Há mais AWS SDK exemplos disponíveis no GitHub repositório AWS Doc SDK Examples
As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.
Exemplos de uso do Amazon Comprehend SDK para Python (Boto3)
Os exemplos de código a seguir mostram como realizar ações e implementar cenários comuns usando o AWS SDK for Python (Boto3) com o Amazon Comprehend.
Ações são trechos de código de programas maiores e devem ser executadas em contexto. Embora as ações mostrem como chamar funções de serviço individuais, é possível ver as ações no contexto em seus cenários relacionados.
Os cenários são exemplos de código que mostram como realizar tarefas específicas chamando várias funções dentro de um serviço ou combinadas com outros Serviços da AWS.
Cada exemplo inclui um link para o código-fonte completo, onde você pode encontrar instruções sobre como configurar e executar o código no contexto.
Ações
O código de exemplo a seguir mostra como usar CreateDocumentClassifier
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def create( self, name, language_code, training_bucket, training_key, data_access_role_arn, mode, ): """ Creates a custom classifier. After the classifier is created, it immediately starts training on the data found in the specified Amazon S3 bucket. Training can take 30 minutes or longer. The `describe_document_classifier` function can be used to get training status and returns a status of TRAINED when the classifier is ready to use. :param name: The name of the classifier. :param language_code: The language the classifier can operate on. :param training_bucket: The Amazon S3 bucket that contains the training data. :param training_key: The prefix used to find training data in the training bucket. If multiple objects have the same prefix, all of them are used. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the training bucket. :return: The ARN of the newly created classifier. """ try: response = self.comprehend_client.create_document_classifier( DocumentClassifierName=name, LanguageCode=language_code, InputDataConfig={"S3Uri": f"s3://{training_bucket}/{training_key}"}, DataAccessRoleArn=data_access_role_arn, Mode=mode.value, ) self.classifier_arn = response["DocumentClassifierArn"] logger.info("Started classifier creation. Arn is: %s.", self.classifier_arn) except ClientError: logger.exception("Couldn't create classifier %s.", name) raise else: return self.classifier_arn
-
Para API obter detalhes, consulte a CreateDocumentClassifierReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar DeleteDocumentClassifier
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def delete(self): """ Deletes the classifier. """ try: self.comprehend_client.delete_document_classifier( DocumentClassifierArn=self.classifier_arn ) logger.info("Deleted classifier %s.", self.classifier_arn) self.classifier_arn = None except ClientError: logger.exception("Couldn't deleted classifier %s.", self.classifier_arn) raise
-
Para API obter detalhes, consulte a DeleteDocumentClassifierReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar DescribeDocumentClassificationJob
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def describe_job(self, job_id): """ Gets metadata about a classification job. :param job_id: The ID of the job to look up. :return: Metadata about the job. """ try: response = self.comprehend_client.describe_document_classification_job( JobId=job_id ) job = response["DocumentClassificationJobProperties"] logger.info("Got classification job %s.", job["JobName"]) except ClientError: logger.exception("Couldn't get classification job %s.", job_id) raise else: return job
-
Para API obter detalhes, consulte a DescribeDocumentClassificationJobReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar DescribeDocumentClassifier
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def describe(self, classifier_arn=None): """ Gets metadata about a custom classifier, including its current status. :param classifier_arn: The ARN of the classifier to look up. :return: Metadata about the classifier. """ if classifier_arn is not None: self.classifier_arn = classifier_arn try: response = self.comprehend_client.describe_document_classifier( DocumentClassifierArn=self.classifier_arn ) classifier = response["DocumentClassifierProperties"] logger.info("Got classifier %s.", self.classifier_arn) except ClientError: logger.exception("Couldn't get classifier %s.", self.classifier_arn) raise else: return classifier
-
Para API obter detalhes, consulte a DescribeDocumentClassifierReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar DescribeTopicsDetectionJob
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def describe_job(self, job_id): """ Gets metadata about a topic modeling job. :param job_id: The ID of the job to look up. :return: Metadata about the job. """ try: response = self.comprehend_client.describe_topics_detection_job( JobId=job_id ) job = response["TopicsDetectionJobProperties"] logger.info("Got topic detection job %s.", job_id) except ClientError: logger.exception("Couldn't get topic detection job %s.", job_id) raise else: return job
-
Para API obter detalhes, consulte a DescribeTopicsDetectionJobReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar DetectDominantLanguage
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_languages(self, text): """ Detects languages used in a document. :param text: The document to inspect. :return: The list of languages along with their confidence scores. """ try: response = self.comprehend_client.detect_dominant_language(Text=text) languages = response["Languages"] logger.info("Detected %s languages.", len(languages)) except ClientError: logger.exception("Couldn't detect languages.") raise else: return languages
