Detecting or Analyzing Text in a Multipage Document
This procedure shows you how to detect or analyze text in a multipage document by using Amazon Textract detection operations, a document stored in an Amazon S3 bucket, an Amazon SNS topic, and an Amazon SQS queue. Multipage document processing is an asynchronous operation. For more information, see Calling Amazon Textract Asynchronous Operations.
You can choose the type of processing that you want the code to do: text detection, text analysis, or expense analysis.
The processing results are returned in an array of Block objects, which differ depending on the type of processing you use.
To detect text in or analyze multipage documents, you do the following:
-
Create the Amazon SNS topic and the Amazon SQS queue.
-
Subscribe the queue the topic.
-
Give the topic permission to send messages to the queue.
-
Start processing the document. Use the appropriate operation for your chosen type of analysis:
-
StartDocumentTextDetection for text detection tasks.
-
StartDocumentAnalysis for text analysis tasks.
-
StartExpenseAnalysis for expense analysis tasks.
-
-
Get the completion status from the Amazon SQS queue. The example code tracks the job identifier (
JobId
) that's returned by theStart
operation. It only gets the results for matching job identifiers that are read from the completion status. This is important if other applications are using the same queue and topic. For simplicity, the example deletes jobs that don't match. Consider adding the deleted jobs to an Amazon SQS dead-letter queue for further investigation. -
Get and display the processing results by calling the appropriate operation for your chosen type of analysis:
-
GetDocumentTextDetection for text detection tasks.
-
GetDocumentAnalysis for text analysis tasks.
-
GetExpenseAnalysis for expense analysis tasks.
-
-
Delete the Amazon SNS topic and the Amazon SQS queue.
Performing Asynchronous Operations
The example code for this procedure is provided in Java, Python, and the AWS CLI. Before you begin, install the appropriate AWS SDK. For more information, see Step 2: Set Up the AWS CLI and AWS SDKs.
To detect or analyze text in a multipage document
-
Configure user access to Amazon Textract, and configure Amazon Textract access to Amazon SNS. For more information, see Configuring Amazon Textract for Asynchronous Operations. To complete this procedure, you need a multipage document file in PDF format. Skip steps 3 – 6 because the example code creates and configures the Amazon SNS topic and Amazon SQS queue. If completing the CLI example, you don't need to set up an SQS queue.
-
Upload a multipage document file in PDF or TIFF format to your Amazon S3 bucket. (Single-page documents in JPEG, PNG, TIFF, or PDF format can also be processed).
For instructions, see Uploading Objects into Amazon S3 in the Amazon Simple Storage Service User Guide.
-
Use the following AWS SDK for Java, SDK for Python (Boto3), or AWS CLI code to either detect text or analyze text in a multipage document. In the
main
function:-
Replace the value of
roleArn
with the IAM role ARN that you saved in Giving Amazon Textract Access to Your Amazon SNS Topic. -
Replace the values of
bucket
anddocument
with the bucket and document file name that you specified in step 2. -
Replace the value of the
type
input parameter of theProcessDocument
function with the type of processing that you want to do. UseProcessType.DETECTION
to detect text. UseProcessType.ANALYSIS
to analyze text. -
For the Python example, replace the value of
region_name
with the region your client is operating in.
For the AWS CLI example, do the following:
-
When calling StartDocumentTextDetection, replace the value of
bucket-name
with the name of your S3 bucket, and replacefile-name
with the name of the file you specified in step 2. Specify the region of your bucket by replacingregion-name
with the name of your region. Take note that the CLI example does not make use of SQS. -
When calling GetDocumentTextDetection replace
job-id-number
with thejob-id
returned by StartDocumentTextDetection. Specify the region of your bucket by replacingregion-name
with the name of your region.
