RCF Hyperparameters
In the CreateTrainingJob
request, you specify the training
algorithm. You can also specify algorithm-specific hyperparameters as string-to-string
maps. The following table lists the hyperparameters for the Amazon SageMaker AI RCF algorithm. For more
information, including recommendations on how to choose hyperparameters, see How RCF Works.
Parameter Name | Description |
---|---|
feature_dim |
The number of features in the data set. (If you use the
Random Cut Forest Required Valid values: Positive integer (min: 1, max: 10000) |
eval_metrics |
A list of metrics used to score a labeled test data set. The following metrics can be selected for output:
Optional Valid values: a list with possible values taken from
Default value: Both |
num_samples_per_tree |
Number of random samples given to each tree from the training data set. Optional Valid values: Positive integer (min: 1, max: 2048) Default value: 256 |
num_trees |
Number of trees in the forest. Optional Valid values: Positive integer (min: 50, max: 1000) Default value: 100 |