Analisando faturas e recibos com o Amazon Textract - Amazon Textract

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.

Analisando faturas e recibos com o Amazon Textract

Para analisar documentos de fatura e recebimento, use a API AnalyzeExpense e passa um arquivo de documento como entrada.AnalyzeExpenseé uma operação síncrona que retorna uma estrutura JSON que contém o texto analisado. Para obter mais informações, consulte Analisando faturas e recibos.

Para analisar faturas e recebimentos de forma assíncrona, useStartExpenseAnalysispara começar a processar um arquivo de documento de entrada e usarGetExpenseAnalysispara obter os resultados.

Você pode fornecer um documento de entrada como uma matriz de bytes de imagem (bytes de imagem codificados em base64) ou um objeto do Amazon S3. Neste procedimento, você carrega um arquivo de imagem no bucket do S3 e especifica o nome do arquivo.

Para analisar uma fatura ou recibo (API)
  1. Se ainda não tiver feito isso:

    1. Criar ou atualizar um usuário do IAM comAmazonTextractFullAccesseAmazonS3ReadOnlyAccesspermissões. Para obter mais informações, consulte Etapa 1: Configurar uma conta da AWS e criar um usuário do IAM.

    2. Instale e configure a AWS CLI e os SDKs da AWS. Para obter mais informações, consulte Etapa 2: Configurar aAWS CLIeAWSSDKs da.

  2. Carregue uma imagem que contenha um documento no bucket do S3.

    Para obter instruções, consulteCarregar objetos no Amazon S3noGuia do usuário do Amazon Simple Storage Service.

