Supported framework images, AWS Regions, and instance types - Amazon SageMaker AI

Supported framework images, AWS Regions, and instance types

This feature supports the following machine learning frameworks and AWS Regions.

Note

To use this feature, make sure that you have installed the SageMaker Python SDK version 2.180.0 or later.

SageMaker AI framework images pre-installed with SageMaker Profiler

SageMaker Profiler is pre-installed in the following AWS Deep Learning Containers for SageMaker AI.

PyTorch images

PyTorch versions AWS DLC image URI
2.2.0

763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:2.2.0-gpu-py310-cu121-ubuntu20.04-sagemaker

2.1.0

763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:2.1.0-gpu-py310-cu121-ubuntu20.04-sagemaker

2.0.1

763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:2.0.1-gpu-py310-cu118-ubuntu20.04-sagemaker

763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:2.0.1-gpu-py310-cu121-ubuntu20.04-sagemaker

1.13.1

763104351884.dkr.ecr.<region>.amazonaws.com/pytorch-training:1.13.1-gpu-py39-cu117-ubuntu20.04-sagemaker

TensorFlow images

TensorFlow versions AWS DLC image URI
2.13.0

763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-training:2.13.0-gpu-py310-cu118-ubuntu20.04-sagemaker

2.12.0

763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-training:2.12.0-gpu-py310-cu118-ubuntu20.04-sagemaker

2.11.0

763104351884.dkr.ecr.<region>.amazonaws.com/tensorflow-training:2.11.0-gpu-py39-cu112-ubuntu20.04-sagemaker

Important

Distribution and maintenance of the framework containers in the preceding tables are under the Framework Support Policy managed by the AWS Deep Learning Containers service. We highly recommend you to upgrade to the currently supported framework versions, if you are using prior framework versions that are no longer supported.

Note

If you want to use SageMaker Profiler for other framework images or your own Docker images, you can install SageMaker Profiler using the SageMaker Profiler Python package binary files provided in the following section.

SageMaker Profiler Python package binary files

If you want to configure your own Docker container, use SageMaker Profiler in other pre-built containers for PyTorch and TensorFlow, or install the SageMaker Profiler Python package locally, use one the following binary files. Depending on the Python and CUDA versions in your environment, choose one of the following.

PyTorch

TensorFlow

For more information about how to install SageMaker Profiler using the binary files, see (Optional) Install the SageMaker Profiler Python package.

Supported AWS Regions

SageMaker Profiler is available in the following AWS Regions.

  • US East (N. Virginia) (us-east-1)

  • US East (Ohio) (us-east-2)

  • US West (Oregon) (us-west-2)

  • Europe (Frankfurt) (eu-central-1)

  • Europe (Ireland) (eu-west-1)

Supported instance types

SageMaker Profiler supports profiling of training jobs on the following instance types.

CPU and GPU profiling

  • ml.g4dn.12xlarge

  • ml.g5.24xlarge

  • ml.g5.48xlarge

  • ml.p3dn.24xlarge

  • ml.p4de.24xlarge

  • ml.p4d.24xlarge

  • ml.p5.48xlarge

GPU profiling only

  • ml.g5.2xlarge

  • ml.g5.4xlarge

  • ml.g5.8xlarge

  • ml.g5.16.xlarge