Registrar uma versão do modelo - Amazon SageMaker

Registrar uma versão do modelo

Você pode registrar um modelo do Amazon SageMaker criando uma versão do modelo que especifica o grupo de modelos ao qual ele pertence. Uma versão do modelo deve incluir os artefatos do modelo (os pesos treinados de um modelo) e o código de inferência do modelo.

Um pipeline de inferência é um modelo do Amazon SageMaker composto por uma sequência linear de dois a 15 contêineres que processam solicitações de inferências. Você registra um pipeline de inferência especificando os contêineres e as variáveis de ambiente associadas. Para obter mais informações sobre os pipelines de inferência, consulte Pipelines de inferência no Amazon SageMaker.

Você pode registrar um modelo com um pipeline de inferência especificando os contêineres e as variáveis de ambiente associadas. Para criar uma versão do modelo com um pipeline de inferência usando oAWS SDK for Python (Boto3) ou o console do Amazon SageMaker Studio ou criando uma etapa em um pipeline de criação de modelos do SageMaker, use as etapas a seguir.

Registrar uma versão do modelo (Pipelines do SageMaker)

Para registrar uma versão do modelo usando um pipeline de construção de modelos do SageMaker, crie uma etapa RegisterModel no seu pipeline. Para obter mais informações sobre a criação de uma etapa RegisterModel de um pipeline, consulte Etapa 8: defina uma etapa RegisterModel para criar um pacote de modelos.

Registrar uma versão do modelo (Boto3)

Para registrar uma versão do modelo usando o Boto3, chame a operação de API create_model_package.

Primeiro, você configura o dicionário de parâmetros para passar a operação de API create_model_package.

# Specify the model source model_url = "s3://your-bucket-name/model.tar.gz" modelpackage_inference_specification = { "InferenceSpecification": { "Containers": [ { "Image": image_uri, "ModelDataUrl": model_url } ], "SupportedContentTypes": [ "text/csv" ], "SupportedResponseMIMETypes": [ "text/csv" ], } } # Alternatively, you can specify the model source like this: # modelpackage_inference_specification["InferenceSpecification"]["Containers"][0]["ModelDataUrl"]=model_url create_model_package_input_dict = { "ModelPackageGroupName" : model_package_group_name, "ModelPackageDescription" : "Model to detect 3 different types of irises (Setosa, Versicolour, and Virginica)", "ModelApprovalStatus" : "PendingManualApproval" } create_model_package_input_dict.update(modelpackage_inference_specification)

Em seguida, você chama a operação de API create_model_package, passando no dicionário de parâmetros que você acabou de configurar.

create_model_package_response = sm_client.create_model_package(**create_model_package_input_dict) model_package_arn = create_model_package_response["ModelPackageArn"] print('ModelPackage Version ARN : {}'.format(model_package_arn))

Registrar uma versão do modelo (Studio ou Studio Classic)

Para registrar uma versão do modelo no console do Amazon SageMaker Studio, conclua as etapas a seguir com base no uso do Studio ou do Studio Classic.

Studio
  1. Abra o console do SageMaker Studio seguindo as instruções em Iniciar Amazon SageMaker Studio.

  2. No painel de navegação à esquerda, selecione Modelos no menu.

  3. Escolha a guia Modelos registrados, se ainda não estiver selecionada.

  4. Logo abaixo da etiqueta da guia Modelos registrados, escolha Grupos de modelos, se ainda não estiver selecionado.

  5. Escolha Registrar e, em seguida, escolha Versão do modelo.

  6. No formulário Registrar versão do modelo, insira as seguintes informações:

    • Na lista suspensa Nome do grupo de modelos, selecione o nome do grupo de modelos ao qual a versão pertence.

    • (Opcional) Insira uma descrição para sua versão do modelo.

    • No menu suspenso Status da aprovação do modelo, selecione o status da aprovação da versão.

    • (Opcional) No campo Metadados personalizados, escolha + Adicionar novos e adicione tags personalizadas como pares de valores-chave.

