HealthImaging exemplos usando o SDK para Python (Boto3) - AWS Exemplos de código do SDK

Há mais exemplos de AWS SDK disponíveis no repositório AWS Doc SDK Examples GitHub .

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.

HealthImaging exemplos usando o SDK para Python (Boto3)

Os exemplos de código a seguir mostram como realizar ações e implementar cenários comuns usando o AWS SDK for Python (Boto3) with HealthImaging.

Ações são trechos de código de programas maiores e devem ser executadas em contexto. Embora as ações mostrem como chamar perfis de serviço individuais, você pode ver as ações no contexto em seus cenários relacionados.

Cenários são exemplos de código que mostram como realizar tarefas específicas chamando várias funções dentro de um serviço ou combinadas com outros Serviços da AWS.

Cada exemplo inclui um link para o código-fonte completo, em que você pode encontrar instruções sobre como configurar e executar o código.

Conceitos básicos

O exemplo de código a seguir mostra como começar a usar o HealthImaging.

SDK para Python (Boto3)
import logging import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) def hello_medical_imaging(medical_imaging_client): """ Use the AWS SDK for Python (Boto3) to create an AWS HealthImaging client and list the data stores in your account. This example uses the default settings specified in your shared credentials and config files. :param medical_imaging_client: A Boto3 AWS HealthImaging Client object. """ print("Hello, Amazon Health Imaging! Let's list some of your data stores:\n") try: paginator = medical_imaging_client.get_paginator("list_datastores") page_iterator = paginator.paginate() datastore_summaries = [] for page in page_iterator: datastore_summaries.extend(page["datastoreSummaries"]) print("\tData Stores:") for ds in datastore_summaries: print(f"\t\tDatastore: {ds['datastoreName']} ID {ds['datastoreId']}") except ClientError as err: logger.error( "Couldn't list data stores. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise if __name__ == "__main__": hello_medical_imaging(boto3.client("medical-imaging"))
  • Para obter detalhes da API, consulte a ListDatastoresReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

Ações

O código de exemplo a seguir mostra como usar CopyImageSet.

SDK para Python (Boto3)

Função de utilitário para copiar um conjunto de imagens.

class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def copy_image_set( self, datastore_id, image_set_id, version_id, destination_image_set_id=None, destination_version_id=None, force=False, subsets=[], ): """ Copy an image set. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :param version_id: The ID of the image set version. :param destination_image_set_id: The ID of the optional destination image set. :param destination_version_id: The ID of the optional destination image set version. :param force: Force the copy. :param subsets: The optional subsets to copy. For example: ["12345678901234567890123456789012"]. :return: The copied image set ID. """ try: copy_image_set_information = { "sourceImageSet": {"latestVersionId": version_id} } if destination_image_set_id and destination_version_id: copy_image_set_information["destinationImageSet"] = { "imageSetId": destination_image_set_id, "latestVersionId": destination_version_id, } if len(subsets) > 0: copySubsetsJson = { "SchemaVersion": "1.1", "Study": {"Series": {"imageSetId": {"Instances": {}}}}, } for subset in subsets: copySubsetsJson["Study"]["Series"]["imageSetId"]["Instances"][ subset ] = {} copy_image_set_information["sourceImageSet"]["DICOMCopies"] = { "copiableAttributes": json.dumps(copySubsetsJson) } copy_results = self.health_imaging_client.copy_image_set( datastoreId=datastore_id, sourceImageSetId=image_set_id, copyImageSetInformation=copy_image_set_information, force=force, ) except ClientError as err: logger.error( "Couldn't copy image set. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return copy_results["destinationImageSetProperties"]["imageSetId"]

Copiar um conjunto de imagens sem um destino.

copy_image_set_information = { "sourceImageSet": {"latestVersionId": version_id} } copy_results = self.health_imaging_client.copy_image_set( datastoreId=datastore_id, sourceImageSetId=image_set_id, copyImageSetInformation=copy_image_set_information, force=force, )

Copiar um conjunto de imagens com um destino.

copy_image_set_information = { "sourceImageSet": {"latestVersionId": version_id} } if destination_image_set_id and destination_version_id: copy_image_set_information["destinationImageSet"] = { "imageSetId": destination_image_set_id, "latestVersionId": destination_version_id, } copy_results = self.health_imaging_client.copy_image_set( datastoreId=datastore_id, sourceImageSetId=image_set_id, copyImageSetInformation=copy_image_set_information, force=force, )

Copie um subconjunto de um conjunto de imagens.

copy_image_set_information = { "sourceImageSet": {"latestVersionId": version_id} } if len(subsets) > 0: copySubsetsJson = { "SchemaVersion": "1.1", "Study": {"Series": {"imageSetId": {"Instances": {}}}}, } for subset in subsets: copySubsetsJson["Study"]["Series"]["imageSetId"]["Instances"][ subset ] = {} copy_image_set_information["sourceImageSet"]["DICOMCopies"] = { "copiableAttributes": json.dumps(copySubsetsJson) } copy_results = self.health_imaging_client.copy_image_set( datastoreId=datastore_id, sourceImageSetId=image_set_id, copyImageSetInformation=copy_image_set_information, force=force, )

