Default framework profiling - Amazon SageMaker AI

Default framework profiling

Debugger framework default profiling includes the following options: detailed profiling, data loader profiling, and Python profiling. The following example code is the simplest profiler_config parameter setting to start the default system monitoring and the default framework profiling. The FrameworkProfile class in the following example code initiates the default framework profiling when a training job starts.

from sagemaker.debugger import ProfilerConfig, FrameworkProfile profiler_config=ProfilerConfig( framework_profile_params=FrameworkProfile() )

With this profiler_config parameter configuration, Debugger calls the default settings of monitoring and profiling. Debugger monitors system metrics every 500 milliseconds; profiles the fifth step with the detailed profiling option; the seventh step with the data loader profiling option; and the ninth, tenth, and eleventh steps with the Python profiling option.

To find available profiling configuration options, the default parameter settings, and examples of how to configure them, see Default system monitoring and customized framework profiling with different profiling options and SageMaker Debugger APIs – FrameworkProfile in the Amazon SageMaker Python SDK.

If you want to change the system monitoring interval and enable the default framework profiling, you can specify the system_monitor_interval_millis parameter explicitly with the framework_profile_params parameter. For example, to monitor every 1000 milliseconds and enable the default framework profiling, use the following example code.

from sagemaker.debugger import ProfilerConfig, FrameworkProfile profiler_config=ProfilerConfig( system_monitor_interval_millis=1000, framework_profile_params=FrameworkProfile() )

For more information about the FrameworkProfile class, see SageMaker Debugger APIs – FrameworkProfile in the Amazon SageMaker Python SDK.