As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.
Usar a pesquisa de texto completo do Neptune em consultas do Gremlin
O NeptuneSearchStep
permite consultas de pesquisa de texto completo para a parte de uma travessia do Gremlin que não é convertida em etapas do Neptune. Por exemplo, considere uma consulta como a seguinte.
g.withSideEffect("Neptune#fts.endpoint", "
your-es-endpoint-URL
") .V() .tail(100) .has("name", "Neptune#fts mark*") <== # Limit the search on name
Esta consulta é convertida no percurso a seguir no Neptune.
Neptune steps: [ NeptuneGraphQueryStep(Vertex) { JoinGroupNode { PatternNode[(?1, <~label>, ?2, <~>) . project distinct ?1 .], {estimatedCardinality=INFINITY} }, annotations={path=[Vertex(?1):GraphStep], maxVarId=4} }, NeptuneTraverserConverterStep ] + not converted into Neptune steps: [NeptuneTailGlobalStep(100), NeptuneTinkerpopTraverserConverterStep, NeptuneSearchStep { JoinGroupNode { SearchNode[(idVar=?3, query=mark*, field=name) . project ask .], {endpoint=your-OpenSearch-endpoint-URL} } JoinGroupNode { SearchNode[(idVar=?3, query=mark*, field=name) . project ask .], {endpoint=your-OpenSearch-endpoint-URL} } }]
Os exemplos a seguir são das consultas do Gremlin em relação a dados de rotas aéreas:
Consulta match
sem distinção de maiúsculas ou minúsculas do Gremlin
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'match') .V().has("city","Neptune#fts dallas") ==>v[186] ==>v[8]
Consulta match
do Gremlin
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'match') .V().has("city","Neptune#fts southampton") .local(values('code','city').fold()) .limit(5) ==>[SOU, Southampton]
Consulta fuzzy
do Gremlin
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .V().has("city","Neptune#fts allas~").values('city').limit(5) ==>Dallas ==>Dallas ==>Walla Walla ==>Velas ==>Altai
Consulta difusa query_string
do Gremlin
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'query_string') .V().has("city","Neptune#fts allas~").values('city').limit(5) ==>Dallas ==>Dallas
Consulta de expressão regular query_string
do Gremlin
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'query_string') .V().has("city","Neptune#fts /[dp]allas/").values('city').limit(5) ==>Dallas ==>Dallas
Consulta híbrida do Gremlin
Esta consulta usa um índice interno do Neptune e o índice do OpenSearch na mesma consulta.
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .V().has("region","GB-ENG") .has('city','Neptune#fts L*') .values('city') .dedup() .limit(10) ==>London ==>Leeds ==>Liverpool ==>Land's End
Exemplo de pesquisa de texto completo simples do Gremlin
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .V().has('desc','Neptune#fts regional municipal') .local(values('code','desc').fold()) .limit(100) ==>[HYA, Barnstable Municipal Boardman Polando Field] ==>[SPS, Sheppard Air Force Base-Wichita Falls Municipal Airport] ==>[ABR, Aberdeen Regional Airport] ==>[SLK, Adirondack Regional Airport] ==>[BFD, Bradford Regional Airport] ==>[EAR, Kearney Regional Airport] ==>[ROT, Rotorua Regional Airport] ==>[YHD, Dryden Regional Airport] ==>[TEX, Telluride Regional Airport] ==>[WOL, Illawarra Regional Airport] ==>[TUP, Tupelo Regional Airport] ==>[COU, Columbia Regional Airport] ==>[MHK, Manhattan Regional Airport] ==>[BJI, Bemidji Regional Airport] ==>[HAS, Hail Regional Airport] ==>[ALO, Waterloo Regional Airport] ==>[SHV, Shreveport Regional Airport] ==>[ABI, Abilene Regional Airport] ==>[GIZ, Jizan Regional Airport] ==>[USA, Concord Regional Airport] ==>[JMS, Jamestown Regional Airport] ==>[COS, City of Colorado Springs Municipal Airport] ==>[PKB, Mid Ohio Valley Regional Airport]
Consulta do Gremlin usando query_string
com operadores “+” e “-”
Embora o tipo de consulta query_string