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a CopyImageSetReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar CreateDatastore.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def create_datastore(self, name): """ Create a data store. :param name: The name of the data store to create. :return: The data store ID. """ try: data_store = self.health_imaging_client.create_datastore(datastoreName=name) except ClientError as err: logger.error( "Couldn't create data store %s. Here's why: %s: %s", name, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return data_store["datastoreId"]

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a CreateDatastoreReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar DeleteDatastore.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def delete_datastore(self, datastore_id): """ Delete a data store. :param datastore_id: The ID of the data store. """ try: self.health_imaging_client.delete_datastore(datastoreId=datastore_id) except ClientError as err: logger.error( "Couldn't delete data store %s. Here's why: %s: %s", datastore_id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a DeleteDatastoreReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar DeleteImageSet.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def delete_image_set(self, datastore_id, image_set_id): """ Delete an image set. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :return: The delete results. """ try: delete_results = self.health_imaging_client.delete_image_set( imageSetId=image_set_id, datastoreId=datastore_id ) except ClientError as err: logger.error( "Couldn't delete image set. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return delete_results

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a DeleteImageSetReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar GetDICOMImportJob.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def get_dicom_import_job(self, datastore_id, job_id): """ Get the properties of a DICOM import job. :param datastore_id: The ID of the data store. :param job_id: The ID of the job. :return: The job properties. """ try: job = self.health_imaging_client.get_dicom_import_job( jobId=job_id, datastoreId=datastore_id ) except ClientError as err: logger.error( "Couldn't get DICOM import job. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return job["jobProperties"]

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar GetDatastore.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def get_datastore_properties(self, datastore_id): """ Get the properties of a data store. :param datastore_id: The ID of the data store. :return: The data store properties. """ try: data_store = self.health_imaging_client.get_datastore( datastoreId=datastore_id ) except ClientError as err: logger.error( "Couldn't get data store %s. Here's why: %s: %s", id, err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return data_store["datastoreProperties"]

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a GetDatastoreReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar GetImageFrame.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def get_pixel_data( self, file_path_to_write, datastore_id, image_set_id, image_frame_id ): """ Get an image frame's pixel data. :param file_path_to_write: The path to write the image frame's HTJ2K encoded pixel data. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :param image_frame_id: The ID of the image frame. """ try: image_frame = self.health_imaging_client.get_image_frame( datastoreId=datastore_id, imageSetId=image_set_id, imageFrameInformation={"imageFrameId": image_frame_id}, ) with open(file_path_to_write, "wb") as f: for chunk in image_frame["imageFrameBlob"].iter_chunks(): if chunk: f.write(chunk) except ClientError as err: logger.error( "Couldn't get image frame. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a GetImageFrameReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar GetImageSet.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def get_image_set(self, datastore_id, image_set_id, version_id=None): """ Get the properties of an image set. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :param version_id: The optional version of the image set. :return: The image set properties. """ try: if version_id: image_set = self.health_imaging_client.get_image_set( imageSetId=image_set_id, datastoreId=datastore_id, versionId=version_id, ) else: image_set = self.health_imaging_client.get_image_set( imageSetId=image_set_id, datastoreId=datastore_id ) except ClientError as err: logger.error( "Couldn't get image set. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return image_set

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a GetImageSetReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar GetImageSetMetadata.

SDK para Python (Boto3)

Função de utilitário para obter metadados do conjunto de imagens.

class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def get_image_set_metadata( self, metadata_file, datastore_id, image_set_id, version_id=None ): """ Get the metadata of an image set. :param metadata_file: The file to store the JSON gzipped metadata. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :param version_id: The version of the image set. """ try: if version_id: image_set_metadata = self.health_imaging_client.get_image_set_metadata( imageSetId=image_set_id, datastoreId=datastore_id, versionId=version_id, ) else: image_set_metadata = self.health_imaging_client.get_image_set_metadata( imageSetId=image_set_id, datastoreId=datastore_id ) print(image_set_metadata) with open(metadata_file, "wb") as f: for chunk in image_set_metadata["imageSetMetadataBlob"].iter_chunks(): if chunk: f.write(chunk) except ClientError as err: logger.error( "Couldn't get image metadata. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

Obter metadados do conjunto de imagens sem versão.

image_set_metadata = self.health_imaging_client.get_image_set_metadata( imageSetId=image_set_id, datastoreId=datastore_id )

Obter metadados do conjunto de imagens com versão.

image_set_metadata = self.health_imaging_client.get_image_set_metadata( imageSetId=image_set_id, datastoreId=datastore_id, versionId=version_id, )

