Selecione suas preferências de cookies

Usamos cookies essenciais e ferramentas semelhantes que são necessárias para fornecer nosso site e serviços. Usamos cookies de desempenho para coletar estatísticas anônimas, para que possamos entender como os clientes usam nosso site e fazer as devidas melhorias. Cookies essenciais não podem ser desativados, mas você pode clicar em “Personalizar” ou “Recusar” para recusar cookies de desempenho.

Se você concordar, a AWS e terceiros aprovados também usarão cookies para fornecer recursos úteis do site, lembrar suas preferências e exibir conteúdo relevante, incluindo publicidade relevante. Para aceitar ou recusar todos os cookies não essenciais, clique em “Aceitar” ou “Recusar”. Para fazer escolhas mais detalhadas, clique em “Personalizar”.

Exemplos do Amazon Translate usando o SDK para JavaScript (v3) - AWS Exemplos de código do SDK

Há mais exemplos de AWS SDK disponíveis no repositório AWS Doc SDK Examples GitHub .

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.

Há mais exemplos de AWS SDK disponíveis no repositório AWS Doc SDK Examples GitHub .

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.

Exemplos do Amazon Translate usando o SDK para JavaScript (v3)

Os exemplos de código a seguir mostram como realizar ações e implementar cenários comuns usando o AWS SDK for JavaScript (v3) com o Amazon Translate.

Cenários são exemplos de código que mostram como realizar tarefas específicas chamando várias funções dentro de um serviço ou combinadas com outros Serviços da AWS.

Cada exemplo inclui um link para o código-fonte completo, em que você pode encontrar instruções sobre como configurar e executar o código.

Tópicos

Cenários

O exemplo de código a seguir mostra como construir uma aplicação que registra, transcreve e traduz áudio ao vivo em tempo real, e envia os resultados por e-mail.

SDK para JavaScript (v3)

Mostra como usar o Amazon Transcribe para construir uma aplicação que registra, transcreve e traduz áudio ao vivo em tempo real, e envia os resultados por e-mail usando o Amazon Simple Email Service (Amazon SES).

Para obter o código-fonte completo e instruções sobre como configurar e executar, veja o exemplo completo em GitHub.

Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Amazon SES

  • Amazon Transcribe

  • Amazon Translate

O exemplo de código a seguir mostra como construir uma aplicação que registra, transcreve e traduz áudio ao vivo em tempo real, e envia os resultados por e-mail.

SDK para JavaScript (v3)

Mostra como usar o Amazon Transcribe para construir uma aplicação que registra, transcreve e traduz áudio ao vivo em tempo real, e envia os resultados por e-mail usando o Amazon Simple Email Service (Amazon SES).

Para obter o código-fonte completo e instruções sobre como configurar e executar, veja o exemplo completo em GitHub.

Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Amazon SES

  • Amazon Transcribe

  • Amazon Translate

O exemplo de código a seguir mostra como criar um chatbot para engajar os visitantes do seu site.

SDK para JavaScript (v3)

Mostra como usar a API do Amazon Lex para criar um Chatbot em uma aplicação da web para envolver os visitantes do seu site.

Para obter o código-fonte completo e instruções sobre como configurar e executar, consulte o exemplo completo Criando um chatbot Amazon Lex no guia do AWS SDK for JavaScript desenvolvedor.

Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Amazon Lex

  • Amazon Translate

O exemplo de código a seguir mostra como criar um chatbot para engajar os visitantes do seu site.

SDK para JavaScript (v3)

Mostra como usar a API do Amazon Lex para criar um Chatbot em uma aplicação da web para envolver os visitantes do seu site.

Para obter o código-fonte completo e instruções sobre como configurar e executar, consulte o exemplo completo Criando um chatbot Amazon Lex no guia do AWS SDK for JavaScript desenvolvedor.

Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Amazon Lex

  • Amazon Translate

O exemplo de código a seguir mostra como criar uma aplicação que analisa os cartões de comentários dos clientes, os traduz do idioma original, determina seus sentimentos e gera um arquivo de áudio do texto traduzido.

SDK para JavaScript (v3)

Esta aplicação de exemplo analisa e armazena cartões de feedback de clientes. Especificamente, ela atende à necessidade de um hotel fictício na cidade de Nova York. O hotel recebe feedback dos hóspedes em vários idiomas na forma de cartões de comentários físicos. Esse feedback é enviado para a aplicação por meio de um cliente web. Depois de fazer upload da imagem de um cartão de comentário, ocorrem as seguintes etapas:

  • O texto é extraído da imagem usando o Amazon Textract.

