Class: Aws::SageMaker::Types::TabularJobConfig
- Inherits:
- 
      Struct
      
        - Object
- Struct
- Aws::SageMaker::Types::TabularJobConfig
 
- Defined in:
- gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb
Overview
The collection of settings used by an AutoML job V2 for the tabular problem type.
Constant Summary collapse
- SENSITIVE =
- [] 
Instance Attribute Summary collapse
- 
  
    
      #candidate_generation_config  ⇒ Types::CandidateGenerationConfig 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    The configuration information of how model candidates are generated. 
- 
  
    
      #completion_criteria  ⇒ Types::AutoMLJobCompletionCriteria 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    How long a job is allowed to run, or how many candidates a job is allowed to generate. 
- 
  
    
      #feature_specification_s3_uri  ⇒ String 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    A URL to the Amazon S3 data source containing selected features from the input data source to run an Autopilot job V2. 
- 
  
    
      #generate_candidate_definitions_only  ⇒ Boolean 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    Generates possible candidates without training the models. 
- 
  
    
      #mode  ⇒ String 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    The method that Autopilot uses to train the data. 
- 
  
    
      #problem_type  ⇒ String 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    The type of supervised learning problem available for the model candidates of the AutoML job V2. 
- 
  
    
      #sample_weight_attribute_name  ⇒ String 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    If specified, this column name indicates which column of the dataset should be treated as sample weights for use by the objective metric during the training, evaluation, and the selection of the best model. 
- 
  
    
      #target_attribute_name  ⇒ String 
    
    
  
  
  
  
    
    
  
  
  
  
  
  
    The name of the target variable in supervised learning, usually represented by 'y'. 
Instance Attribute Details
#candidate_generation_config ⇒ Types::CandidateGenerationConfig
The configuration information of how model candidates are generated.
| 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 | # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 47280 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end | 
#completion_criteria ⇒ Types::AutoMLJobCompletionCriteria
How long a job is allowed to run, or how many candidates a job is allowed to generate.
| 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 | # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 47280 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end | 
#feature_specification_s3_uri ⇒ String
A URL to the Amazon S3 data source containing selected features from
the input data source to run an Autopilot job V2. You can input
FeatureAttributeNames (optional) in JSON format as shown below:
{ "FeatureAttributeNames":["col1", "col2", ...] }.
You can also specify the data type of the feature (optional) in the format shown below:
{ "FeatureDataTypes":{"col1":"numeric", "col2":"categorical" ... }
}
In ensembling mode, Autopilot only supports the following data
types: numeric, categorical, text, and datetime. In HPO
mode, Autopilot can support numeric, categorical, text,
datetime, and sequence.
If only FeatureDataTypes is provided, the column keys (col1,
col2,..) should be a subset of the column names in the input data.
If both FeatureDataTypes and FeatureAttributeNames are provided,
then the column keys should be a subset of the column names provided
in FeatureAttributeNames.
The key name FeatureAttributeNames is fixed. The values listed in
["col1", "col2", ...] are case sensitive and should be a list of
strings containing unique values that are a subset of the column
names in the input data. The list of columns provided must not
include the target column.
| 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 | # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 47280 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end | 
#generate_candidate_definitions_only ⇒ Boolean
Generates possible candidates without training the models. A model candidate is a combination of data preprocessors, algorithms, and algorithm parameter settings.
| 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 | # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 47280 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end | 
#mode ⇒ String
The method that Autopilot uses to train the data. You can either
specify the mode manually or let Autopilot choose for you based on
the dataset size by selecting AUTO. In AUTO mode, Autopilot
chooses ENSEMBLING for datasets smaller than 100 MB, and
HYPERPARAMETER_TUNING for larger ones.
The ENSEMBLING mode uses a multi-stack ensemble model to predict
classification and regression tasks directly from your dataset. This
machine learning mode combines several base models to produce an
optimal predictive model. It then uses a stacking ensemble method to
combine predictions from contributing members. A multi-stack
ensemble model can provide better performance over a single model by
combining the predictive capabilities of multiple models. See
Autopilot algorithm support for a list of algorithms supported
by ENSEMBLING mode.
The HYPERPARAMETER_TUNING (HPO) mode uses the best hyperparameters
to train the best version of a model. HPO automatically selects an
algorithm for the type of problem you want to solve. Then HPO finds
the best hyperparameters according to your objective metric. See
Autopilot algorithm support for a list of algorithms supported
by HYPERPARAMETER_TUNING mode.
| 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 | # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 47280 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end | 
#problem_type ⇒ String
The type of supervised learning problem available for the model candidates of the AutoML job V2. For more information, see SageMaker Autopilot problem types.
ProblemType and provide the AutoMLJobObjective metric, or
none at all.
| 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 | # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 47280 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end | 
#sample_weight_attribute_name ⇒ String
If specified, this column name indicates which column of the dataset should be treated as sample weights for use by the objective metric during the training, evaluation, and the selection of the best model. This column is not considered as a predictive feature. For more information on Autopilot metrics, see Metrics and validation.
Sample weights should be numeric, non-negative, with larger values indicating which rows are more important than others. Data points that have invalid or no weight value are excluded.
Support for sample weights is available in Ensembling mode only.
| 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 | # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 47280 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end | 
#target_attribute_name ⇒ String
The name of the target variable in supervised learning, usually represented by 'y'.
| 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 | # File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 47280 class TabularJobConfig < Struct.new( :candidate_generation_config, :completion_criteria, :feature_specification_s3_uri, :mode, :generate_candidate_definitions_only, :problem_type, :target_attribute_name, :sample_weight_attribute_name) SENSITIVE = [] include Aws::Structure end |