-
Para API obter detalhes, consulte a DetectDominantLanguageReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar DetectEntities
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_entities(self, text, language_code): """ Detects entities in a document. Entities can be things like people and places or other common terms. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of entities along with their confidence scores. """ try: response = self.comprehend_client.detect_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s entities.", len(entities)) except ClientError: logger.exception("Couldn't detect entities.") raise else: return entities
-
Para API obter detalhes, consulte a DetectEntitiesReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar DetectKeyPhrases
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_key_phrases(self, text, language_code): """ Detects key phrases in a document. A key phrase is typically a noun and its modifiers. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of key phrases along with their confidence scores. """ try: response = self.comprehend_client.detect_key_phrases( Text=text, LanguageCode=language_code ) phrases = response["KeyPhrases"] logger.info("Detected %s phrases.", len(phrases)) except ClientError: logger.exception("Couldn't detect phrases.") raise else: return phrases
-
Para API obter detalhes, consulte a DetectKeyPhrasesReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar DetectPiiEntities
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_pii(self, text, language_code): """ Detects personally identifiable information (PII) in a document. PII can be things like names, account numbers, or addresses. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of PII entities along with their confidence scores. """ try: response = self.comprehend_client.detect_pii_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s PII entities.", len(entities)) except ClientError: logger.exception("Couldn't detect PII entities.") raise else: return entities
-
Para API obter detalhes, consulte a DetectPiiEntitiesReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar DetectSentiment
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_sentiment(self, text, language_code): """ Detects the overall sentiment expressed in a document. Sentiment can be positive, negative, neutral, or a mixture. :param text: The document to inspect. :param language_code: The language of the document. :return: The sentiments along with their confidence scores. """ try: response = self.comprehend_client.detect_sentiment( Text=text, LanguageCode=language_code ) logger.info("Detected primary sentiment %s.", response["Sentiment"]) except ClientError: logger.exception("Couldn't detect sentiment.") raise else: return response
-
Para API obter detalhes, consulte a DetectSentimentReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar DetectSyntax
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_syntax(self, text, language_code): """ Detects syntactical elements of a document. Syntax tokens are portions of text along with their use as parts of speech, such as nouns, verbs, and interjections. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of syntax tokens along with their confidence scores. """ try: response = self.comprehend_client.detect_syntax( Text=text, LanguageCode=language_code ) tokens = response["SyntaxTokens"] logger.info("Detected %s syntax tokens.", len(tokens)) except ClientError: logger.exception("Couldn't detect syntax.") raise else: return tokens
-
Para API obter detalhes, consulte a DetectSyntaxReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar ListDocumentClassificationJobs
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def list_jobs(self): """ Lists the classification jobs for the current account. :return: The list of jobs. """ try: response = self.comprehend_client.list_document_classification_jobs() jobs = response["DocumentClassificationJobPropertiesList"] logger.info("Got %s document classification jobs.", len(jobs)) except ClientError: logger.exception( "Couldn't get document classification jobs.", ) raise else: return jobs
-
Para API obter detalhes, consulte a ListDocumentClassificationJobsReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar ListDocumentClassifiers
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def list(self): """ Lists custom classifiers for the current account. :return: The list of classifiers. """ try: response = self.comprehend_client.list_document_classifiers() classifiers = response["DocumentClassifierPropertiesList"] logger.info("Got %s classifiers.", len(classifiers)) except ClientError: logger.exception( "Couldn't get classifiers.", ) raise else: return classifiers
-
Para API obter detalhes, consulte a ListDocumentClassifiersReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar ListTopicsDetectionJobs
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def list_jobs(self): """ Lists topic modeling jobs for the current account. :return: The list of jobs. """ try: response = self.comprehend_client.list_topics_detection_jobs() jobs = response["TopicsDetectionJobPropertiesList"] logger.info("Got %s topic detection jobs.", len(jobs)) except ClientError: logger.exception("Couldn't get topic detection jobs.") raise else: return jobs