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a GetImageSetMetadataReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar ListDICOMImportJobs.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def list_dicom_import_jobs(self, datastore_id): """ List the DICOM import jobs. :param datastore_id: The ID of the data store. :return: The list of jobs. """ try: paginator = self.health_imaging_client.get_paginator( "list_dicom_import_jobs" ) page_iterator = paginator.paginate(datastoreId=datastore_id) job_summaries = [] for page in page_iterator: job_summaries.extend(page["jobSummaries"]) except ClientError as err: logger.error( "Couldn't list DICOM import jobs. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return job_summaries

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar ListDatastores.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def list_datastores(self): """ List the data stores. :return: The list of data stores. """ try: paginator = self.health_imaging_client.get_paginator("list_datastores") page_iterator = paginator.paginate() datastore_summaries = [] for page in page_iterator: datastore_summaries.extend(page["datastoreSummaries"]) except ClientError as err: logger.error( "Couldn't list data stores. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return datastore_summaries

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a ListDatastoresReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar ListImageSetVersions.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def list_image_set_versions(self, datastore_id, image_set_id): """ List the image set versions. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :return: The list of image set versions. """ try: paginator = self.health_imaging_client.get_paginator( "list_image_set_versions" ) page_iterator = paginator.paginate( imageSetId=image_set_id, datastoreId=datastore_id ) image_set_properties_list = [] for page in page_iterator: image_set_properties_list.extend(page["imageSetPropertiesList"]) except ClientError as err: logger.error( "Couldn't list image set versions. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return image_set_properties_list

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a ListImageSetVersionsReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar ListTagsForResource.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def list_tags_for_resource(self, resource_arn): """ List the tags for a resource. :param resource_arn: The ARN of the resource. :return: The list of tags. """ try: tags = self.health_imaging_client.list_tags_for_resource( resourceArn=resource_arn ) except ClientError as err: logger.error( "Couldn't list tags for resource. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return tags["tags"]

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a ListTagsForResourceReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar SearchImageSets.

SDK para Python (Boto3)

A função de utilitário para pesquisar conjuntos de imagens.

class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def search_image_sets(self, datastore_id, search_filter): """ Search for image sets. :param datastore_id: The ID of the data store. :param search_filter: The search filter. For example: {"filters" : [{ "operator": "EQUAL", "values": [{"DICOMPatientId": "3524578"}]}]}. :return: The list of image sets. """ try: paginator = self.health_imaging_client.get_paginator("search_image_sets") page_iterator = paginator.paginate( datastoreId=datastore_id, searchCriteria=search_filter ) metadata_summaries = [] for page in page_iterator: metadata_summaries.extend(page["imageSetsMetadataSummaries"]) except ClientError as err: logger.error( "Couldn't search image sets. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return metadata_summaries

Caso de uso nº 1: operador EQUAL.

search_filter = { "filters": [ {"operator": "EQUAL", "values": [{"DICOMPatientId": patient_id}]} ] } image_sets = self.search_image_sets(data_store_id, search_filter) print(f"Image sets found with EQUAL operator\n{image_sets}")

Caso de uso #2: operador BETWEEN usando DICOMStudy data e DICOMStudy hora.

search_filter = { "filters": [ { "operator": "BETWEEN", "values": [ { "DICOMStudyDateAndTime": { "DICOMStudyDate": "19900101", "DICOMStudyTime": "000000", } }, { "DICOMStudyDateAndTime": { "DICOMStudyDate": "20230101", "DICOMStudyTime": "000000", } }, ], } ] } image_sets = self.search_image_sets(data_store_id, search_filter) print( f"Image sets found with BETWEEN operator using DICOMStudyDate and DICOMStudyTime\n{image_sets}" )

Caso de uso nº 3: operador BETWEEN usando o createdAt. Os estudos de tempo foram previamente persistidos.

search_filter = { "filters": [ { "values": [ { "createdAt": datetime.datetime( 2021, 8, 4, 14, 49, 54, 429000 ) }, { "createdAt": datetime.datetime.now() + datetime.timedelta(days=1) }, ], "operator": "BETWEEN", } ] } recent_image_sets = self.search_image_sets(data_store_id, search_filter) print( f"Image sets found with with BETWEEN operator using createdAt\n{recent_image_sets}" )

Caso de uso #4: operador EQUAL em DICOMSeries InstanceUID e BETWEEN em updatedAt e classifique a resposta em ordem ASC no campo updatedAt.

search_filter = { "filters": [ { "values": [ { "updatedAt": datetime.datetime( 2021, 8, 4, 14, 49, 54, 429000 ) }, { "updatedAt": datetime.datetime.now() + datetime.timedelta(days=1) }, ], "operator": "BETWEEN", }, { "values": [{"DICOMSeriesInstanceUID": series_instance_uid}], "operator": "EQUAL", }, ], "sort": { "sortOrder": "ASC", "sortField": "updatedAt", }, } image_sets = self.search_image_sets(data_store_id, search_filter) print( "Image sets found with EQUAL operator on DICOMSeriesInstanceUID and BETWEEN on updatedAt and" ) print(f"sort response in ASC order on updatedAt field\n{image_sets}")