  7. Escolha Próximo.

  8. No formulário Especificação de inferência, insira as seguintes informações:

    • Em Localização da imagem de inferência (ECR), insira a localização da imagem de inferência do Amazon ECR.

    • Em Localização do artefato do modelo (S3), insira a localização do bucket do Amazon S3 referente aos artefatos de dados do modelo.

    • Para especificar e inserir configurações de dados de entrada ou variáveis de ambiente, escolha Configuração adicional e insira essas informações.

    • Para adicionar mais contêineres, escolha + Adicionar contêiner.

    • Em Tipo de instância de inferência em tempo real, insira o tipo de instância a ser usado para inferência em tempo real.

    • Em Tipo de instância de inferência de transformação, insira o tipo de instância a ser usado para transformações em lote.

    • Em Tipos de conteúdo compatíveis, insira seus tipos de MIME de entrada.

    • Em Tipos de conteúdo de resposta compatíveis, insira seus tipos de MIME de saída.

  9. Escolha Próximo.

  10. No formulário opcional Recomendação de inferência, insira as seguintes informações:

    • Em Problema empresarial, escolha a aplicação que se aplica ao seu modelo.

    • Em Tarefa, escolha o tipo de problema que se aplica ao seu modelo.

    • Para o Endereço do bucket do S3, insira a localização do bucket do Amazon S3 da carga útil de amostra.

    • Para o primeiro contêiner, forneça as seguintes informações:

      • Para Nome do modelo, insira o nome do modelo usado nos zoológicos modelo.

      • Para Estrutura, escolha uma estrutura.

      • Em Versão do framework, insira uma versão de estrutura.

    • Repita a etapa anterior para todos os contêineres.

  11. Escolha Próximo.

  12. Marque a caixa de seleção ao lado de uma ou mais métricas de modelos exibidas.

  13. Escolha Próximo.

  14. Verifique se as configurações exibidas estão corretas e escolha Registrar versão do modelo. Se, posteriormente, você vir uma janela modal com uma mensagem de erro, escolha Exibir (ao lado da mensagem) para visualizar a origem do erro.

  15. Confirme se a nova versão do modelo aparece na página do grupo de modelos principais.

Studio Classic
  1. Faça login no Amazon SageMaker Studio Classic. Para obter mais informações, consulte Iniciar o Amazon SageMaker Studio Classic.

  2. No painel de navegação à esquerda, selecione o ícone Início ( Black square icon representing a placeholder or empty image. ).

  3. Escolha Modelos e, em seguida, Registro de modelo.

  4. Abra o formulário Registrar versão. É possível fazer isso de duas formas:

    • Escolha Ações e, em seguida, escolha Criar versão do modelo.

    • Selecione o nome do grupo de modelos para o qual você deseja criar uma versão do modelo e escolha Criar versão do modelo.

  5. No formulário Registrar versão do modelo, insira as seguintes informações:

    • No menu suspenso Nome do grupo de pacotes de modelos, selecione o nome do grupo de modelos.

    • (Opcional) Insira uma descrição para sua versão do modelo.

    • No menu suspenso Status da aprovação do modelo, selecione o status da aprovação da versão.

    • (Opcional) No campo Metadados personalizados, adicione tags personalizadas como pares de valores-chave.

  6. Escolha Próximo.

  7. No formulário Especificação de inferência, insira as seguintes informações:

    • Insira o local da sua imagem de inferência.

    • Insira o local do artefato de dados do modelo.

    • (Opcional) Insira informações sobre as imagens preferidas para trabalhos de inferência em tempo real e transformação, além dos tipos de MIME de entrada e saída compatíveis.

  8. Escolha Próximo.

  9. (Opcional) Forneça detalhes para ajudar nas recomendações de endpoints.

  10. Escolha Próximo.

  11. (Opcional) Escolha as métricas do modelo que você deseja incluir.

  12. Escolha Próximo.

  13. Verifique se as configurações exibidas estão corretas e escolha Registrar versão do modelo. Se, posteriormente, você vir uma janela modal com uma mensagem de erro, escolha Exibir (ao lado da mensagem) para visualizar a origem do erro.