-
Para API obter detalhes, consulte a ListTopicsDetectionJobsReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar StartDocumentClassificationJob
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a classification job. The classifier must be trained or the job will fail. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_document_classification_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: The Amazon S3 bucket that contains input data. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_document_classification_job( DocumentClassifierArn=self.classifier_arn, JobName=job_name, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, DataAccessRoleArn=data_access_role_arn, ) logger.info( "Document classification job %s is %s.", job_name, response["JobStatus"] ) except ClientError: logger.exception("Couldn't start classification job %s.", job_name) raise else: return response
-
Para API obter detalhes, consulte a StartDocumentClassificationJobReferência AWS SDK do Python (Boto3). API
-
O código de exemplo a seguir mostra como usar StartTopicsDetectionJob
.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a topic modeling job. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_topics_detection_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: An Amazon S3 bucket that contains job input. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_topics_detection_job( JobName=job_name, DataAccessRoleArn=data_access_role_arn, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, ) logger.info("Started topic modeling job %s.", response["JobId"]) except ClientError: logger.exception("Couldn't start topic modeling job.") raise else: return response
-
Para API obter detalhes, consulte a StartTopicsDetectionJobReferência AWS SDK do Python (Boto3). API
-
Cenários
O exemplo de código a seguir mostra como:
Detecte idiomas, entidades e frases-chave em um documento.
Detecte informações de identificação pessoal (PII) em um documento.
Detecte o sentimento de um documento.
Detectar elementos sintáticos em um documento.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. Crie uma classe que envolva as ações do Amazon Comprehend.
import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_languages(self, text): """ Detects languages used in a document. :param text: The document to inspect. :return: The list of languages along with their confidence scores. """ try: response = self.comprehend_client.detect_dominant_language(Text=text) languages = response["Languages"] logger.info("Detected %s languages.", len(languages)) except ClientError: logger.exception("Couldn't detect languages.") raise else: return languages def detect_entities(self, text, language_code): """ Detects entities in a document. Entities can be things like people and places or other common terms. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of entities along with their confidence scores. """ try: response = self.comprehend_client.detect_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s entities.", len(entities)) except ClientError: logger.exception("Couldn't detect entities.") raise else: return entities def detect_key_phrases(self, text, language_code): """ Detects key phrases in a document. A key phrase is typically a noun and its modifiers. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of key phrases along with their confidence scores. """ try: response = self.comprehend_client.detect_key_phrases( Text=text, LanguageCode=language_code ) phrases = response["KeyPhrases"] logger.info("Detected %s phrases.", len(phrases)) except ClientError: logger.exception("Couldn't detect phrases.") raise else: return phrases def detect_pii(self, text, language_code): """ Detects personally identifiable information (PII) in a document. PII can be things like names, account numbers, or addresses. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of PII entities along with their confidence scores. """ try: response = self.comprehend_client.detect_pii_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s PII entities.", len(entities)) except ClientError: logger.exception("Couldn't detect PII entities.") raise else: return entities def detect_sentiment(self, text, language_code): """ Detects the overall sentiment expressed in a document. Sentiment can be positive, negative, neutral, or a mixture. :param text: The document to inspect. :param language_code: The language of the document. :return: The sentiments along with their confidence scores. """ try: response = self.comprehend_client.detect_sentiment( Text=text, LanguageCode=language_code ) logger.info("Detected primary sentiment %s.", response["Sentiment"]) except ClientError: logger.exception("Couldn't detect sentiment.") raise else: return response def detect_syntax(self, text, language_code): """ Detects syntactical elements of a document. Syntax tokens are portions of text along with their use as parts of speech, such as nouns, verbs, and interjections. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of syntax tokens along with their confidence scores. """ try: response = self.comprehend_client.detect_syntax( Text=text, LanguageCode=language_code ) tokens = response["SyntaxTokens"] logger.info("Detected %s syntax tokens.", len(tokens)) except ClientError: logger.exception("Couldn't detect syntax.") raise else: return tokens
Chame funções na classe wrapper para detectar entidades, frases e muito mais em um documento.