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a SearchImageSetsReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar StartDICOMImportJob.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def start_dicom_import_job( self, job_name, datastore_id, role_arn, input_s3_uri, output_s3_uri ): """ Start a DICOM import job. :param job_name: The name of the job. :param datastore_id: The ID of the data store. :param role_arn: The Amazon Resource Name (ARN) of the role to use for the job. :param input_s3_uri: The S3 bucket input prefix path containing the DICOM files. :param output_s3_uri: The S3 bucket output prefix path for the result. :return: The job ID. """ try: job = self.health_imaging_client.start_dicom_import_job( jobName=job_name, datastoreId=datastore_id, dataAccessRoleArn=role_arn, inputS3Uri=input_s3_uri, outputS3Uri=output_s3_uri, ) except ClientError as err: logger.error( "Couldn't start DICOM import job. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return job["jobId"]

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte Referência da API Start DICOMImport Job in AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar TagResource.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def tag_resource(self, resource_arn, tags): """ Tag a resource. :param resource_arn: The ARN of the resource. :param tags: The tags to apply. """ try: self.health_imaging_client.tag_resource(resourceArn=resource_arn, tags=tags) except ClientError as err: logger.error( "Couldn't tag resource. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a TagResourceReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar UntagResource.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def untag_resource(self, resource_arn, tag_keys): """ Untag a resource. :param resource_arn: The ARN of the resource. :param tag_keys: The tag keys to remove. """ try: self.health_imaging_client.untag_resource( resourceArn=resource_arn, tagKeys=tag_keys ) except ClientError as err: logger.error( "Couldn't untag resource. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
  • Para obter detalhes da API, consulte a UntagResourceReferência da API AWS SDK for Python (Boto3).

nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O código de exemplo a seguir mostra como usar UpdateImageSetMetadata.

SDK para Python (Boto3)
class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def update_image_set_metadata( self, datastore_id, image_set_id, version_id, metadata, force=False ): """ Update the metadata of an image set. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :param version_id: The ID of the image set version. :param metadata: The image set metadata as a dictionary. For example {"DICOMUpdates": {"updatableAttributes": "{\"SchemaVersion\":1.1,\"Patient\":{\"DICOM\":{\"PatientName\":\"Garcia^Gloria\"}}}"}} :param: force: Force the update. :return: The updated image set metadata. """ try: updated_metadata = self.health_imaging_client.update_image_set_metadata( imageSetId=image_set_id, datastoreId=datastore_id, latestVersionId=version_id, updateImageSetMetadataUpdates=metadata, force=force, ) except ClientError as err: logger.error( "Couldn't update image set metadata. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return updated_metadata

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)

Caso de uso #1: insira ou atualize um atributo.

attributes = """{ "SchemaVersion": 1.1, "Study": { "DICOM": { "StudyDescription": "CT CHEST" } } }""" metadata = {"DICOMUpdates": {"updatableAttributes": attributes}} self.update_image_set_metadata( data_store_id, image_set_id, version_id, metadata, force )

Caso de uso #2: Remova um atributo.

# Attribute key and value must match the existing attribute. attributes = """{ "SchemaVersion": 1.1, "Study": { "DICOM": { "StudyDescription": "CT CHEST" } } }""" metadata = {"DICOMUpdates": {"removableAttributes": attributes}} self.update_image_set_metadata( data_store_id, image_set_id, version_id, metadata, force )

Caso de uso #3: Remover uma instância.

attributes = """{ "SchemaVersion": 1.1, "Study": { "Series": { "1.1.1.1.1.1.12345.123456789012.123.12345678901234.1": { "Instances": { "1.1.1.1.1.1.12345.123456789012.123.12345678901234.1": {} } } } } }""" metadata = {"DICOMUpdates": {"removableAttributes": attributes}} self.update_image_set_metadata( data_store_id, image_set_id, version_id, metadata, force )

Caso de uso #4: reverta para uma versão anterior.

metadata = {"revertToVersionId": "1"} self.update_image_set_metadata( data_store_id, image_set_id, version_id, metadata, force )
nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

Cenários

O exemplo de código a seguir mostra como importar arquivos DICOM e baixar molduras de imagem em HealthImaging.

A implementação é estruturada como um aplicativo de linha de comando.

  • Configurar recursos para uma importação DICOM.

  • Importe arquivos DICOM para um armazenamento de dados.

  • Recupere o conjunto de imagens IDs para o trabalho de importação.

  • Recupere a moldura da imagem IDs para os conjuntos de imagens.

  • Baixe, decodifique e verifique os quadros de imagem.

  • Limpar recursos.

