Use o SageMakerEstimator em um Spark Pipeline - Amazon SageMaker

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.

Use o SageMakerEstimator em um Spark Pipeline

Você pode usar estimadores org.apache.spark.ml.Estimator e modelos org.apache.spark.ml.Model, bem como estimadores SageMakerEstimator e modelos SageMakerModel em pipelines org.apache.spark.ml.Pipeline, conforme mostrado no exemplo a seguir:

import org.apache.spark.ml.Pipeline import org.apache.spark.ml.feature.PCA import org.apache.spark.sql.SparkSession import com.amazonaws.services.sagemaker.sparksdk.IAMRole import com.amazonaws.services.sagemaker.sparksdk.algorithms import com.amazonaws.services.sagemaker.sparksdk.algorithms.KMeansSageMakerEstimator val spark = SparkSession.builder.getOrCreate // load mnist data as a dataframe from libsvm val region = "us-east-1" val trainingData = spark.read.format("libsvm") .option("numFeatures", "784") .load(s"s3://sagemaker-sample-data-$region/spark/mnist/train/") val testData = spark.read.format("libsvm") .option("numFeatures", "784") .load(s"s3://sagemaker-sample-data-$region/spark/mnist/test/") // substitute your SageMaker IAM role here val roleArn = "arn:aws:iam::account-id:role/rolename" val pcaEstimator = new PCA() .setInputCol("features") .setOutputCol("projectedFeatures") .setK(50) val kMeansSageMakerEstimator = new KMeansSageMakerEstimator( sagemakerRole = IAMRole(integTestingRole), requestRowSerializer = new ProtobufRequestRowSerializer(featuresColumnName = "projectedFeatures"), trainingSparkDataFormatOptions = Map("featuresColumnName" -> "projectedFeatures"), trainingInstanceType = "ml.p2.xlarge", trainingInstanceCount = 1, endpointInstanceType = "ml.c4.xlarge", endpointInitialInstanceCount = 1) .setK(10).setFeatureDim(50) val pipeline = new Pipeline().setStages(Array(pcaEstimator, kMeansSageMakerEstimator)) // train val pipelineModel = pipeline.fit(trainingData) val transformedData = pipelineModel.transform(testData) transformedData.show()

O parâmetro trainingSparkDataFormatOptions configura o Spark para serializar para protobuf a coluna "projectedFeatures" para treinamento do modelo. Além disso, o Spark serializa para protobuf a coluna "label" por padrão.

Como queremos fazer inferências usando a coluna "projectedFeatures", passamos o nome da coluna para o. ProtobufRequestRowSerializer

O exemplo a seguir mostra um DataFrame transformado:

+-----+--------------------+--------------------+-------------------+---------------+ |label| features| projectedFeatures|distance_to_cluster|closest_cluster| +-----+--------------------+--------------------+-------------------+---------------+ | 5.0|(784,[152,153,154...|[880.731433034386...| 1500.470703125| 0.0| | 0.0|(784,[127,128,129...|[1768.51722024166...| 1142.18359375| 4.0| | 4.0|(784,[160,161,162...|[704.949236329314...| 1386.246826171875| 9.0| | 1.0|(784,[158,159,160...|[-42.328192193771...| 1277.0736083984375| 5.0| | 9.0|(784,[208,209,210...|[374.043902028333...| 1211.00927734375| 3.0| | 2.0|(784,[155,156,157...|[941.267714528850...| 1496.157958984375| 8.0| | 1.0|(784,[124,125,126...|[30.2848596410594...| 1327.6766357421875| 5.0| | 3.0|(784,[151,152,153...|[1270.14374062052...| 1570.7674560546875| 0.0| | 1.0|(784,[152,153,154...|[-112.10792566485...| 1037.568359375| 5.0| | 4.0|(784,[134,135,161...|[452.068280676606...| 1165.1236572265625| 3.0| | 3.0|(784,[123,124,125...|[610.596447285397...| 1325.953369140625| 7.0| | 5.0|(784,[216,217,218...|[142.959601818422...| 1353.4930419921875| 5.0| | 3.0|(784,[143,144,145...|[1036.71862533658...| 1460.4315185546875| 7.0| | 6.0|(784,[72,73,74,99...|[996.740157435754...| 1159.8631591796875| 2.0| | 1.0|(784,[151,152,153...|[-107.26076167417...| 960.963623046875| 5.0| | 7.0|(784,[211,212,213...|[619.771820430940...| 1245.13623046875| 6.0| | 2.0|(784,[151,152,153...|[850.152101817161...| 1304.437744140625| 8.0| | 8.0|(784,[159,160,161...|[370.041887230547...| 1192.4781494140625| 0.0| | 6.0|(784,[100,101,102...|[546.674328209335...| 1277.0908203125| 2.0| | 9.0|(784,[209,210,211...|[-29.259112927426...| 1245.8182373046875| 6.0| +-----+--------------------+--------------------+-------------------+---------------+