  3. Use os exemplos a seguir para chamar a operação AnalyzeExpense.

    CLI
    aws textract analyze-expense --document '{"S3Object": {"Bucket": "bucket name","Name": "object name"}}'
    Python
    import boto3 import io from PIL import Image, ImageDraw def draw_bounding_box(key, val, width, height, draw): # If a key is Geometry, draw the bounding box info in it if "Geometry" in key: # Draw bounding box information box = val["BoundingBox"] left = width * box['Left'] top = height * box['Top'] draw.rectangle([left, top, left + (width * box['Width']), top + (height * box['Height'])], outline='black') # Takes a field as an argument and prints out the detected labels and values def print_labels_and_values(field): # Only if labels are detected and returned if "LabelDetection" in field: print("Summary Label Detection - Confidence: {}".format( str(field.get("LabelDetection")["Confidence"])) + ", " + "Summary Values: {}".format(str(field.get("LabelDetection")["Text"]))) print(field.get("LabelDetection")["Geometry"]) else: print("Label Detection - No labels returned.") if "ValueDetection" in field: print("Summary Value Detection - Confidence: {}".format( str(field.get("ValueDetection")["Confidence"])) + ", " + "Summary Values: {}".format(str(field.get("ValueDetection")["Text"]))) print(field.get("ValueDetection")["Geometry"]) else: print("Value Detection - No values returned") def process_text_detection(bucket, document): # Get the document from S3 s3_connection = boto3.resource('s3') s3_object = s3_connection.Object(bucket, document) s3_response = s3_object.get() # opening binary stream using an in-memory bytes buffer stream = io.BytesIO(s3_response['Body'].read()) # loading stream into image image = Image.open(stream) # Detect text in the document client = boto3.client('textract', region_name="us-east-1") # process using S3 object response = client.analyze_expense( Document={'S3Object': {'Bucket': bucket, 'Name': document}}) # Set width and height to display image and draw bounding boxes # Create drawing object width, height = image.size draw = ImageDraw.Draw(image) for expense_doc in response["ExpenseDocuments"]: for line_item_group in expense_doc["LineItemGroups"]: for line_items in line_item_group["LineItems"]: for expense_fields in line_items["LineItemExpenseFields"]: print_labels_and_values(expense_fields) print() print("Summary:") for summary_field in expense_doc["SummaryFields"]: print_labels_and_values(summary_field) print() #For draw bounding boxes for line_item_group in expense_doc["LineItemGroups"]: for line_items in line_item_group["LineItems"]: for expense_fields in line_items["LineItemExpenseFields"]: for key, val in expense_fields["ValueDetection"].items(): if "Geometry" in key: draw_bounding_box(key, val, width, height, draw) for label in expense_doc["SummaryFields"]: if "LabelDetection" in label: for key, val in label["LabelDetection"].items(): draw_bounding_box(key, val, width, height, draw) # Display the image image.show() def main(): bucket = 'Bucket-Name' document = 'Document-Name' process_text_detection(bucket, document) if __name__ == "__main__": main()
    Java
    package com.amazonaws.samples; import java.awt.*; import java.awt.image.BufferedImage; import java.io.ByteArrayInputStream; import java.io.IOException; import java.util.List; import java.util.concurrent.CompletableFuture; import javax.imageio.ImageIO; import javax.swing.*; import software.amazon.awssdk.auth.credentials.AwsBasicCredentials; import software.amazon.awssdk.auth.credentials.StaticCredentialsProvider; import software.amazon.awssdk.core.ResponseBytes; import software.amazon.awssdk.core.async.AsyncResponseTransformer; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.s3.*; import software.amazon.awssdk.services.s3.model.GetObjectRequest; import software.amazon.awssdk.services.s3.model.GetObjectResponse; import software.amazon.awssdk.services.textract.TextractClient; import software.amazon.awssdk.services.textract.model.AnalyzeExpenseRequest; import software.amazon.awssdk.services.textract.model.AnalyzeExpenseResponse; import software.amazon.awssdk.services.textract.model.BoundingBox; import software.amazon.awssdk.services.textract.model.Document; import software.amazon.awssdk.services.textract.model.ExpenseDocument; import software.amazon.awssdk.services.textract.model.ExpenseField; import software.amazon.awssdk.services.textract.model.LineItemFields; import software.amazon.awssdk.services.textract.model.LineItemGroup; import software.amazon.awssdk.services.textract.model.S3Object; import software.amazon.awssdk.services.textract.model.Point; /** * * Demo code to parse Textract AnalyzeExpense API * */ public class TextractAnalyzeExpenseSample extends JPanel { private static final long serialVersionUID = 1L; BufferedImage image; static AnalyzeExpenseResponse result; public TextractAnalyzeExpenseSample(AnalyzeExpenseResponse documentResult, BufferedImage