def usage_demo(): print("-" * 88) print("Welcome to the Amazon Comprehend detection demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") comp_detect = ComprehendDetect(boto3.client("comprehend")) with open("detect_sample.txt") as sample_file: sample_text = sample_file.read() demo_size = 3 print("Sample text used for this demo:") print("-" * 88) print(sample_text) print("-" * 88) print("Detecting languages.") languages = comp_detect.detect_languages(sample_text) pprint(languages) lang_code = languages[0]["LanguageCode"] print("Detecting entities.") entities = comp_detect.detect_entities(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(entities[:demo_size]) print("Detecting key phrases.") phrases = comp_detect.detect_key_phrases(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(phrases[:demo_size]) print("Detecting personally identifiable information (PII).") pii_entities = comp_detect.detect_pii(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(pii_entities[:demo_size]) print("Detecting sentiment.") sentiment = comp_detect.detect_sentiment(sample_text, lang_code) print(f"Sentiment: {sentiment['Sentiment']}") print("SentimentScore:") pprint(sentiment["SentimentScore"]) print("Detecting syntax elements.") syntax_tokens = comp_detect.detect_syntax(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(syntax_tokens[:demo_size]) print("Thanks for watching!") print("-" * 88)
-
Para API obter detalhes, consulte os tópicos a seguir na Referência AWS SDK do Python (Boto3). API
-
O exemplo de código a seguir mostra como usar o Amazon Comprehend para detectar entidades em texto extraído pelo Amazon Textract de uma imagem armazenada no Amazon S3.
- SDKpara Python (Boto3)
-
Mostra como usar o AWS SDK for Python (Boto3) em um notebook Jupyter para detectar entidades no texto extraído de uma imagem. Este exemplo usa o Amazon Textract para extrair texto de uma imagem armazenada no Amazon Simple Storage Service (Amazon S3) e no Amazon Comprehend para detectar entidades no texto extraído.
Este exemplo é um caderno Jupyter e deve ser executado em um ambiente que possa hospedar blocos de anotações. Para obter instruções sobre como executar o exemplo usando a Amazon SageMaker, consulte as instruções em TextractAndComprehendNotebook.ipynb
. Para obter o código-fonte completo e instruções sobre como configurar e executar, veja o exemplo completo em GitHub
. Serviços utilizados neste exemplo
Amazon Comprehend
Amazon S3
Amazon Textract
O exemplo de código a seguir mostra como:
Execute uma tarefa de modelagem de tópicos do Amazon Comprehend em dados de amostra.
Informações sobre a tarefa.
Extrair dados de saída do trabalho no Amazon S3.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. Crie uma classe wrapper para chamar as ações de modelagem de tópicos do Amazon Comprehend.
class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a topic modeling job. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_topics_detection_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: An Amazon S3 bucket that contains job input. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_topics_detection_job( JobName=job_name, DataAccessRoleArn=data_access_role_arn, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, ) logger.info("Started topic modeling job %s.", response["JobId"]) except ClientError: logger.exception("Couldn't start topic modeling job.") raise else: return response def describe_job(self, job_id): """ Gets metadata about a topic modeling job. :param job_id: The ID of the job to look up. :return: Metadata about the job. """ try: response = self.comprehend_client.describe_topics_detection_job( JobId=job_id ) job = response["TopicsDetectionJobProperties"] logger.info("Got topic detection job %s.", job_id) except ClientError: logger.exception("Couldn't get topic detection job %s.", job_id) raise else: return job def list_jobs(self): """ Lists topic modeling jobs for the current account. :return: The list of jobs. """ try: response = self.comprehend_client.list_topics_detection_jobs() jobs = response["TopicsDetectionJobPropertiesList"] logger.info("Got %s topic detection jobs.", len(jobs)) except ClientError: logger.exception("Couldn't get topic detection jobs.") raise else: return jobs
Use a classe wrapper para executar uma tarefa de modelagem de tópicos e obter dados dela.