  • O Amazon Comprehend determina o sentimento do texto extraído e o idioma.

  • O texto extraído é traduzido para o inglês com o Amazon Translate.

  • O Amazon Polly sintetiza um arquivo de áudio do texto extraído.

A aplicação completa pode ser implantada com o AWS CDK. Para obter o código-fonte e as instruções de implantação, consulte o projeto em GitHub. Os trechos a seguir mostram como o AWS SDK for JavaScript é usado nas funções do Lambda.

import { ComprehendClient, DetectDominantLanguageCommand, DetectSentimentCommand, } from "@aws-sdk/client-comprehend"; /** * Determine the language and sentiment of the extracted text. * * @param {{ source_text: string}} extractTextOutput */ export const handler = async (extractTextOutput) => { const comprehendClient = new ComprehendClient({}); const detectDominantLanguageCommand = new DetectDominantLanguageCommand({ Text: extractTextOutput.source_text, }); // The source language is required for sentiment analysis and // translation in the next step. const { Languages } = await comprehendClient.send( detectDominantLanguageCommand, ); const languageCode = Languages[0].LanguageCode; const detectSentimentCommand = new DetectSentimentCommand({ Text: extractTextOutput.source_text, LanguageCode: languageCode, }); const { Sentiment } = await comprehendClient.send(detectSentimentCommand); return { sentiment: Sentiment, language_code: languageCode, }; };
import { DetectDocumentTextCommand, TextractClient, } from "@aws-sdk/client-textract"; /** * Fetch the S3 object from the event and analyze it using Amazon Textract. * * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">} eventBridgeS3Event */ export const handler = async (eventBridgeS3Event) => { const textractClient = new TextractClient(); const detectDocumentTextCommand = new DetectDocumentTextCommand({ Document: { S3Object: { Bucket: eventBridgeS3Event.bucket, Name: eventBridgeS3Event.object, }, }, }); // Textract returns a list of blocks. A block can be a line, a page, word, etc. // Each block also contains geometry of the detected text. // For more information on the Block type, see https://docs.aws.amazon.com/textract/latest/dg/API_Block.html. const { Blocks } = await textractClient.send(detectDocumentTextCommand); // For the purpose of this example, we are only interested in words. const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map( (b) => b.Text, ); return extractedWords.join(" "); };
import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly"; import { S3Client } from "@aws-sdk/client-s3"; import { Upload } from "@aws-sdk/lib-storage"; /** * Synthesize an audio file from text. * * @param {{ bucket: string, translated_text: string, object: string}} sourceDestinationConfig */ export const handler = async (sourceDestinationConfig) => { const pollyClient = new PollyClient({}); const synthesizeSpeechCommand = new SynthesizeSpeechCommand({ Engine: "neural", Text: sourceDestinationConfig.translated_text, VoiceId: "Ruth", OutputFormat: "mp3", }); const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand); const audioKey = `${sourceDestinationConfig.object}.mp3`; // Store the audio file in S3. const s3Client = new S3Client(); const upload = new Upload({ client: s3Client, params: { Bucket: sourceDestinationConfig.bucket, Key: audioKey, Body: AudioStream, ContentType: "audio/mp3", }, }); await upload.done(); return audioKey; };
import { TranslateClient, TranslateTextCommand, } from "@aws-sdk/client-translate"; /** * Translate the extracted text to English. * * @param {{ extracted_text: string, source_language_code: string}} textAndSourceLanguage */ export const handler = async (textAndSourceLanguage) => { const translateClient = new TranslateClient({}); const translateCommand = new TranslateTextCommand({ SourceLanguageCode: textAndSourceLanguage.source_language_code, TargetLanguageCode: "en", Text: textAndSourceLanguage.extracted_text, }); const { TranslatedText } = await translateClient.send(translateCommand); return { translated_text: TranslatedText }; };
Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Lambda

  • Amazon Polly

  • Amazon Textract

  • Amazon Translate

O exemplo de código a seguir mostra como criar uma aplicação que analisa os cartões de comentários dos clientes, os traduz do idioma original, determina seus sentimentos e gera um arquivo de áudio do texto traduzido.

SDK para JavaScript (v3)

Esta aplicação de exemplo analisa e armazena cartões de feedback de clientes. Especificamente, ela atende à necessidade de um hotel fictício na cidade de Nova York. O hotel recebe feedback dos hóspedes em vários idiomas na forma de cartões de comentários físicos. Esse feedback é enviado para a aplicação por meio de um cliente web. Depois de fazer upload da imagem de um cartão de comentário, ocorrem as seguintes etapas:

  • O texto é extraído da imagem usando o Amazon Textract.

