Identifying queries that are top candidates for tuning - Amazon Redshift

Identifying queries that are top candidates for tuning

The following query identifies the top 50 most time-consuming statements that have been run in the last 7 days. You can use the results to identify queries that are taking unusually long. You can also identify queries that are run frequently (those that appear more than once in the result set). These queries are frequently good candidates for tuning to improve system performance.

This query also provides a count of the alert events associated with each query identified. These alerts provide details that you can use to improve the query’s performance. For more information, see Reviewing query alerts.

select trim(database) as db, count(query) as n_qry, max(substring (qrytext,1,80)) as qrytext, min(run_minutes) as "min" , max(run_minutes) as "max", avg(run_minutes) as "avg", sum(run_minutes) as total, max(query) as max_query_id, max(starttime)::date as last_run, sum(alerts) as alerts, aborted from (select userid, label, stl_query.query, trim(database) as database, trim(querytxt) as qrytext, md5(trim(querytxt)) as qry_md5, starttime, endtime, (datediff(seconds, starttime,endtime)::numeric(12,2))/60 as run_minutes, alrt.num_events as alerts, aborted from stl_query left outer join (select query, 1 as num_events from stl_alert_event_log group by query ) as alrt on alrt.query = stl_query.query where userid <> 1 and starttime >= dateadd(day, -7, current_date)) group by database, label, qry_md5, aborted order by total desc limit 50;