seja muito menos tolerante que o tipo simple_query_string
padrão, ele não permite consultas mais precisas. A primeira consulta abaixo usa query_string
, enquanto a segunda usa o padrão simple_query_string
:
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'query_string') . V().has('desc','Neptune#fts +London -(Stansted|Gatwick)') .local(values('code','desc').fold()) .limit(10) ==>[LHR, London Heathrow] ==>[YXU, London Airport] ==>[LTN, London Luton Airport] ==>[SEN, London Southend Airport] ==>[LCY, London City Airport]
Observe como simple_query_string
nos exemplos abaixo ignora silenciosamente os operadores “+” e “-”:
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .V().has('desc','Neptune#fts +London -(Stansted|Gatwick)') .local(values('code','desc').fold()) .limit(10) ==>[LHR, London Heathrow] ==>[YXU, London Airport] ==>[LGW, London Gatwick] ==>[STN, London Stansted Airport] ==>[LTN, London Luton Airport] ==>[SEN, London Southend Airport] ==>[LCY, London City Airport] ==>[SKG, Thessaloniki Macedonia International Airport] ==>[ADB, Adnan Menderes International Airport] ==>[BTV, Burlington International Airport]
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'query_string') .V().has('desc','Neptune#fts +(regional|municipal) -(international|bradford)') .local(values('code','desc').fold()) .limit(10) ==>[CZH, Corozal Municipal Airport] ==>[MMU, Morristown Municipal Airport] ==>[YBR, Brandon Municipal Airport] ==>[RDD, Redding Municipal Airport] ==>[VIS, Visalia Municipal Airport] ==>[AIA, Alliance Municipal Airport] ==>[CDR, Chadron Municipal Airport] ==>[CVN, Clovis Municipal Airport] ==>[SDY, Sidney Richland Municipal Airport] ==>[SGU, St George Municipal Airport]
Consulte query_string
do Gremlin com operadores AND
e OR
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'query_string') .V().has('desc','Neptune#fts (St AND George) OR (St AND Augustin)') .local(values('code','desc').fold()) .limit(10) ==>[YIF, St Augustin Airport] ==>[STG, St George Airport] ==>[SGO, St George Airport] ==>[SGU, St George Municipal Airport]
Consulta term
do Gremlin
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'term') .V().has("SKU","Neptune#fts ABC123DEF9") .local(values('code','city').fold()) .limit(5) ==>[AUS, Austin]
Consulta prefix
do Gremlin
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'prefix') .V().has("icao","Neptune#fts ka") .local(values('code','icao','city').fold()) .limit(5) ==>[AZO, KAZO, Kalamazoo] ==>[APN, KAPN, Alpena] ==>[ACK, KACK, Nantucket] ==>[ALO, KALO, Waterloo] ==>[ABI, KABI, Abilene]
Usar a sintaxe Lucene em Gremlin no Neptune
No Gremlin no Neptune, também é possível gravar consultas muito avançadas usando a sintaxe de consulta Lucene. Observe que a sintaxe Lucene só é compatível com consultas query_string
no OpenSearch.
Suponha os seguintes dados:
g.addV("person") .property(T.id, "p1") .property("name", "simone") .property("surname", "rondelli") g.addV("person") .property(T.id, "p2") .property("name", "simone") .property("surname", "sengupta") g.addV("developer") .property(T.id, "p3") .property("name", "simone") .property("surname", "rondelli")
Usando a sintaxe Lucene, que é invocada quando queryType
for query_string
, é possível pesquisar esses dados por nome e sobrenome da seguinte forma:
g.withSideEffect("Neptune#fts.endpoint", "es_endpoint") .withSideEffect("Neptune#fts.queryType", "query_string") .V() .has("*", "Neptune#fts predicates.name.value:simone AND predicates.surname.value:rondelli") ==> v[p1], v[p3]
Observe que na etapa has()
acima, o campo é substituído por "*"
). Na verdade, qualquer valor inserido aqui será substituído pelos campos que você acessar na consulta. Acesse o campo do nome usando predicates.name.value,
porque é como o modelo de dados é estruturado.
