Class: Aws::MachineLearning::Types::GetMLModelOutput
- Inherits:
-
Struct
- Object
- Struct
- Aws::MachineLearning::Types::GetMLModelOutput
- Defined in:
- gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb
Overview
Represents the output of a GetMLModel
operation, and provides
detailed information about a MLModel
.
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#compute_time ⇒ Integer
The approximate CPU time in milliseconds that Amazon Machine Learning spent processing the
MLModel
, normalized and scaled on computation resources. -
#created_at ⇒ Time
The time that the
MLModel
was created. -
#created_by_iam_user ⇒ String
The AWS user account from which the
MLModel
was created. -
#endpoint_info ⇒ Types::RealtimeEndpointInfo
The current endpoint of the
MLModel
. -
#finished_at ⇒ Time
The epoch time when Amazon Machine Learning marked the
MLModel
asCOMPLETED
orFAILED
. -
#input_data_location_s3 ⇒ String
The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
-
#last_updated_at ⇒ Time
The time of the most recent edit to the
MLModel
. -
#log_uri ⇒ String
A link to the file that contains logs of the
CreateMLModel
operation. -
#message ⇒ String
A description of the most recent details about accessing the
MLModel
. -
#ml_model_id ⇒ String
The MLModel ID, which is same as the
MLModelId
in the request. -
#ml_model_type ⇒ String
Identifies the
MLModel
category. -
#name ⇒ String
A user-supplied name or description of the
MLModel
. -
#recipe ⇒ String
The recipe to use when training the
MLModel
. -
#schema ⇒ String
The schema used by all of the data files referenced by the
DataSource
. -
#score_threshold ⇒ Float
The scoring threshold is used in binary classification
MLModel
models. -
#score_threshold_last_updated_at ⇒ Time
The time of the most recent edit to the
ScoreThreshold
. -
#size_in_bytes ⇒ Integer
Long integer type that is a 64-bit signed number.
-
#started_at ⇒ Time
The epoch time when Amazon Machine Learning marked the
MLModel
asINPROGRESS
. -
#status ⇒ String
The current status of the
MLModel
. -
#training_data_source_id ⇒ String
The ID of the training
DataSource
. -
#training_parameters ⇒ Hash<String,String>
A list of the training parameters in the
MLModel
.
Instance Attribute Details
#compute_time ⇒ Integer
The approximate CPU time in milliseconds that Amazon Machine
Learning spent processing the MLModel
, normalized and scaled on
computation resources. ComputeTime
is only available if the
MLModel
is in the COMPLETED
state.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#created_at ⇒ Time
The time that the MLModel
was created. The time is expressed in
epoch time.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#created_by_iam_user ⇒ String
The AWS user account from which the MLModel
was created. The
account type can be either an AWS root account or an AWS Identity
and Access Management (IAM) user account.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#endpoint_info ⇒ Types::RealtimeEndpointInfo
The current endpoint of the MLModel
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#finished_at ⇒ Time
The epoch time when Amazon Machine Learning marked the MLModel
as
COMPLETED
or FAILED
. FinishedAt
is only available when the
MLModel
is in the COMPLETED
or FAILED
state.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#input_data_location_s3 ⇒ String
The location of the data file or directory in Amazon Simple Storage Service (Amazon S3).
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#last_updated_at ⇒ Time
The time of the most recent edit to the MLModel
. The time is
expressed in epoch time.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#log_uri ⇒ String
A link to the file that contains logs of the CreateMLModel
operation.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#message ⇒ String
A description of the most recent details about accessing the
MLModel
.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#ml_model_id ⇒ String
The MLModel ID, which is same as the MLModelId
in the request.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#ml_model_type ⇒ String
Identifies the MLModel
category. The following are the available
types:
REGRESSION -- Produces a numeric result. For example, "What price should a house be listed at?"
BINARY -- Produces one of two possible results. For example, "Is this an e-commerce website?"
MULTICLASS -- Produces one of several possible results. For example, "Is this a HIGH, LOW or MEDIUM risk trade?"
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#name ⇒ String
A user-supplied name or description of the MLModel
.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#recipe ⇒ String
The recipe to use when training the MLModel
. The Recipe
provides
detailed information about the observation data to use during
training, and manipulations to perform on the observation data
during training.
Note: This parameter is provided as part of the verbose format.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#schema ⇒ String
The schema used by all of the data files referenced by the
DataSource
.
Note: This parameter is provided as part of the verbose format.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#score_threshold ⇒ Float
The scoring threshold is used in binary classification MLModel
models. It marks the boundary between a positive prediction and a
negative prediction.
Output values greater than or equal to the threshold receive a
positive result from the MLModel, such as true
. Output values less
than the threshold receive a negative response from the MLModel,
such as false
.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#score_threshold_last_updated_at ⇒ Time
The time of the most recent edit to the ScoreThreshold
. The time
is expressed in epoch time.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#size_in_bytes ⇒ Integer
Long integer type that is a 64-bit signed number.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#started_at ⇒ Time
The epoch time when Amazon Machine Learning marked the MLModel
as
INPROGRESS
. StartedAt
isn't available if the MLModel
is in
the PENDING
state.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#status ⇒ String
The current status of the MLModel
. This element can have one of
the following values:
PENDING
- Amazon Machine Learning (Amazon ML) submitted a request to describe aMLModel
.INPROGRESS
- The request is processing.FAILED
- The request did not run to completion. The ML model isn't usable.COMPLETED
- The request completed successfully.DELETED
- TheMLModel
is marked as deleted. It isn't usable.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#training_data_source_id ⇒ String
The ID of the training DataSource
.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |
#training_parameters ⇒ Hash<String,String>
A list of the training parameters in the MLModel
. The list is
implemented as a map of key-value pairs.
The following is the current set of training parameters:
sgd.maxMLModelSizeInBytes
- The maximum allowed size of the model. Depending on the input data, the size of the model might affect its performance.The value is an integer that ranges from
100000
to2147483648
. The default value is33554432
.sgd.maxPasses
- The number of times that the training process traverses the observations to build theMLModel
. The value is an integer that ranges from1
to10000
. The default value is10
.sgd.shuffleType
- Whether Amazon ML shuffles the training data. Shuffling data improves a model's ability to find the optimal solution for a variety of data types. The valid values areauto
andnone
. The default value isnone
. We strongly recommend that you shuffle your data.sgd.l1RegularizationAmount
- The coefficient regularization L1 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to zero, resulting in a sparse feature set. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L1 normalization. This parameter can't be used whenL2
is specified. Use this parameter sparingly.sgd.l2RegularizationAmount
- The coefficient regularization L2 norm. It controls overfitting the data by penalizing large coefficients. This tends to drive coefficients to small, nonzero values. If you use this parameter, start by specifying a small value, such as1.0E-08
.The value is a double that ranges from
0
toMAX_DOUBLE
. The default is to not use L2 normalization. This parameter can't be used whenL1
is specified. Use this parameter sparingly.
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 |
# File 'gems/aws-sdk-machinelearning/lib/aws-sdk-machinelearning/types.rb', line 2337 class GetMLModelOutput < Struct.new( :ml_model_id, :training_data_source_id, :created_by_iam_user, :created_at, :last_updated_at, :name, :status, :size_in_bytes, :endpoint_info, :training_parameters, :input_data_location_s3, :ml_model_type, :score_threshold, :score_threshold_last_updated_at, :log_uri, :message, :compute_time, :finished_at, :started_at, :recipe, :schema) SENSITIVE = [] include Aws::Structure end |