Detecting faces in a stored video - Amazon Rekognition

Detecting faces in a stored video

Amazon Rekognition Video can detect faces in videos that are stored in an Amazon S3 bucket and provide information such as:

  • The time or times faces are detected in a video.

  • The location of faces in the video frame at the time they were detected.

  • Facial landmarks such as the position of the left eye.

  • Additional attributes as explained on the Guidelines on face attributes page.

Amazon Rekognition Video face detection in stored videos is an asynchronous operation. To start the detection of faces in videos, call StartFaceDetection. Amazon Rekognition Video publishes the completion status of the video analysis to an Amazon Simple Notification Service (Amazon SNS) topic. If the video analysis is successful, you can call GetFaceDetection to get the results of the video analysis. For more information about starting video analysis and getting the results, see Calling Amazon Rekognition Video operations.

This procedure expands on the code in Analyzing a video stored in an Amazon S3 bucket with Java or Python (SDK), which uses an Amazon Simple Queue Service (Amazon SQS) queue to get the completion status of a video analysis request.

To detect faces in a video stored in an Amazon S3 bucket (SDK)
  1. Perform Analyzing a video stored in an Amazon S3 bucket with Java or Python (SDK).

  2. Add the following code to the class VideoDetect that you created in step 1.

    AWS CLI
    • In the following code sample, change bucket-name and video-name to the Amazon S3 bucket name and file name that you specified in step 2.

    • Change region-name to the AWS region that you're using. Replace the value of profile_name with the name of your developer profile.

    • Change TopicARN to the ARN of the Amazon SNS topic you created in step 3 of Configuring Amazon Rekognition Video.

    • Change RoleARN to the ARN of the IAM service role you created in step 7 of Configuring Amazon Rekognition Video.

    aws rekognition start-face-detection --video "{"S3Object":{"Bucket":"Bucket-Name","Name":"Video-Name"}}" --notification-channel "{"SNSTopicArn":"Topic-ARN","RoleArn":"Role-ARN"}" --region region-name --profile profile-name

    If you are accessing the CLI on a Windows device, use double quotes instead of single quotes and escape the inner double quotes by backslash (i.e. \) to address any parser errors you may encounter. For an example, see the following:

    aws rekognition start-face-detection --video "{\"S3Object\":{\"Bucket\":\"Bucket-Name\",\"Name\":\"Video-Name\"}}" --notification-channel "{\"SNSTopicArn\":\"Topic-ARN\",\"RoleArn\":\"Role-ARN\"}" --region region-name --profile profile-name

    After running the StartFaceDetection operation and getting the job ID number, run the following GetFaceDetection operation and provide the job ID number:

    aws rekognition get-face-detection --job-id job-id-number --profile profile-name
    Java
    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) private static void StartFaceDetection(String bucket, String video) throws Exception{ NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartFaceDetectionRequest req = new StartFaceDetectionRequest() .withVideo(new Video() .withS3Object(new S3Object() .withBucket(bucket) .withName(video))) .withNotificationChannel(channel); StartFaceDetectionResult startLabelDetectionResult = rek.startFaceDetection(req); startJobId=startLabelDetectionResult.getJobId(); } private static void GetFaceDetectionResults() throws Exception{ int maxResults=10; String paginationToken=null; GetFaceDetectionResult faceDetectionResult=null; do{ if (faceDetectionResult !=null){ paginationToken = faceDetectionResult.getNextToken(); } faceDetectionResult = rek.getFaceDetection(new GetFaceDetectionRequest() .withJobId(startJobId) .withNextToken(paginationToken) .withMaxResults(maxResults)); VideoMetadata videoMetaData=faceDetectionResult.getVideoMetadata(); System.out.println("Format: " + videoMetaData.getFormat()); System.out.println("Codec: " + videoMetaData.getCodec()); System.out.println("Duration: " + videoMetaData.getDurationMillis()); System.out.println("FrameRate: " + videoMetaData.getFrameRate()); //Show faces, confidence and detection times List<FaceDetection> faces= faceDetectionResult.getFaces(); for (FaceDetection face: faces) { long seconds=face.getTimestamp()/1000; System.out.print("Sec: " + Long.toString(seconds) + " "); System.out.println(face.getFace().toString()); System.out.println(); } } while (faceDetectionResult !=null && faceDetectionResult.getNextToken() != null); }

    In the function main, replace the lines:

    StartLabelDetection(bucket, video); if (GetSQSMessageSuccess()==true) GetLabelDetectionResults();

    with:

    StartFaceDetection(bucket, video); if (GetSQSMessageSuccess()==true) GetFaceDetectionResults();
    Java V2

    This code is taken from the AWS Documentation SDK examples GitHub repository. See the full example here.