SDK para Python (Boto3)

Crie uma AWS CloudFormation pilha com os recursos necessários.

def deploy(self): """ Deploys prerequisite resources used by the scenario. The resources are defined in the associated `setup.yaml` AWS CloudFormation script and are deployed as a CloudFormation stack, so they can be easily managed and destroyed. """ print("\t\tLet's deploy the stack for resource creation.") stack_name = q.ask("\t\tEnter a name for the stack: ", q.non_empty) data_store_name = q.ask( "\t\tEnter a name for the Health Imaging Data Store: ", q.non_empty ) account_id = boto3.client("sts").get_caller_identity()["Account"] with open( "../../../../scenarios/features/healthimaging_image_sets/resources/cfn_template.yaml" ) as setup_file: setup_template = setup_file.read() print(f"\t\tCreating {stack_name}.") stack = self.cf_resource.create_stack( StackName=stack_name, TemplateBody=setup_template, Capabilities=["CAPABILITY_NAMED_IAM"], Parameters=[ { "ParameterKey": "datastoreName", "ParameterValue": data_store_name, }, { "ParameterKey": "userAccountID", "ParameterValue": account_id, }, ], ) print("\t\tWaiting for stack to deploy. This typically takes a minute or two.") waiter = self.cf_resource.meta.client.get_waiter("stack_create_complete") waiter.wait(StackName=stack.name) stack.load() print(f"\t\tStack status: {stack.stack_status}") outputs_dictionary = { output["OutputKey"]: output["OutputValue"] for output in stack.outputs } self.input_bucket_name = outputs_dictionary["BucketName"] self.output_bucket_name = outputs_dictionary["BucketName"] self.role_arn = outputs_dictionary["RoleArn"] self.data_store_id = outputs_dictionary["DatastoreID"] return stack

Copie arquivos DICOM para o bucket de importação do Amazon S3.

def copy_single_object(self, key, source_bucket, target_bucket, target_directory): """ Copies a single object from a source to a target bucket. :param key: The key of the object to copy. :param source_bucket: The source bucket for the copy. :param target_bucket: The target bucket for the copy. :param target_directory: The target directory for the copy. """ new_key = target_directory + "/" + key copy_source = {"Bucket": source_bucket, "Key": key} self.s3_client.copy_object( CopySource=copy_source, Bucket=target_bucket, Key=new_key ) print(f"\n\t\tCopying {key}.") def copy_images( self, source_bucket, source_directory, target_bucket, target_directory ): """ Copies the images from the source to the target bucket using multiple threads. :param source_bucket: The source bucket for the images. :param source_directory: Directory within the source bucket. :param target_bucket: The target bucket for the images. :param target_directory: Directory within the target bucket. """ # Get list of all objects in source bucket. list_response = self.s3_client.list_objects_v2( Bucket=source_bucket, Prefix=source_directory ) objs = list_response["Contents"] keys = [obj["Key"] for obj in objs] # Copy the objects in the bucket. for key in keys: self.copy_single_object(key, source_bucket, target_bucket, target_directory) print("\t\tDone copying all objects.")

Importe os arquivos DICOM para o armazenamento de dados do Amazon S3.

class MedicalImagingWrapper: """Encapsulates AWS HealthImaging functionality.""" def __init__(self, medical_imaging_client, s3_client): """ :param medical_imaging_client: A Boto3 Amazon MedicalImaging client. :param s3_client: A Boto3 S3 client. """ self.medical_imaging_client = medical_imaging_client self.s3_client = s3_client @classmethod def from_client(cls): medical_imaging_client = boto3.client("medical-imaging") s3_client = boto3.client("s3") return cls(medical_imaging_client, s3_client) def start_dicom_import_job( self, data_store_id, input_bucket_name, input_directory, output_bucket_name, output_directory, role_arn, ): """ Routine which starts a HealthImaging import job. :param data_store_id: The HealthImaging data store ID. :param input_bucket_name: The name of the Amazon S3 bucket containing the DICOM files. :param input_directory: The directory in the S3 bucket containing the DICOM files. :param output_bucket_name: The name of the S3 bucket for the output. :param output_directory: The directory in the S3 bucket to store the output. :param role_arn: The ARN of the IAM role with permissions for the import. :return: The job ID of the import. """ input_uri = f"s3://{input_bucket_name}/{input_directory}/" output_uri = f"s3://{output_bucket_name}/{output_directory}/" try: job = self.medical_imaging_client.start_dicom_import_job( jobName="examplejob", datastoreId=data_store_id, dataAccessRoleArn=role_arn, inputS3Uri=input_uri, outputS3Uri=output_uri, ) except ClientError as err: logger.error( "Couldn't start DICOM import job. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return job["jobId"]

Obtenha conjuntos de imagens criados pelo trabalho de importação DICOM.