  14. Confirme se a nova versão do modelo aparece na página do grupo de modelos principais.

Registrar uma versão do modelo de uma conta diferente

Para registrar versões do modelo com um grupo de modelos criado por uma conta da AWS diferente, você deve adicionar uma política de AWS Identity and Access Management recursos entre contas para habilitar essa conta. Por exemplo, uma conta da AWS em sua organização é responsável pelos modelos de treinamento e uma conta diferente é responsável por gerenciar, implantar e atualizar modelos. Você cria políticas de recursos do IAM e aplica as políticas ao recurso de contas específicas ao qual deseja conceder acesso para esse caso. Para obter mais informações sobre políticas de recursos entre contas na AWS, consulte Lógica de avaliação de políticas entre contas no Guia do usuário do AWS Identity and Access Management.

nota

Você também deve usar uma chave do KMS para criptografar a ação de configurar dados de saída durante o treinamento para implantação do modelo entre contas.

Para habilitar o registro do modelo entre contas no SageMaker, você precisa fornecer uma política de recursos entre contas para o Grupo de modelos que contém as versões do modelo. Veja a seguir um exemplo que cria políticas entre contas para o Grupo de Modelos e aplica essas políticas a esse recurso específico.

A configuração a seguir deve ser definida na conta de origem, que registra modelos entre contas em um grupo de modelos. Neste exemplo, a conta de origem é a conta de treinamento de modelos que treinará e, em seguida, registrará o modelo entre contas no Registro do Modelo da conta do Registro do Modelo.

O exemplo pressupõe que você tenha definido anteriormente as seguintes variáveis:

  • sm_client: Um cliente Boto3 do SageMaker.

  • model_package_group_name: O grupo de modelos ao qual você deseja conceder acesso.

  • model_package_group_arn: O ARN do grupo de modelos ao qual você deseja conceder acesso entre contas.

  • bucket: O bucket do Amazon S3 em que os artefatos de treinamento de modelos são armazenados.

Para poder implantar um modelo criado em uma conta diferente, o usuário deve ter uma função que tenha acesso às ações do SageMaker, como uma função com a política gerenciada de AmazonSageMakerFullAccess. Para obter mais informações sobre políticas gerenciadas do SageMaker, consulte Políticas gerenciadas pela AWS para o Amazon SageMaker.

Políticas de recursos do IAM obrigatórias

O diagrama a seguir captura as políticas necessárias para permitir o registro do modelo entre contas. Conforme mostrado, essas políticas precisam estar ativas durante o treinamento do modelo para registrar adequadamente o modelo na conta do Registro de Modelos.

As políticas necessárias para registrar modelos entre contas.

O Amazon ECR, o Amazon S3 AWS KMS e as políticas são demonstradas nos seguintes exemplos de código:

Exemplo de política do Amazon ECR

{ "Version": "2012-10-17", "Statement": [ { "Sid": "AddPerm", "Effect": "Allow", "Principal": { "AWS": "arn:aws:iam::{model_registry_account}:root" }, "Action": [ "ecr:BatchGetImage", "ecr:Describe*" ] } ] }

Exemplo de política do Amazon S3

{ "Version": "2012-10-17", "Statement": [ { "Sid": "AddPerm", "Effect": "Allow", "Principal": { "AWS": "arn:aws:iam::{model_registry_account}:root" }, "Action": [ "s3:GetObject", "s3:GetBucketAcl", "s3:GetObjectAcl" ], "Resource": "arn:aws:s3:::{bucket}/*" } ] }

Exemplo da política do AWS KMS

{ "Version": "2012-10-17", "Statement": [ { "Sid": "AddPerm", "Effect": "Allow", "Principal": { "AWS": "arn:aws:iam::{model_registry_account}:root" }, "Action": [ "kms:Decrypt", "kms:GenerateDataKey*" ], "Resource": "*" } ] }

Aplicar políticas de recursos às contas

A configuração de política a seguir aplica as políticas abordadas na seção anterior e deve ser colocada na conta de treinamento de modelos.