    //snippet-start:[rekognition.java2.recognize_video_faces.import] import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.*; import java.util.List; //snippet-end:[rekognition.java2.recognize_video_faces.import] /** * Before running this Java V2 code example, set up your development environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectFaces { private static String startJobId =""; public static void main(String[] args) { final String usage = "\n" + "Usage: " + " <bucket> <video> <topicArn> <roleArn>\n\n" + "Where:\n" + " bucket - The name of the bucket in which the video is located (for example, (for example, myBucket). \n\n"+ " video - The name of video (for example, people.mp4). \n\n" + " topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic. \n\n" + " roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use. \n\n" ; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); StartFaceDetection(rekClient, channel, bucket, video); GetFaceResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } // snippet-start:[rekognition.java2.recognize_video_faces.main] public static void StartFaceDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartFaceDetectionRequest faceDetectionRequest = StartFaceDetectionRequest.builder() .jobTag("Faces") .faceAttributes(FaceAttributes.ALL) .notificationChannel(channel) .video(vidOb) .build(); StartFaceDetectionResponse startLabelDetectionResult = rekClient.startFaceDetection(faceDetectionRequest); startJobId=startLabelDetectionResult.jobId(); } catch(RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void GetFaceResults(RekognitionClient rekClient) { try { String paginationToken=null; GetFaceDetectionResponse faceDetectionResponse=null; boolean finished = false; String status; int yy=0 ; do{ if (faceDetectionResponse !=null) paginationToken = faceDetectionResponse.nextToken(); GetFaceDetectionRequest recognitionRequest = GetFaceDetectionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds while (!finished) { faceDetectionResponse = rekClient.getFaceDetection(recognitionRequest); status = faceDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null VideoMetadata videoMetaData=faceDetectionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); // Show face information List<FaceDetection> faces= faceDetectionResponse.faces(); for (FaceDetection face: faces) { String age = face.face().ageRange().toString(); String smile = face.face().smile().toString(); System.out.println("The detected face is estimated to be" + age + " years old."); System.out.println("There is a smile : "+smile); } } while (faceDetectionResponse !=null && faceDetectionResponse.nextToken() != null); } catch(RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } // snippet-end:[rekognition.java2.recognize_video_faces.main] }
    Python
    #Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. #PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) # ============== Faces=============== def StartFaceDetection(self): response=self.rek.start_face_detection(Video={'S3Object': {'Bucket': self.bucket, 'Name': self.video}}, NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}) self.startJobId=response['JobId'] print('Start Job Id: ' + self.startJobId) def GetFaceDetectionResults(self): maxResults = 10 paginationToken = '' finished = False while finished == False: response = self.rek.get_face_detection(JobId=self.startJobId, MaxResults=maxResults, NextToken=paginationToken) print('Codec: ' + response['VideoMetadata']['Codec']) print('Duration: ' + str(response['VideoMetadata']['DurationMillis'])) print('Format: ' + response['VideoMetadata']['Format']) print('Frame rate: ' + str(response['VideoMetadata']['FrameRate'])) print() for faceDetection in response['Faces']: print('Face: ' + str(faceDetection['Face'])) print('Confidence: ' + str(faceDetection['Face']['Confidence'])) print('Timestamp: ' + str(faceDetection['Timestamp'])) print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True

    In the function main, replace the lines:

    analyzer.StartLabelDetection() if analyzer.GetSQSMessageSuccess()==True: analyzer.GetLabelDetectionResults()

    with:

    analyzer.StartFaceDetection() if analyzer.GetSQSMessageSuccess()==True: analyzer.GetFaceDetectionResults()
    Note

    If you've already run a video example other than Analyzing a video stored in an Amazon S3 bucket with Java or Python (SDK), the function name to replace is different.

  3. Run the code. Information about the faces that were detected in the video is shown.

GetFaceDetection operation response

GetFaceDetection returns an array (Faces) that contains information about the faces detected in the video. An array element, FaceDetection, exists for each time a face is detected in the video. The array elements returned are sorted by time, in milliseconds since the start of the video.

The following example is a partial JSON response from GetFaceDetection. In the response, note the following:

  • Bounding box – The coordinates of the bounding box that surrounds the face.

  • Confidence – The level of confidence that the bounding box contains a face.

  • Facial landmarks – An array of facial landmarks. For each landmark (such as the left eye, right eye, and mouth), the response provides the x and y coordinates.