class MedicalImagingWrapper: """Encapsulates AWS HealthImaging functionality.""" def __init__(self, medical_imaging_client, s3_client): """ :param medical_imaging_client: A Boto3 Amazon MedicalImaging client. :param s3_client: A Boto3 S3 client. """ self.medical_imaging_client = medical_imaging_client self.s3_client = s3_client @classmethod def from_client(cls): medical_imaging_client = boto3.client("medical-imaging") s3_client = boto3.client("s3") return cls(medical_imaging_client, s3_client) def get_image_sets_for_dicom_import_job(self, datastore_id, import_job_id): """ Retrieves the image sets created for an import job. :param datastore_id: The HealthImaging data store ID :param import_job_id: The import job ID :return: List of image set IDs """ import_job = self.medical_imaging_client.get_dicom_import_job( datastoreId=datastore_id, jobId=import_job_id ) output_uri = import_job["jobProperties"]["outputS3Uri"] bucket = output_uri.split("/")[2] key = "/".join(output_uri.split("/")[3:]) # Try to get the manifest. retries = 3 while retries > 0: try: obj = self.s3_client.get_object( Bucket=bucket, Key=key + "job-output-manifest.json" ) body = obj["Body"] break except ClientError as error: retries = retries - 1 time.sleep(3) try: data = json.load(body) expression = jmespath.compile("jobSummary.imageSetsSummary[].imageSetId") image_sets = expression.search(data) except json.decoder.JSONDecodeError as error: image_sets = import_job["jobProperties"] return image_sets def get_image_set(self, datastore_id, image_set_id, version_id=None): """ Get the properties of an image set. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :param version_id: The optional version of the image set. :return: The image set properties. """ try: if version_id: image_set = self.medical_imaging_client.get_image_set( imageSetId=image_set_id, datastoreId=datastore_id, versionId=version_id, ) else: image_set = self.medical_imaging_client.get_image_set( imageSetId=image_set_id, datastoreId=datastore_id ) except ClientError as err: logger.error( "Couldn't get image set. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return image_set

Obtenha informações sobre os quadros de imagem de conjuntos de imagens.

class MedicalImagingWrapper: """Encapsulates AWS HealthImaging functionality.""" def __init__(self, medical_imaging_client, s3_client): """ :param medical_imaging_client: A Boto3 Amazon MedicalImaging client. :param s3_client: A Boto3 S3 client. """ self.medical_imaging_client = medical_imaging_client self.s3_client = s3_client @classmethod def from_client(cls): medical_imaging_client = boto3.client("medical-imaging") s3_client = boto3.client("s3") return cls(medical_imaging_client, s3_client) def get_image_frames_for_image_set(self, datastore_id, image_set_id, out_directory): """ Get the image frames for an image set. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :param out_directory: The directory to save the file. :return: The image frames. """ image_frames = [] file_name = os.path.join(out_directory, f"{image_set_id}_metadata.json.gzip") file_name = file_name.replace("/", "\\\\") self.get_image_set_metadata(file_name, datastore_id, image_set_id) try: with gzip.open(file_name, "rb") as f_in: doc = json.load(f_in) instances = jmespath.search("Study.Series.*.Instances[].*[]", doc) for instance in instances: rescale_slope = jmespath.search("DICOM.RescaleSlope", instance) rescale_intercept = jmespath.search("DICOM.RescaleIntercept", instance) image_frames_json = jmespath.search("ImageFrames[][]", instance) for image_frame in image_frames_json: checksum_json = jmespath.search( "max_by(PixelDataChecksumFromBaseToFullResolution, &Width)", image_frame, ) image_frame_info = { "imageSetId": image_set_id, "imageFrameId": image_frame["ID"], "rescaleIntercept": rescale_intercept, "rescaleSlope": rescale_slope, "minPixelValue": image_frame["MinPixelValue"], "maxPixelValue": image_frame["MaxPixelValue"], "fullResolutionChecksum": checksum_json["Checksum"], } image_frames.append(image_frame_info) return image_frames except TypeError: return {} except ClientError as err: logger.error( "Couldn't get image frames for image set. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise return image_frames def get_image_set_metadata( self, metadata_file, datastore_id, image_set_id, version_id=None ): """ Get the metadata of an image set. :param metadata_file: The file to store the JSON gzipped metadata. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :param version_id: The version of the image set. """ try: if version_id: image_set_metadata = self.medical_imaging_client.get_image_set_metadata( imageSetId=image_set_id, datastoreId=datastore_id, versionId=version_id, ) else: image_set_metadata = self.medical_imaging_client.get_image_set_metadata( imageSetId=image_set_id, datastoreId=datastore_id ) with open(metadata_file, "wb") as f: for chunk in image_set_metadata["imageSetMetadataBlob"].iter_chunks(): if chunk: f.write(chunk) except ClientError as err: logger.error( "Couldn't get image metadata. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

Baixe, decodifique e verifique os quadros de imagem.