import json # The Model Registry account id of the Model Group model_registry_account = "111111111111" # The model training account id where training happens model_training_account = "222222222222" # 1. Create a policy for access to the ECR repository # in the model training account for the Model Registry account Model Group ecr_repository_policy = {"Version": "2012-10-17", "Statement": [{"Sid": "AddPerm", "Effect": "Allow", "Principal": { "AWS": f"arn:aws:iam::{model_registry_account}:root" }, "Action": [ "ecr:BatchGetImage", "ecr:Describe*" ] }] } # Convert the ECR policy from JSON dict to string ecr_repository_policy = json.dumps(ecr_repository_policy) # Set the new ECR policy ecr = boto3.client('ecr') response = ecr.set_repository_policy( registryId = model_training_account, repositoryName = "decision-trees-sample", policyText = ecr_repository_policy ) # 2. Create a policy in the model training account for access to the S3 bucket # where the model is present in the Model Registry account Model Group bucket_policy = {"Version": "2012-10-17", "Statement": [{"Sid": "AddPerm", "Effect": "Allow", "Principal": {"AWS": f"arn:aws:iam::{model_registry_account}:root" }, "Action": [ "s3:GetObject", "s3:GetBucketAcl", "s3:GetObjectAcl" ], "Resource": [ "arn:aws:s3:::{bucket}/*", "Resource: arn:aws:s3:::{bucket}" ] }] } # Convert the S3 policy from JSON dict to string bucket_policy = json.dumps(bucket_policy) # Set the new bucket policy s3 = boto3.client("s3") response = s3.put_bucket_policy( Bucket = bucket, Policy = bucket_policy) # 3. Create the KMS grant for the key used during training for encryption # in the model training account to the Model Registry account Model Group client = boto3.client("kms") response = client.create_grant( GranteePrincipal=model_registry_account, KeyId=kms_key_id Operations=[ "Decrypt", "GenerateDataKey", ], )

A configuração a seguir precisa ser colocada na conta do Registro do Modelo em que o Grupo de Modelos existe.

# The Model Registry account id of the Model Group model_registry_account = "111111111111" # 1. Create policy to allow the model training account to access the ModelPackageGroup model_package_group_policy = {"Version": "2012-10-17", "Statement": [ { "Sid": "AddPermModelPackageVersion", "Effect": "Allow", "Principal": {"AWS": f"arn:aws:iam::{model_training_account}:root"}, "Action": ["sagemaker:CreateModelPackage"], "Resource": f"arn:aws:sagemaker:{region}:{model_registry_account}:model-package/{model_package_group_name}/*" } ] } # Convert the policy from JSON dict to string model_package_group_policy = json.dumps(model_package_group_policy) # Set the new policy response = sm_client.put_model_package_group_policy( ModelPackageGroupName = model_package_group_name, ResourcePolicy = model_package_group_policy)

Por fim, use a ação create_model_package a partir da conta de treinamento de modelos para registrar o pacote de modelos entre contas.

# Specify the model source model_url = "s3://{bucket}/model.tar.gz" #Set up the parameter dictionary to pass to the create_model_package API operation modelpackage_inference_specification = { "InferenceSpecification": { "Containers": [ { "Image": f"{model_training_account}.dkr.ecr.us-east-2.amazonaws.com/decision-trees-sample:latest", "ModelDataUrl": model_url } ], "SupportedContentTypes": [ "text/csv" ], "SupportedResponseMIMETypes": [ "text/csv" ], } } # Alternatively, you can specify the model source like this: # modelpackage_inference_specification["InferenceSpecification"]["Containers"][0]["ModelDataUrl"]=model_url create_model_package_input_dict = { "ModelPackageGroupName" : model_package_group_arn, "ModelPackageDescription" : "Model to detect 3 different types of irises (Setosa, Versicolour, and Virginica)", "ModelApprovalStatus" : "PendingManualApproval" } create_model_package_input_dict.update(modelpackage_inference_specification) # Create the model package in the Model Registry account create_model_package_response = sm_client.create_model_package(**create_model_package_input_dict) model_package_arn = create_model_package_response["ModelPackageArn"] print('ModelPackage Version ARN : {}'.format(model_package_arn))