Time series data - Amazon SageMaker AI

Time series data

Time series data refers to data that can be loaded into a three-dimensional data frame. In the frame, in every timestamp, each row represents a target record, and each target record has one or more related columns. The values within each data frame cell can be of numerical, categorical, or text data types.

Time series dataset prerequisites

Prior to analysis, complete the necessary preprocessing steps to prepare your data, such as data cleaning or feature engineering. You can provide one or multiple datasets. If you provide multiple datasets, use one of the following methods to supply them to the SageMaker Clarify processing job:

  • Use either a ProcessingInput named dataset or the analysis configuration dataset_uri to specify the main dataset. For more information about dataset_uri, see the parameters list in Analysis Configuration Files.

  • Use the baseline parameter provided in the analysis configuration file. The baseline dataset is required for static_covariates, if present. For more information about the analysis configuration file, including examples, see Analysis Configuration Files.

The following table lists supported data formats, their file extensions, and MIME types.

Data format File extension MIME type

item_records

json

application/json

timestamp_records

json

application/json

columns

json

application/json

JSON is a flexible format that can represent any level of complexity in your structured data. As shown in the table, SageMaker Clarify supports formats item_records, timestamp_records, and columns.

Time series dataset config examples

This section shows you how to set an analysis configuration using time_series_data_config for time series data in JSON format. Suppose you have a dataset with two items, each with a timestamp (t), target time series (x), two related time series (r) and two static covariates (u) as follows:

t1 = [0,1,2], t2 = [2,3]

x1 = [5,6,4], x2 = [0,4]

r1 = [0,1,0], r21 = [1,1]

r12 = [0,0,0], r22 = [1,0]

u11 = -1, u21 = 0

u12 = 1, u22 = 2

You can encode the dataset using time_series_data_config in three different ways, depending on dataset_format. The following sections describe each method.

Time series data config when dataset_format is columns

The following example uses the columns value for dataset_format. The following JSON file represents the preceding dataset.

{ "ids": [1, 1, 1, 2, 2], "timestamps": [0, 1, 2, 2, 3], # t "target_ts": [5, 6, 4, 0, 4], # x "rts1": [0, 1, 0, 1, 1], # r1 "rts2": [0, 0, 0, 1, 0], # r2 "scv1": [-1, -1, -1, 0, 0], # u1 "scv2": [1, 1, 1, 2, 2], # u2 }

Note that the item ids are repeated in the ids field. The correct implementation of time_series_data_config is shown as follows:

"time_series_data_config": { "item_id": "ids", "timestamp": "timestamps", "target_time_series": "target_ts", "related_time_series": ["rts1", "rts2"], "static_covariates": ["scv1", "scv2"], "dataset_format": "columns" }

Time series data config when dataset_format is item_records

The following example uses the item_records value for dataset_format. The following JSON file represents the dataset.

[ { "id": 1, "scv1": -1, "scv2": 1, "timeseries": [ {"timestamp": 0, "target_ts": 5, "rts1": 0, "rts2": 0}, {"timestamp": 1, "target_ts": 6, "rts1": 1, "rts2": 0}, {"timestamp": 2, "target_ts": 4, "rts1": 0, "rts2": 0} ] }, { "id": 2, "scv1": 0, "scv2": 2, "timeseries": [ {"timestamp": 2, "target_ts": 0, "rts1": 1, "rts2": 1}, {"timestamp": 3, "target_ts": 4, "rts1": 1, "rts2": 0} ] } ]

Each item is represented as a separate entry in the JSON. The following snippet shows the corresponding time_series_data_config (which uses JMESPath).

"time_series_data_config": { "item_id": "[*].id", "timestamp": "[*].timeseries[].timestamp", "target_time_series": "[*].timeseries[].target_ts", "related_time_series": ["[*].timeseries[].rts1", "[*].timeseries[].rts2"], "static_covariates": ["[*].scv1", "[*].scv2"], "dataset_format": "item_records" }

Time series data config when dataset_format is timestamp_record

The following example uses the timestamp_record value for dataset_format. The following JSON file represents the preceding dataset.

[ {"id": 1, "timestamp": 0, "target_ts": 5, "rts1": 0, "rts2": 0, "svc1": -1, "svc2": 1}, {"id": 1, "timestamp": 1, "target_ts": 6, "rts1": 1, "rts2": 0, "svc1": -1, "svc2": 1}, {"id": 1, "timestamp": 2, "target_ts": 4, "rts1": 0, "rts2": 0, "svc1": -1, "svc2": 1}, {"id": 2, "timestamp": 2, "target_ts": 0, "rts1": 1, "rts2": 1, "svc1": 0, "svc2": 2}, {"id": 2, "timestamp": 3, "target_ts": 4, "rts1": 1, "rts2": 0, "svc1": 0, "svc2": 2}, ]

Each entry of the JSON represents a single timestamp and corresponds to a single item. The implementation time_series_data_config is shown as follows:

{ "item_id": "[*].id", "timestamp": "[*].timestamp", "target_time_series": "[*].target_ts", "related_time_series": ["[*].rts1"], "static_covariates": ["[*].scv1"], "dataset_format": "timestamp_records" }