É possível pesquisar por nome, sobrenome e rótulo da seguinte forma:
g.withSideEffect("Neptune#fts.endpoint", getEsEndpoint()) .withSideEffect("Neptune#fts.queryType", "query_string") .V() .has("*", "Neptune#fts predicates.name.value:simone AND predicates.surname.value:rondelli AND entity_type:person") ==> v[p1]
O rótulo é acessado usando entity_type
, novamente porque é como o modelo de dados é estruturado.
Também é possível incluir condições de aninhamento:
g.withSideEffect("Neptune#fts.endpoint", getEsEndpoint()) .withSideEffect("Neptune#fts.queryType", "query_string") .V() .has("*", "Neptune#fts (predicates.name.value:simone AND predicates.surname.value:rondelli AND entity_type:person) OR predicates.surname.value:sengupta") ==> v[p1], v[p2]
Inserir um grafo moderno do TinkerPop
g.addV('person').property(T.id, '1').property('name', 'marko').property('age', 29) .addV('personr').property(T.id, '2').property('name', 'vadas').property('age', 27) .addV('software').property(T.id, '3').property('name', 'lop').property('lang', 'java') .addV('person').property(T.id, '4').property('name', 'josh').property('age', 32) .addV('software').property(T.id, '5').property('name', 'ripple').property('lang', 'java') .addV('person').property(T.id, '6').property('name', 'peter').property('age', 35) g.V('1').as('a').V('2').as('b').addE('knows').from('a').to('b').property('weight', 0.5f).property(T.id, '7') .V('1').as('a').V('3').as('b').addE('created').from('a').to('b').property('weight', 0.4f).property(T.id, '9') .V('4').as('a').V('3').as('b').addE('created').from('a').to('b').property('weight', 0.4f).property(T.id, '11') .V('4').as('a').V('5').as('b').addE('created').from('a').to('b').property('weight', 1.0f).property(T.id, '10') .V('6').as('a').V('3').as('b').addE('created').from('a').to('b').property('weight', 0.2f).property(T.id, '12') .V('1').as('a').V('4').as('b').addE('knows').from('a').to('b').property('weight', 1.0f).property(T.id, '8')
Exemplo de valor do campo de classificação por string
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'query_string') .withSideEffect('Neptune#fts.sortOrder', 'asc') .withSideEffect('Neptune#fts.sortBy', 'name') .V().has('name', 'Neptune#fts marko OR vadas OR ripple')
Exemplo de valor do campo de classificação sem string
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'query_string') .withSideEffect('Neptune#fts.sortOrder', 'asc') .withSideEffect('Neptune#fts.sortBy', 'age.value') .V().has('name', 'Neptune#fts marko OR vadas OR ripple')
Exemplo de valor do campo de classificação por ID
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'query_string') .withSideEffect('Neptune#fts.sortOrder', 'asc') .withSideEffect('Neptune#fts.sortBy', 'Neptune#fts.entity_id') .V().has('name', 'Neptune#fts marko OR vadas OR ripple')
Exemplo de valor do campo de classificação por rótulo
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'query_string') .withSideEffect('Neptune#fts.sortOrder', 'asc') .withSideEffect('Neptune#fts.sortBy', 'Neptune#fts.entity_type') .V().has('name', 'Neptune#fts marko OR vadas OR ripple')
Exemplo de valor do campo de classificação por document_type
g.withSideEffect("Neptune#fts.endpoint", "
your-OpenSearch-endpoint-URL
") .withSideEffect('Neptune#fts.queryType', 'query_string') .withSideEffect('Neptune#fts.sortOrder', 'asc') .withSideEffect('Neptune#fts.sortBy', 'Neptune#fts.document_type') .V().has('name', 'Neptune#fts marko OR vadas OR ripple')