  • Face attributes – A set of facial attributes, which includes: AgeRange, Beard, Emotions, Eyeglasses, EyesOpen, Gender, MouthOpen, Mustache, Smile, and Sunglasses. The value can be of different types, such as a Boolean type (whether a person is wearing sunglasses) or a string (whether the person is male or female). In addition, for most attributes, the response also provides a confidence in the detected value for the attribute. Note that while FaceOccluded and EyeDirection attributes are supported when using DetectFaces, they aren’t supported when analyzing videos with StartFaceDetection and GetFaceDetection.

  • Timestamp – The time that the face was detected in the video.

  • Paging information – The example shows one page of face detection information. You can specify how many person elements to return in the MaxResults input parameter for GetFaceDetection. If more results than MaxResults exist, GetFaceDetection returns a token (NextToken) that's used to get the next page of results. For more information, see Getting Amazon Rekognition Video analysis results.

  • Video information – The response includes information about the video format (VideoMetadata) in each page of information that's returned by GetFaceDetection.

  • Quality – Describes the brightness and the sharpness of the face.

  • Pose – Describes the rotation of the face.

{ "Faces": [ { "Face": { "BoundingBox": { "Height": 0.23000000417232513, "Left": 0.42500001192092896, "Top": 0.16333332657814026, "Width": 0.12937499582767487 }, "Confidence": 99.97504425048828, "Landmarks": [ { "Type": "eyeLeft", "X": 0.46415066719055176, "Y": 0.2572723925113678 }, { "Type": "eyeRight", "X": 0.5068183541297913, "Y": 0.23705792427062988 }, { "Type": "nose", "X": 0.49765899777412415, "Y": 0.28383663296699524 }, { "Type": "mouthLeft", "X": 0.487221896648407, "Y": 0.3452930748462677 }, { "Type": "mouthRight", "X": 0.5142884850502014, "Y": 0.33167609572410583 } ], "Pose": { "Pitch": 15.966927528381348, "Roll": -15.547388076782227, "Yaw": 11.34195613861084 }, "Quality": { "Brightness": 44.80223083496094, "Sharpness": 99.95819854736328 } }, "Timestamp": 0 }, { "Face": { "BoundingBox": { "Height": 0.20000000298023224, "Left": 0.029999999329447746, "Top": 0.2199999988079071, "Width": 0.11249999701976776 }, "Confidence": 99.85971069335938, "Landmarks": [ { "Type": "eyeLeft", "X": 0.06842322647571564, "Y": 0.3010137975215912 }, { "Type": "eyeRight", "X": 0.10543643683195114, "Y": 0.29697132110595703 }, { "Type": "nose", "X": 0.09569807350635529, "Y": 0.33701086044311523 }, { "Type": "mouthLeft", "X": 0.0732642263174057, "Y": 0.3757539987564087 }, { "Type": "mouthRight", "X": 0.10589495301246643, "Y": 0.3722417950630188 } ], "Pose": { "Pitch": -0.5589138865470886, "Roll": -5.1093974113464355, "Yaw": 18.69594955444336 }, "Quality": { "Brightness": 43.052337646484375, "Sharpness": 99.68138885498047 } }, "Timestamp": 0 }, { "Face": { "BoundingBox": { "Height": 0.2177777737379074, "Left": 0.7593749761581421, "Top": 0.13333334028720856, "Width": 0.12250000238418579 }, "Confidence": 99.63436889648438, "Landmarks": [ { "Type": "eyeLeft", "X": 0.8005779385566711, "Y": 0.20915353298187256 }, { "Type": "eyeRight", "X": 0.8391435146331787, "Y": 0.21049551665782928 }, { "Type": "nose", "X": 0.8191410899162292, "Y": 0.2523227035999298 }, { "Type": "mouthLeft", "X": 0.8093273043632507, "Y": 0.29053622484207153 }, { "Type": "mouthRight", "X": 0.8366993069648743, "Y": 0.29101791977882385 } ], "Pose": { "Pitch": 3.165884017944336, "Roll": 1.4182015657424927, "Yaw": -11.151537895202637 }, "Quality": { "Brightness": 28.910892486572266, "Sharpness": 97.61507415771484 } }, "Timestamp": 0 }....... ], "JobStatus": "SUCCEEDED", "NextToken": "i7fj5XPV/fwviXqz0eag9Ow332Jd5G8ZGWf7hooirD/6V1qFmjKFOQZ6QPWUiqv29HbyuhMNqQ==", "VideoMetadata": { "Codec": "h264", "DurationMillis": 67301, "FileExtension": "mp4", "Format": "QuickTime / MOV", "FrameHeight": 1080, "FrameRate": 29.970029830932617, "FrameWidth": 1920 } }