bufImage) throws Exception { super(); result = documentResult; // Results of analyzeexpense summaryfields and lineitemgroups detection. image = bufImage; // The image containing the document. } // Draws the image and text bounding box. public void paintComponent(Graphics g) { Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g. // Draw the image. g2d.drawImage(image, 0, 0, image.getWidth(this), image.getHeight(this), this); // Iterate through summaryfields and lineitemgroups and display boundedboxes around lines of detected label and value. List<ExpenseDocument> expenseDocuments = result.expenseDocuments(); for (ExpenseDocument expenseDocument : expenseDocuments) { if (expenseDocument.hasSummaryFields()) { DisplayAnalyzeExpenseSummaryInfo(expenseDocument); List<ExpenseField> summaryfields = expenseDocument.summaryFields(); for (ExpenseField summaryfield : summaryfields) { if (summaryfield.valueDetection() != null) { ShowBoundingBox(image.getHeight(this), image.getWidth(this), summaryfield.valueDetection().geometry().boundingBox(), g2d, new Color(0, 0, 0)); } if (summaryfield.labelDetection() != null) { ShowBoundingBox(image.getHeight(this), image.getWidth(this), summaryfield.labelDetection().geometry().boundingBox(), g2d, new Color(0, 0, 0)); } } } if (expenseDocument.hasLineItemGroups()) { DisplayAnalyzeExpenseLineItemGroupsInfo(expenseDocument); List<LineItemGroup> lineitemgroups = expenseDocument.lineItemGroups(); for (LineItemGroup lineitemgroup : lineitemgroups) { if (lineitemgroup.hasLineItems()) { List<LineItemFields> lineItems = lineitemgroup.lineItems(); for (LineItemFields lineitemfield : lineItems) { if (lineitemfield.hasLineItemExpenseFields()) { List<ExpenseField> expensefields = lineitemfield.lineItemExpenseFields(); for (ExpenseField expensefield : expensefields) { if (expensefield.valueDetection() != null) { ShowBoundingBox(image.getHeight(this), image.getWidth(this), expensefield.valueDetection().geometry().boundingBox(), g2d, new Color(0, 0, 0)); } if (expensefield.labelDetection() != null) { ShowBoundingBox(image.getHeight(this), image.getWidth(this), expensefield.labelDetection().geometry().boundingBox(), g2d, new Color(0, 0, 0)); } } } } } } } } } // Show bounding box at supplied location. private void ShowBoundingBox(float imageHeight, float imageWidth, BoundingBox box, Graphics2D g2d, Color color) { float left = imageWidth * box.left(); float top = imageHeight * box.top(); // Display bounding box. g2d.setColor(color); g2d.drawRect(Math.round(left), Math.round(top), Math.round(imageWidth * box.width()), Math.round(imageHeight * box.height())); } private void ShowSelectedElement(float imageHeight, float imageWidth, BoundingBox box, Graphics2D g2d, Color color) { float left = (float) imageWidth * (float) box.left(); float top = (float) imageHeight * (float) box.top(); System.out.println(left); System.out.println(top); // Display bounding box. g2d.setColor(color); g2d.fillRect(Math.round(left), Math.round(top), Math.round(imageWidth * box.width()), Math.round(imageHeight * box.height())); } // Shows polygon at supplied location private void ShowPolygon(int imageHeight, int imageWidth, List<Point> points, Graphics2D g2d) { g2d.setColor(new Color(0, 0, 0)); Polygon polygon = new Polygon(); // Construct polygon and display for (Point point : points) { polygon.addPoint((Math.round(point.x() * imageWidth)), Math.round(point.y() * imageHeight)); } g2d.drawPolygon(polygon); } private void DisplayAnalyzeExpenseSummaryInfo(ExpenseDocument expensedocument) { System.out.println(" ExpenseId : " + expensedocument.expenseIndex()); System.out.println(" Expense Summary information:"); if (expensedocument.hasSummaryFields()) { List<ExpenseField> summaryfields = expensedocument.summaryFields(); for (ExpenseField summaryfield : summaryfields) { System.out.println(" Page: " + summaryfield.pageNumber()); if (summaryfield.type() != null) { System.out.println(" Expense Summary Field Type:" + summaryfield.type().text()); } if (summaryfield.labelDetection() != null) { System.out.println(" Expense Summary Field Label:" + summaryfield.labelDetection().text()); System.out.println(" Geometry"); System.out.println(" Bounding Box: " + summaryfield.labelDetection().geometry().boundingBox().toString()); System.out.println( " Polygon: " + summaryfield.labelDetection().geometry().polygon().toString()); } if (summaryfield.valueDetection() != null) { System.out.println(" Expense Summary Field Value:" + summaryfield.valueDetection().text()); System.out.println(" Geometry"); System.out.println(" Bounding Box: " + summaryfield.valueDetection().geometry().boundingBox().toString()); System.out.println( " Polygon: " + summaryfield.valueDetection().geometry().polygon().toString()); } } } } private void DisplayAnalyzeExpenseLineItemGroupsInfo(ExpenseDocument expensedocument) { System.out.println(" ExpenseId : " + expensedocument.expenseIndex()); System.out.println(" Expense LineItemGroups