitHub repositório AWS Doc SDK Examples
As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.
Exemplos do Amazon Personalize Runtime usando SDK para Java 2.x
Os exemplos de código a seguir mostram como realizar ações e implementar cenários comuns usando o AWS SDK for Java 2.x Amazon Personalize Runtime.
Ações são trechos de código de programas maiores e devem ser executadas em contexto. Embora as ações mostrem como chamar funções de serviço individuais, é possível ver as ações no contexto em seus cenários relacionados.
Cada exemplo inclui um link para o código-fonte completo, onde você pode encontrar instruções sobre como configurar e executar o código no contexto.
Tópicos
Ações
O código de exemplo a seguir mostra como usar GetPersonalizedRanking
.
- SDKpara Java 2.x
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. public static List<PredictedItem> getRankedRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId, ArrayList<String> items) { try { GetPersonalizedRankingRequest rankingRecommendationsRequest = GetPersonalizedRankingRequest.builder() .campaignArn(campaignArn) .userId(userId) .inputList(items) .build(); GetPersonalizedRankingResponse recommendationsResponse = personalizeRuntimeClient .getPersonalizedRanking(rankingRecommendationsRequest); List<PredictedItem> rankedItems = recommendationsResponse.personalizedRanking(); int rank = 1; for (PredictedItem item : rankedItems) { System.out.println("Item ranked at position " + rank + " details"); System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); System.out.println("---------------------------------------------"); rank++; } return rankedItems; } catch (PersonalizeRuntimeException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } return null; }
-
Para API obter detalhes, consulte GetPersonalizedRankingem AWS SDK for Java 2.x APIReferência.
-
O código de exemplo a seguir mostra como usar GetRecommendations
.
- SDKpara Java 2.x
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. Obter uma lista de itens recomendados.
public static void getRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId) { try { GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .campaignArn(campaignArn) .numResults(20) .userId(userId) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (AwsServiceException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }
Obtenha uma lista de itens recomendados de um recomendador criado em um grupo de conjunto de dados de domínio.
public static void getRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String recommenderArn, String userId) { try { GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .recommenderArn(recommenderArn) .numResults(20) .userId(userId) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (AwsServiceException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }
Use um filtro ao solicitar recomendações.
public static void getFilteredRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId, String filterArn, String parameter1Name, String parameter1Value1, String parameter1Value2, String parameter2Name, String parameter2Value) { try { Map<String, String> filterValues = new HashMap<>(); filterValues.put(parameter1Name, String.format("\"%1$s\",\"%2$s\"", parameter1Value1, parameter1Value2)); filterValues.put(parameter2Name, String.format("\"%1$s\"", parameter2Value)); GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .campaignArn(campaignArn) .numResults(20) .userId(userId) .filterArn(filterArn) .filterValues(filterValues) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (PersonalizeRuntimeException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }
-
Para API obter detalhes, consulte GetRecommendationsem AWS SDK for Java 2.x APIReferência.
-