How to use SageMaker AI AutoGluon-Tabular - Amazon SageMaker AI

How to use SageMaker AI AutoGluon-Tabular

You can use AutoGluon-Tabular as an Amazon SageMaker AI built-in algorithm. The following section describes how to use AutoGluon-Tabular with the SageMaker Python SDK. For information on how to use AutoGluon-Tabular from the Amazon SageMaker Studio Classic UI, see SageMaker JumpStart pretrained models.

  • Use AutoGluon-Tabular as a built-in algorithm

    Use the AutoGluon-Tabular built-in algorithm to build an AutoGluon-Tabular training container as shown in the following code example. You can automatically spot the AutoGluon-Tabular built-in algorithm image URI using the SageMaker AI image_uris.retrieve API (or the get_image_uri API if using Amazon SageMaker Python SDK version 2).

    After specifying the AutoGluon-Tabular image URI, you can use the AutoGluon-Tabular container to construct an estimator using the SageMaker AI Estimator API and initiate a training job. The AutoGluon-Tabular built-in algorithm runs in script mode, but the training script is provided for you and there is no need to replace it. If you have extensive experience using script mode to create a SageMaker training job, then you can incorporate your own AutoGluon-Tabular training scripts.

    from sagemaker import image_uris, model_uris, script_uris train_model_id, train_model_version, train_scope = "autogluon-classification-ensemble", "*", "training" training_instance_type = "ml.p3.2xlarge" # Retrieve the docker image train_image_uri = image_uris.retrieve( region=None, framework=None, model_id=train_model_id, model_version=train_model_version, image_scope=train_scope, instance_type=training_instance_type ) # Retrieve the training script train_source_uri = script_uris.retrieve( model_id=train_model_id, model_version=train_model_version, script_scope=train_scope ) train_model_uri = model_uris.retrieve( model_id=train_model_id, model_version=train_model_version, model_scope=train_scope ) # Sample training data is available in this bucket training_data_bucket = f"jumpstart-cache-prod-{aws_region}" training_data_prefix = "training-datasets/tabular_binary/" training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/train" validation_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/validation" output_bucket = sess.default_bucket() output_prefix = "jumpstart-example-tabular-training" s3_output_location = f"s3://{output_bucket}/{output_prefix}/output" from sagemaker import hyperparameters # Retrieve the default hyperparameters for training the model hyperparameters = hyperparameters.retrieve_default( model_id=train_model_id, model_version=train_model_version ) # [Optional] Override default hyperparameters with custom values hyperparameters[ "auto_stack" ] = "True" print(hyperparameters) from sagemaker.estimator import Estimator from sagemaker.utils import name_from_base training_job_name = name_from_base(f"built-in-algo-{train_model_id}-training") # Create SageMaker Estimator instance tabular_estimator = Estimator( role=aws_role, image_uri=train_image_uri, source_dir=train_source_uri, model_uri=train_model_uri, entry_point="transfer_learning.py", instance_count=1, instance_type=training_instance_type, max_run=360000, hyperparameters=hyperparameters, output_path=s3_output_location ) # Launch a SageMaker Training job by passing the S3 path of the training data tabular_estimator.fit( { "training": training_dataset_s3_path, "validation": validation_dataset_s3_path, }, logs=True, job_name=training_job_name )

    For more information about how to set up the AutoGluon-Tabular as a built-in algorithm, see the following notebook examples. Any S3 bucket used in these examples must be in the same AWS Region as the notebook instance used to run them.