def usage_demo(): print("-" * 88) print("Welcome to the Amazon Comprehend topic modeling demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") input_prefix = "input/" output_prefix = "output/" demo_resources = ComprehendDemoResources( boto3.resource("s3"), boto3.resource("iam") ) topic_modeler = ComprehendTopicModeler(boto3.client("comprehend")) print("Setting up storage and security resources needed for the demo.") demo_resources.setup("comprehend-topic-modeler-demo") print("Copying sample data from public bucket into input bucket.") demo_resources.bucket.copy( {"Bucket": "public-sample-us-west-2", "Key": "TopicModeling/Sample.txt"}, f"{input_prefix}sample.txt", ) print("Starting topic modeling job on sample data.") job_info = topic_modeler.start_job( "demo-topic-modeling-job", demo_resources.bucket.name, input_prefix, JobInputFormat.per_line, demo_resources.bucket.name, output_prefix, demo_resources.data_access_role.arn, ) print( f"Waiting for job {job_info['JobId']} to complete. This typically takes " f"20 - 30 minutes." ) job_waiter = JobCompleteWaiter(topic_modeler.comprehend_client) job_waiter.wait(job_info["JobId"]) job = topic_modeler.describe_job(job_info["JobId"]) print(f"Job {job['JobId']} complete:") pprint(job) print( f"Getting job output data from the output Amazon S3 bucket: " f"{job['OutputDataConfig']['S3Uri']}." ) job_output = demo_resources.extract_job_output(job) lines = 10 print(f"First {lines} lines of document topics output:") pprint(job_output["doc-topics.csv"]["data"][:lines]) print(f"First {lines} lines of terms output:") pprint(job_output["topic-terms.csv"]["data"][:lines]) print("Cleaning up resources created for the demo.") demo_resources.cleanup() print("Thanks for watching!") print("-" * 88)
-
Para API obter detalhes, consulte os tópicos a seguir na Referência AWS SDK do Python (Boto3). API
-
O exemplo de código a seguir mostra como:
Crie um classificador de vários rótulos do Amazon Comprehend.
Treine o classificador em dados de amostra.
Execute uma tarefa de classificação em um segundo conjunto de dados.
Extrair dados de saída da tarefa do Amazon S3.
- SDKpara Python (Boto3)
-
nota
Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS
. Crie uma classe wrapper para chamar as ações do classificador de documentos Amazon Comprehend.
class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def create( self, name, language_code, training_bucket, training_key, data_access_role_arn, mode, ): """ Creates a custom classifier. After the classifier is created, it immediately starts training on the data found in the specified Amazon S3 bucket. Training can take 30 minutes or longer. The `describe_document_classifier` function can be used to get training status and returns a status of TRAINED when the classifier is ready to use. :param name: The name of the classifier. :param language_code: The language the classifier can operate on. :param training_bucket: The Amazon S3 bucket that contains the training data. :param training_key: The prefix used to find training data in the training bucket. If multiple objects have the same prefix, all of them are used. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the training bucket. :return: The ARN of the newly created classifier. """ try: response = self.comprehend_client.create_document_classifier( DocumentClassifierName=name, LanguageCode=language_code, InputDataConfig={"S3Uri": f"s3://{training_bucket}/{training_key}"}, DataAccessRoleArn=data_access_role_arn, Mode=mode.value, ) self.classifier_arn = response["DocumentClassifierArn"] logger.info("Started classifier creation. Arn is: %s.", self.classifier_arn) except ClientError: logger.exception("Couldn't create classifier %s.", name) raise else: return self.classifier_arn def describe(self, classifier_arn=None): """ Gets metadata about a custom classifier, including its current status. :param classifier_arn: The ARN of the classifier to look up. :return: Metadata about the classifier. """ if classifier_arn is not None: self.classifier_arn = classifier_arn try: response = self.comprehend_client.describe_document_classifier( DocumentClassifierArn=self.classifier_arn ) classifier = response["DocumentClassifierProperties"] logger.info("Got classifier %s.", self.classifier_arn) except ClientError: logger.exception("Couldn't get classifier %s.", self.classifier_arn) raise else: return classifier def list(self): """ Lists custom classifiers for the current account. :return: The list of classifiers. """ try: response = self.comprehend_client.list_document_classifiers() classifiers = response["DocumentClassifierPropertiesList"] logger.info("Got %s classifiers.", len(classifiers)) except ClientError: logger.exception( "Couldn't get classifiers.", ) raise else: return classifiers def delete(self): """ Deletes the classifier. """ try: self.comprehend_client.delete_document_classifier( DocumentClassifierArn=self.classifier_arn ) logger.info("Deleted classifier %s.", self.classifier_arn) self.classifier_arn = None except ClientError: logger.exception("Couldn't deleted classifier %s.", self.classifier_arn) raise def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a classification job. The classifier must be trained or the job will fail. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_document_classification_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: The Amazon S3 bucket that contains input data. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_document_classification_job( DocumentClassifierArn=self.classifier_arn, JobName=job_name, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, DataAccessRoleArn=data_access_role_arn, ) logger.info( "Document classification job %s is %s.", job_name, response["JobStatus"] ) except ClientError: logger.exception("Couldn't start classification job %s.", job_name) raise else: return response def describe_job(self, job_id): """ Gets metadata about a classification job. :param job_id: The ID of the job to look up. :return: Metadata about the job. """ try: response = self.comprehend_client.describe_document_classification_job( JobId=job_id ) job = response["DocumentClassificationJobProperties"] logger.info("Got classification job %s.", job["JobName"]) except ClientError: logger.exception("Couldn't get classification job %s.", job_id) raise else: return job def list_jobs(self): """ Lists the classification jobs for the current account. :return: The list of jobs. """ try: response = self.comprehend_client.list_document_classification_jobs() jobs = response["DocumentClassificationJobPropertiesList"] logger.info("Got %s document classification jobs.", len(jobs)) except ClientError: logger.exception( "Couldn't get document classification jobs.", ) raise else: return jobs
Crie uma classe para ajudar na execução do cenário.