class MedicalImagingWrapper: """Encapsulates AWS HealthImaging functionality.""" def __init__(self, medical_imaging_client, s3_client): """ :param medical_imaging_client: A Boto3 Amazon MedicalImaging client. :param s3_client: A Boto3 S3 client. """ self.medical_imaging_client = medical_imaging_client self.s3_client = s3_client @classmethod def from_client(cls): medical_imaging_client = boto3.client("medical-imaging") s3_client = boto3.client("s3") return cls(medical_imaging_client, s3_client) def get_pixel_data( self, file_path_to_write, datastore_id, image_set_id, image_frame_id ): """ Get an image frame's pixel data. :param file_path_to_write: The path to write the image frame's HTJ2K encoded pixel data. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. :param image_frame_id: The ID of the image frame. """ try: image_frame = self.medical_imaging_client.get_image_frame( datastoreId=datastore_id, imageSetId=image_set_id, imageFrameInformation={"imageFrameId": image_frame_id}, ) with open(file_path_to_write, "wb") as f: for chunk in image_frame["imageFrameBlob"].iter_chunks(): f.write(chunk) except ClientError as err: logger.error( "Couldn't get image frame. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise def download_decode_and_check_image_frames( self, data_store_id, image_frames, out_directory ): """ Downloads image frames, decodes them, and uses the checksum to validate the decoded images. :param data_store_id: The HealthImaging data store ID. :param image_frames: A list of dicts containing image frame information. :param out_directory: A directory for the downloaded images. :return: True if the function succeeded; otherwise, False. """ total_result = True for image_frame in image_frames: image_file_path = f"{out_directory}/image_{image_frame['imageFrameId']}.jph" self.get_pixel_data( image_file_path, data_store_id, image_frame["imageSetId"], image_frame["imageFrameId"], ) image_array = self.jph_image_to_opj_bitmap(image_file_path) crc32_checksum = image_frame["fullResolutionChecksum"] # Verify checksum. crc32_calculated = zlib.crc32(image_array) image_result = crc32_checksum == crc32_calculated print( f"\t\tImage checksum verified for {image_frame['imageFrameId']}: {image_result }" ) total_result = total_result and image_result return total_result @staticmethod def jph_image_to_opj_bitmap(jph_file): """ Decode the image to a bitmap using an OPENJPEG library. :param jph_file: The file to decode. :return: The decoded bitmap as an array. """ # Use format 2 for the JPH file. params = openjpeg.utils.get_parameters(jph_file, 2) print(f"\n\t\tImage parameters for {jph_file}: \n\t\t{params}") image_array = openjpeg.utils.decode(jph_file, 2) return image_array

Limpar recursos.

def destroy(self, stack): """ Destroys the resources managed by the CloudFormation stack, and the CloudFormation stack itself. :param stack: The CloudFormation stack that manages the example resources. """ print(f"\t\tCleaning up resources and {stack.name}.") data_store_id = None for oput in stack.outputs: if oput["OutputKey"] == "DatastoreID": data_store_id = oput["OutputValue"] if data_store_id is not None: print(f"\t\tDeleting image sets in data store {data_store_id}.") image_sets = self.medical_imaging_wrapper.search_image_sets( data_store_id, {} ) image_set_ids = [image_set["imageSetId"] for image_set in image_sets] for image_set_id in image_set_ids: self.medical_imaging_wrapper.delete_image_set( data_store_id, image_set_id ) print(f"\t\tDeleted image set with id : {image_set_id}") print(f"\t\tDeleting {stack.name}.") stack.delete() print("\t\tWaiting for stack removal. This may take a few minutes.") waiter = self.cf_resource.meta.client.get_waiter("stack_delete_complete") waiter.wait(StackName=stack.name) print("\t\tStack delete complete.") class MedicalImagingWrapper: """Encapsulates AWS HealthImaging functionality.""" def __init__(self, medical_imaging_client, s3_client): """ :param medical_imaging_client: A Boto3 Amazon MedicalImaging client. :param s3_client: A Boto3 S3 client. """ self.medical_imaging_client = medical_imaging_client self.s3_client = s3_client @classmethod def from_client(cls): medical_imaging_client = boto3.client("medical-imaging") s3_client = boto3.client("s3") return cls(medical_imaging_client, s3_client) def search_image_sets(self, datastore_id, search_filter): """ Search for image sets. :param datastore_id: The ID of the data store. :param search_filter: The search filter. For example: {"filters" : [{ "operator": "EQUAL", "values": [{"DICOMPatientId": "3524578"}]}]}. :return: The list of image sets. """ try: paginator = self.medical_imaging_client.get_paginator("search_image_sets") page_iterator = paginator.paginate( datastoreId=datastore_id, searchCriteria=search_filter ) metadata_summaries = [] for page in page_iterator: metadata_summaries.extend(page["imageSetsMetadataSummaries"]) except ClientError as err: logger.error( "Couldn't search image sets. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return metadata_summaries def delete_image_set(self, datastore_id, image_set_id): """ Delete an image set. :param datastore_id: The ID of the data store. :param image_set_id: The ID of the image set. """ try: delete_results = self.medical_imaging_client.delete_image_set( imageSetId=image_set_id, datastoreId=datastore_id ) except ClientError as err: logger.error( "Couldn't delete image set. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise
nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O exemplo de código a seguir mostra como marcar um armazenamento HealthImaging de dados.