  • O Amazon Comprehend determina o sentimento do texto extraído e o idioma.

  • O texto extraído é traduzido para o inglês com o Amazon Translate.

  • O Amazon Polly sintetiza um arquivo de áudio do texto extraído.

A aplicação completa pode ser implantada com o AWS CDK. Para obter o código-fonte e as instruções de implantação, consulte o projeto em GitHub. Os trechos a seguir mostram como o AWS SDK for JavaScript é usado nas funções do Lambda.

import { ComprehendClient, DetectDominantLanguageCommand, DetectSentimentCommand, } from "@aws-sdk/client-comprehend"; /** * Determine the language and sentiment of the extracted text. * * @param {{ source_text: string}} extractTextOutput */ export const handler = async (extractTextOutput) => { const comprehendClient = new ComprehendClient({}); const detectDominantLanguageCommand = new DetectDominantLanguageCommand({ Text: extractTextOutput.source_text, }); // The source language is required for sentiment analysis and // translation in the next step. const { Languages } = await comprehendClient.send( detectDominantLanguageCommand, ); const languageCode = Languages[0].LanguageCode; const detectSentimentCommand = new DetectSentimentCommand({ Text: extractTextOutput.source_text, LanguageCode: languageCode, }); const { Sentiment } = await comprehendClient.send(detectSentimentCommand); return { sentiment: Sentiment, language_code: languageCode, }; };
import { DetectDocumentTextCommand, TextractClient, } from "@aws-sdk/client-textract"; /** * Fetch the S3 object from the event and analyze it using Amazon Textract. * * @param {import("@types/aws-lambda").EventBridgeEvent<"Object Created">} eventBridgeS3Event */ export const handler = async (eventBridgeS3Event) => { const textractClient = new TextractClient(); const detectDocumentTextCommand = new DetectDocumentTextCommand({ Document: { S3Object: { Bucket: eventBridgeS3Event.bucket, Name: eventBridgeS3Event.object, }, }, }); // Textract returns a list of blocks. A block can be a line, a page, word, etc. // Each block also contains geometry of the detected text. // For more information on the Block type, see https://docs.aws.amazon.com/textract/latest/dg/API_Block.html. const { Blocks } = await textractClient.send(detectDocumentTextCommand); // For the purpose of this example, we are only interested in words. const extractedWords = Blocks.filter((b) => b.BlockType === "WORD").map( (b) => b.Text, ); return extractedWords.join(" "); };
import { PollyClient, SynthesizeSpeechCommand } from "@aws-sdk/client-polly"; import { S3Client } from "@aws-sdk/client-s3"; import { Upload } from "@aws-sdk/lib-storage"; /** * Synthesize an audio file from text. * * @param {{ bucket: string, translated_text: string, object: string}} sourceDestinationConfig */ export const handler = async (sourceDestinationConfig) => { const pollyClient = new PollyClient({}); const synthesizeSpeechCommand = new SynthesizeSpeechCommand({ Engine: "neural", Text: sourceDestinationConfig.translated_text, VoiceId: "Ruth", OutputFormat: "mp3", }); const { AudioStream } = await pollyClient.send(synthesizeSpeechCommand); const audioKey = `${sourceDestinationConfig.object}.mp3`; // Store the audio file in S3. const s3Client = new S3Client(); const upload = new Upload({ client: s3Client, params: { Bucket: sourceDestinationConfig.bucket, Key: audioKey, Body: AudioStream, ContentType: "audio/mp3", }, }); await upload.done(); return audioKey; };
import { TranslateClient, TranslateTextCommand, } from "@aws-sdk/client-translate"; /** * Translate the extracted text to English. * * @param {{ extracted_text: string, source_language_code: string}} textAndSourceLanguage */ export const handler = async (textAndSourceLanguage) => { const translateClient = new TranslateClient({}); const translateCommand = new TranslateTextCommand({ SourceLanguageCode: textAndSourceLanguage.source_language_code, TargetLanguageCode: "en", Text: textAndSourceLanguage.extracted_text, }); const { TranslatedText } = await translateClient.send(translateCommand); return { translated_text: TranslatedText }; };
Serviços utilizados neste exemplo
  • Amazon Comprehend

  • Lambda

  • Amazon Polly

  • Amazon Textract

  • Amazon Translate

PrivacidadeTermos do sitePreferências de cookies
© 2025, Amazon Web Services, Inc. ou suas afiliadas. Todos os direitos reservados.