class ClassifierDemo: """ Encapsulates functions used to run the demonstration. """ def __init__(self, demo_resources): """ :param demo_resources: A ComprehendDemoResources class that manages resources for the demonstration. """ self.demo_resources = demo_resources self.training_prefix = "training/" self.input_prefix = "input/" self.input_format = JobInputFormat.per_line self.output_prefix = "output/" def setup(self): """Creates AWS resources used by the demo.""" self.demo_resources.setup("comprehend-classifier-demo") def cleanup(self): """Deletes AWS resources used by the demo.""" self.demo_resources.cleanup() @staticmethod def _sanitize_text(text): """Removes characters that cause errors for the document parser.""" return text.replace("\r", " ").replace("\n", " ").replace(",", ";") @staticmethod def _get_issues(query, issue_count): """ Gets issues from GitHub using the specified query parameters. :param query: The query string used to request issues from the GitHub API. :param issue_count: The number of issues to retrieve. :return: The list of issues retrieved from GitHub. """ issues = [] logger.info("Requesting issues from %s?%s.", GITHUB_SEARCH_URL, query) response = requests.get(f"{GITHUB_SEARCH_URL}?{query}&per_page={issue_count}") if response.status_code == 200: issue_page = response.json()["items"] logger.info("Got %s issues.", len(issue_page)) issues = [ { "title": ClassifierDemo._sanitize_text(issue["title"]), "body": ClassifierDemo._sanitize_text(issue["body"]), "labels": {label["name"] for label in issue["labels"]}, } for issue in issue_page ] else: logger.error( "GitHub returned error code %s with message %s.", response.status_code, response.json(), ) logger.info("Found %s issues.", len(issues)) return issues def get_training_issues(self, training_labels): """ Gets issues used for training the custom classifier. Training issues are closed issues from the Boto3 repo that have known labels. Comprehend requires a minimum of ten training issues per label. :param training_labels: The issue labels to use for training. :return: The set of issues used for training. """ issues = [] per_label_count = 15 for label in training_labels: issues += self._get_issues( f"q=type:issue+repo:boto/boto3+state:closed+label:{label}", per_label_count, ) for issue in issues: issue["labels"] = issue["labels"].intersection(training_labels) return issues def get_input_issues(self, training_labels): """ Gets input issues from GitHub. For demonstration purposes, input issues are open issues from the Boto3 repo with known labels, though in practice any issue could be submitted to the classifier for labeling. :param training_labels: The set of labels to query for. :return: The set of issues used for input. """ issues = [] per_label_count = 5 for label in training_labels: issues += self._get_issues( f"q=type:issue+repo:boto/boto3+state:open+label:{label}", per_label_count, ) return issues def upload_issue_data(self, issues, training=False): """ Uploads issue data to an Amazon S3 bucket, either for training or for input. The data is first put into the format expected by Comprehend. For training, the set of pipe-delimited labels is prepended to each document. For input, labels are not sent. :param issues: The set of issues to upload to Amazon S3. :param training: Indicates whether the issue data is used for training or input. """ try: obj_key = ( self.training_prefix if training else self.input_prefix ) + "issues.txt" if training: issue_strings = [ f"{'|'.join(issue['labels'])},{issue['title']} {issue['body']}" for issue in issues ] else: issue_strings = [ f"{issue['title']} {issue['body']}" for issue in issues ] issue_bytes = BytesIO("\n".join(issue_strings).encode("utf-8")) self.demo_resources.bucket.upload_fileobj(issue_bytes, obj_key) logger.info( "Uploaded data as %s to bucket %s.", obj_key, self.demo_resources.bucket.name, ) except ClientError: logger.exception( "Couldn't upload data to bucket %s.", self.demo_resources.bucket.name ) raise def