SDK para Python (Boto3)

Marcar um datastore.

a_data_store_arn = "arn:aws:medical-imaging:us-east-1:123456789012:datastore/12345678901234567890123456789012" medical_imaging_wrapper.tag_resource(data_store_arn, {"Deployment": "Development"})

A função de utilitário para marcar um recurso.

class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def tag_resource(self, resource_arn, tags): """ Tag a resource. :param resource_arn: The ARN of the resource. :param tags: The tags to apply. """ try: self.health_imaging_client.tag_resource(resourceArn=resource_arn, tags=tags) except ClientError as err: logger.error( "Couldn't tag resource. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

Listar tags para um datastore.

a_data_store_arn = "arn:aws:medical-imaging:us-east-1:123456789012:datastore/12345678901234567890123456789012" medical_imaging_wrapper.list_tags_for_resource(data_store_arn)

A função de utilitário para listar as tags de um recurso.

class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def list_tags_for_resource(self, resource_arn): """ List the tags for a resource. :param resource_arn: The ARN of the resource. :return: The list of tags. """ try: tags = self.health_imaging_client.list_tags_for_resource( resourceArn=resource_arn ) except ClientError as err: logger.error( "Couldn't list tags for resource. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return tags["tags"]

Desmarcar um datastore.

a_data_store_arn = "arn:aws:medical-imaging:us-east-1:123456789012:datastore/12345678901234567890123456789012" medical_imaging_wrapper.untag_resource(data_store_arn, ["Deployment"])

A função de utilitário para desmarcar um recurso.

class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def untag_resource(self, resource_arn, tag_keys): """ Untag a resource. :param resource_arn: The ARN of the resource. :param tag_keys: The tag keys to remove. """ try: self.health_imaging_client.untag_resource( resourceArn=resource_arn, tagKeys=tag_keys ) except ClientError as err: logger.error( "Couldn't untag resource. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.

O exemplo de código a seguir mostra como marcar um conjunto de HealthImaging imagens.

SDK para Python (Boto3)

Marcar um conjunto de imagens

an_image_set_arn = ( "arn:aws:medical-imaging:us-east-1:123456789012:datastore/12345678901234567890123456789012/" "imageset/12345678901234567890123456789012" ) medical_imaging_wrapper.tag_resource(image_set_arn, {"Deployment": "Development"})

A função de utilitário para marcar um recurso.

class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def tag_resource(self, resource_arn, tags): """ Tag a resource. :param resource_arn: The ARN of the resource. :param tags: The tags to apply. """ try: self.health_imaging_client.tag_resource(resourceArn=resource_arn, tags=tags) except ClientError as err: logger.error( "Couldn't tag resource. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

Listar tags para um conjunto de imagens

an_image_set_arn = ( "arn:aws:medical-imaging:us-east-1:123456789012:datastore/12345678901234567890123456789012/" "imageset/12345678901234567890123456789012" ) medical_imaging_wrapper.list_tags_for_resource(image_set_arn)

A função de utilitário para listar as tags de um recurso.

class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def list_tags_for_resource(self, resource_arn): """ List the tags for a resource. :param resource_arn: The ARN of the resource. :return: The list of tags. """ try: tags = self.health_imaging_client.list_tags_for_resource( resourceArn=resource_arn ) except ClientError as err: logger.error( "Couldn't list tags for resource. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise else: return tags["tags"]

Desmarcar um conjunto de imagens

an_image_set_arn = ( "arn:aws:medical-imaging:us-east-1:123456789012:datastore/12345678901234567890123456789012/" "imageset/12345678901234567890123456789012" ) medical_imaging_wrapper.untag_resource(image_set_arn, ["Deployment"])

A função de utilitário para desmarcar um recurso.

class MedicalImagingWrapper: def __init__(self, health_imaging_client): self.health_imaging_client = health_imaging_client def untag_resource(self, resource_arn, tag_keys): """ Untag a resource. :param resource_arn: The ARN of the resource. :param tag_keys: The tag keys to remove. """ try: self.health_imaging_client.untag_resource( resourceArn=resource_arn, tagKeys=tag_keys ) except ClientError as err: logger.error( "Couldn't untag resource. Here's why: %s: %s", err.response["Error"]["Code"], err.response["Error"]["Message"], ) raise

O código a seguir instancia o MedicalImagingWrapper objeto.

client = boto3.client("medical-imaging") medical_imaging_wrapper = MedicalImagingWrapper(client)
nota

Tem mais sobre GitHub. Encontre o exemplo completo e saiba como configurar e executar no Repositório de exemplos de código da AWS.