information:"); if (expensedocument.hasLineItemGroups()) { List<LineItemGroup> lineitemgroups = expensedocument.lineItemGroups(); for (LineItemGroup lineitemgroup : lineitemgroups) { System.out.println(" Expense LineItemGroupsIndexID :" + lineitemgroup.lineItemGroupIndex()); if (lineitemgroup.hasLineItems()) { List<LineItemFields> lineItems = lineitemgroup.lineItems(); for (LineItemFields lineitemfield : lineItems) { if (lineitemfield.hasLineItemExpenseFields()) { List<ExpenseField> expensefields = lineitemfield.lineItemExpenseFields(); for (ExpenseField expensefield : expensefields) { if (expensefield.type() != null) { System.out.println(" Expense LineItem Field Type:" + expensefield.type().text()); } if (expensefield.valueDetection() != null) { System.out.println( " Expense Summary Field Value:" + expensefield.valueDetection().text()); System.out.println(" Geometry"); System.out.println(" Bounding Box: " + expensefield.valueDetection().geometry().boundingBox().toString()); System.out.println(" Polygon: " + expensefield.valueDetection().geometry().polygon().toString()); } if (expensefield.labelDetection() != null) { System.out.println( " Expense LineItem Field Label:" + expensefield.labelDetection().text()); System.out.println(" Geometry"); System.out.println(" Bounding Box: " + expensefield.labelDetection().geometry().boundingBox().toString()); System.out.println(" Polygon: " + expensefield.labelDetection().geometry().polygon().toString()); } } } } } } } } public static void main(String arg[]) throws Exception { // Creates a default async client with credentials and AWS Region loaded from // the // environment S3AsyncClient client = S3AsyncClient.builder().region(Region.US_EAST_1).build(); System.out.println("Creating the S3 Client"); // Start the call to Amazon S3, not blocking to wait for the result CompletableFuture<ResponseBytes<GetObjectResponse>> responseFuture = client.getObject( GetObjectRequest.builder().bucket("textractanalyzeexpense").key("input/sample-receipt.jpg").build(), AsyncResponseTransformer.toBytes()); System.out.println("Successfully read the object"); // When future is complete (either successfully or in error), handle the // response CompletableFuture<ResponseBytes<GetObjectResponse>> operationCompleteFuture = responseFuture .whenComplete((getObjectResponse, exception) -> { if (getObjectResponse != null) { // At this point, the file my-file.out has been created with the data // from S3; let's just print the object version // Convert this into Async call and remove the below block from here and put it // outside TextractClient textractclient = TextractClient.builder().region(Region.US_EAST_1).build(); AnalyzeExpenseRequest request = AnalyzeExpenseRequest.builder() .document( Document.builder().s3Object(S3Object.builder().name("YOURObjectName") .bucket("YOURBucket").build()).build()) .build(); AnalyzeExpenseResponse result = textractclient.analyzeExpense(request); System.out.print(result.toString()); ByteArrayInputStream bais = new ByteArrayInputStream(getObjectResponse.asByteArray()); try { BufferedImage image = ImageIO.read(bais); System.out.println("Successfully read the image"); JFrame frame = new JFrame("Expense Image"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); TextractAnalyzeExpense panel = new TextractAnalyzeExpense(result, image); panel.setPreferredSize(new Dimension(image.getWidth(), image.getHeight())); frame.setContentPane(panel); frame.pack(); frame.setVisible(true); } catch (IOException e) { throw new RuntimeException(e); } catch (Exception e) { // TODO Auto-generated catch block e.printStackTrace(); } } else { // Handle the error exception.printStackTrace(); } }); // We could do other work while waiting for the AWS call to complete in // the background, but we'll just wait for "whenComplete" to finish instead operationCompleteFuture.join(); } }
    Node.Js
    // Import required AWS SDK clients and commands for Node.js import { AnalyzeExpenseCommand } from "@aws-sdk/client-textract"; import { TextractClient } from "@aws-sdk/client-textract"; // Set the AWS Region. const REGION = "region"; //e.g. "us-east-1" // Create SNS service object. const textractClient = new TextractClient({ region: REGION }); const bucket = 'bucket' const photo = 'photo' // Set params const params = { Document: { S3Object: { Bucket: bucket, Name: photo }, }, } const process_text_detection = async () => { try { const aExpense = new AnalyzeExpenseCommand(params); const response = await textractClient.send(aExpense); //console.log(response) response.ExpenseDocuments.forEach(doc => { doc.LineItemGroups.forEach(items => { items.LineItems.forEach(fields => { fields.LineItemExpenseFields.forEach(expenseFields =>{ console.log(expenseFields) }) } )} ) } ) return response; // For unit tests. } catch (err) { console.log("Error", err); } } process_text_detection()
  4. Isso fornecerá a você a saída do JSON para oAnalyzeExpenseoperação.