Class: Aws::SageMaker::Types::HyperParameterTuningJobConfig
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::HyperParameterTuningJobConfig
- Defined in:
- gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb
Overview
Configures a hyperparameter tuning job.
Constant Summary collapse
- SENSITIVE =
[]
Instance Attribute Summary collapse
-
#hyper_parameter_tuning_job_objective ⇒ Types::HyperParameterTuningJobObjective
The [HyperParameterTuningJobObjective][1] specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
-
#parameter_ranges ⇒ Types::ParameterRanges
The [ParameterRanges][1] object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
-
#random_seed ⇒ Integer
A value used to initialize a pseudo-random number generator.
-
#resource_limits ⇒ Types::ResourceLimits
The [ResourceLimits][1] object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
-
#strategy ⇒ String
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches.
-
#strategy_config ⇒ Types::HyperParameterTuningJobStrategyConfig
The configuration for the
Hyperband
optimization strategy. -
#training_job_early_stopping_type ⇒ String
Specifies whether to use early stopping for training jobs launched by the hyperparameter tuning job.
-
#tuning_job_completion_criteria ⇒ Types::TuningJobCompletionCriteria
The tuning job's completion criteria.
Instance Attribute Details
#hyper_parameter_tuning_job_objective ⇒ Types::HyperParameterTuningJobObjective
The HyperParameterTuningJobObjective specifies the objective metric used to evaluate the performance of training jobs launched by this tuning job.
24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 24400 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#parameter_ranges ⇒ Types::ParameterRanges
The ParameterRanges object that specifies the ranges of hyperparameters that this tuning job searches over to find the optimal configuration for the highest model performance against your chosen objective metric.
24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 24400 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#random_seed ⇒ Integer
A value used to initialize a pseudo-random number generator. Setting a random seed and using the same seed later for the same tuning job will allow hyperparameter optimization to find more a consistent hyperparameter configuration between the two runs.
24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 24400 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#resource_limits ⇒ Types::ResourceLimits
The ResourceLimits object that specifies the maximum number of training and parallel training jobs that can be used for this hyperparameter tuning job.
24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 24400 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#strategy ⇒ String
Specifies how hyperparameter tuning chooses the combinations of hyperparameter values to use for the training job it launches. For information about search strategies, see How Hyperparameter Tuning Works.
24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 24400 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#strategy_config ⇒ Types::HyperParameterTuningJobStrategyConfig
The configuration for the Hyperband
optimization strategy. This
parameter should be provided only if Hyperband
is selected as the
strategy for HyperParameterTuningJobConfig
.
24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 24400 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#training_job_early_stopping_type ⇒ String
Specifies whether to use early stopping for training jobs launched
by the hyperparameter tuning job. Because the Hyperband
strategy
has its own advanced internal early stopping mechanism,
TrainingJobEarlyStoppingType
must be OFF
to use Hyperband
.
This parameter can take on one of the following values (the default
value is OFF
):
- OFF
Training jobs launched by the hyperparameter tuning job do not use early stopping.
- AUTO
SageMaker stops training jobs launched by the hyperparameter tuning job when they are unlikely to perform better than previously completed training jobs. For more information, see Stop Training Jobs Early.
24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 24400 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |
#tuning_job_completion_criteria ⇒ Types::TuningJobCompletionCriteria
The tuning job's completion criteria.
24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 |
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 24400 class HyperParameterTuningJobConfig < Struct.new( :strategy, :strategy_config, :hyper_parameter_tuning_job_objective, :resource_limits, :parameter_ranges, :training_job_early_stopping_type, :tuning_job_completion_criteria, :random_seed) SENSITIVE = [] include Aws::Structure end |