extract_job_output(self, job): """Extracts job output from Amazon S3.""" return self.demo_resources.extract_job_output(job) @staticmethod def reconcile_job_output(input_issues, output_dict): """ Reconciles job output with the list of input issues. Because the input issues have known labels, these can be compared with the labels added by the classifier to judge the accuracy of the output. :param input_issues: The list of issues used as input. :param output_dict: The dictionary of data that is output by the classifier. :return: The list of reconciled input and output data. """ reconciled = [] for archive in output_dict.values(): for line in archive["data"]: in_line = int(line["Line"]) in_labels = input_issues[in_line]["labels"] out_labels = { label["Name"] for label in line["Labels"] if float(label["Score"]) > 0.3 } reconciled.append( f"{line['File']}, line {in_line} has labels {in_labels}.\n" f"\tClassifier assigned {out_labels}." ) logger.info("Reconciled input and output labels.") return reconciled
Treine um classificador em um conjunto de GitHub problemas com rótulos conhecidos e, em seguida, envie um segundo conjunto de GitHub problemas ao classificador para que eles possam ser rotulados.
def usage_demo(): print("-" * 88) print("Welcome to the Amazon Comprehend custom document classifier demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") comp_demo = ClassifierDemo( ComprehendDemoResources(boto3.resource("s3"), boto3.resource("iam")) ) comp_classifier = ComprehendClassifier(boto3.client("comprehend")) classifier_trained_waiter = ClassifierTrainedWaiter( comp_classifier.comprehend_client ) training_labels = {"bug", "feature-request", "dynamodb", "s3"} print("Setting up storage and security resources needed for the demo.") comp_demo.setup() print("Getting training data from GitHub and uploading it to Amazon S3.") training_issues = comp_demo.get_training_issues(training_labels) comp_demo.upload_issue_data(training_issues, True) classifier_name = "doc-example-classifier" print(f"Creating document classifier {classifier_name}.") comp_classifier.create( classifier_name, "en", comp_demo.demo_resources.bucket.name, comp_demo.training_prefix, comp_demo.demo_resources.data_access_role.arn, ClassifierMode.multi_label, ) print( f"Waiting until {classifier_name} is trained. This typically takes " f"30–40 minutes." ) classifier_trained_waiter.wait(comp_classifier.classifier_arn) print(f"Classifier {classifier_name} is trained:") pprint(comp_classifier.describe()) print("Getting input data from GitHub and uploading it to Amazon S3.") input_issues = comp_demo.get_input_issues(training_labels) comp_demo.upload_issue_data(input_issues) print("Starting classification job on input data.") job_info = comp_classifier.start_job( "issue_classification_job", comp_demo.demo_resources.bucket.name, comp_demo.input_prefix, comp_demo.input_format, comp_demo.demo_resources.bucket.name, comp_demo.output_prefix, comp_demo.demo_resources.data_access_role.arn, ) print(f"Waiting for job {job_info['JobId']} to complete.") job_waiter = JobCompleteWaiter(comp_classifier.comprehend_client) job_waiter.wait(job_info["JobId"]) job = comp_classifier.describe_job(job_info["JobId"]) print(f"Job {job['JobId']} complete:") pprint(job) print( f"Getting job output data from Amazon S3: " f"{job['OutputDataConfig']['S3Uri']}." ) job_output = comp_demo.extract_job_output(job) print("Job output:") pprint(job_output) print("Reconciling job output with labels from GitHub:") reconciled_output = comp_demo.reconcile_job_output(input_issues, job_output) print(*reconciled_output, sep="\n") answer = input(f"Do you want to delete the classifier {classifier_name} (y/n)? ") if answer.lower() == "y": print(f"Deleting {classifier_name}.") comp_classifier.delete() print("Cleaning up resources created for the demo.") comp_demo.cleanup() print("Thanks for watching!") print("-" * 88)
-
Para API obter detalhes, consulte os tópicos a seguir na Referência AWS SDK do Python (Boto3). API
-