- Java
-
Replace the value of
credentialsProvider
with the name of your developer profile.import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import com.amazonaws.auth.policy.Condition; import com.amazonaws.auth.policy.Policy; import com.amazonaws.auth.policy.Principal; import com.amazonaws.auth.policy.Resource; import com.amazonaws.auth.policy.Statement; import com.amazonaws.auth.policy.Statement.Effect; import com.amazonaws.auth.policy.actions.SQSActions; import com.amazonaws.auth.profile.ProfileCredentialsProvider; import com.amazonaws.services.sns.AmazonSNS; import com.amazonaws.services.sns.AmazonSNSClientBuilder; import com.amazonaws.services.sns.model.CreateTopicRequest; import com.amazonaws.services.sns.model.CreateTopicResult; import com.amazonaws.services.sqs.AmazonSQS; import com.amazonaws.services.sqs.AmazonSQSClientBuilder; import com.amazonaws.services.sqs.model.CreateQueueRequest; import com.amazonaws.services.sqs.model.Message; import com.amazonaws.services.sqs.model.QueueAttributeName; import com.amazonaws.services.sqs.model.SetQueueAttributesRequest; import com.amazonaws.services.textract.AmazonTextract; import com.amazonaws.services.textract.AmazonTextractClientBuilder; import com.amazonaws.services.textract.model.Block; import com.amazonaws.services.textract.model.DocumentLocation; import com.amazonaws.services.textract.model.DocumentMetadata; import com.amazonaws.services.textract.model.GetDocumentAnalysisRequest; import com.amazonaws.services.textract.model.GetDocumentAnalysisResult; import com.amazonaws.services.textract.model.GetDocumentTextDetectionRequest; import com.amazonaws.services.textract.model.GetDocumentTextDetectionResult; import com.amazonaws.services.textract.model.NotificationChannel; import com.amazonaws.services.textract.model.Relationship; import com.amazonaws.services.textract.model.S3Object; import com.amazonaws.services.textract.model.StartDocumentAnalysisRequest; import com.amazonaws.services.textract.model.StartDocumentAnalysisResult; import com.amazonaws.services.textract.model.StartDocumentTextDetectionRequest; import com.amazonaws.services.textract.model.StartDocumentTextDetectionResult; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper;; public class DocumentProcessor { private static String sqsQueueName=null; private static String snsTopicName=null; private static String snsTopicArn = null; private static String roleArn= null; private static String sqsQueueUrl = null; private static String sqsQueueArn = null; private static String startJobId = null; private static String bucket = null; private static String document = null; private static AmazonSQS sqs=null; private static AmazonSNS sns=null; private static AmazonTextract textract = null; public enum ProcessType { DETECTION,ANALYSIS } public static void main(String[] args) throws Exception { String document = "document"; String bucket = "bucket"; String roleArn="role"; // set provider credentials AWSCredentialsProvider credentialsProvider = new ProfileCredentialsProvider("default"); sns = AmazonSNSClientBuilder.withCredentials(credentialsProvider) .withRegion(Regions.US_EAST_1) .build(); sqs= AmazonSQSClientBuilder.withCredentials(credentialsProvider) .withRegion(Regions.US_EAST_1) .build(); textract=AmazonTextractClientBuilder.withCredentials(credentialsProvider) .withRegion(Regions.US_EAST_1) .build(); CreateTopicandQueue(); ProcessDocument(bucket,document,roleArn,ProcessType.DETECTION); DeleteTopicandQueue(); System.out.println("Done!"); } // Creates an SNS topic and SQS queue. The queue is subscribed to the topic. static void CreateTopicandQueue() { //create a new SNS topic snsTopicName="AmazonTextractTopic" + Long.toString(System.currentTimeMillis()); CreateTopicRequest createTopicRequest = new CreateTopicRequest(snsTopicName); CreateTopicResult createTopicResult = sns.createTopic(createTopicRequest); snsTopicArn=createTopicResult.getTopicArn(); //Create a new SQS Queue sqsQueueName="AmazonTextractQueue" + Long.toString(System.currentTimeMillis()); final CreateQueueRequest createQueueRequest = new CreateQueueRequest(sqsQueueName); sqsQueueUrl = sqs.createQueue(createQueueRequest).getQueueUrl(); sqsQueueArn = sqs.getQueueAttributes(sqsQueueUrl, Arrays.asList("QueueArn")).getAttributes().get("QueueArn"); //Subscribe SQS queue to SNS topic String sqsSubscriptionArn = sns.subscribe(snsTopicArn, "sqs", sqsQueueArn).getSubscriptionArn(); // Authorize queue Policy policy = new Policy().withStatements( new Statement(Effect.Allow) .withPrincipals(Principal.AllUsers) .withActions(SQSActions.SendMessage) .withResources(new Resource(sqsQueueArn)) .withConditions(new Condition().withType("ArnEquals").withConditionKey("aws:SourceArn").withValues(snsTopicArn)) ); Map queueAttributes = new HashMap(); queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson()); sqs.setQueueAttributes(new SetQueueAttributesRequest(sqsQueueUrl, queueAttributes)); System.out.println("Topic arn: " + snsTopicArn); System.out.println("Queue arn: " + sqsQueueArn); System.out.println("Queue url: " + sqsQueueUrl); System.out.println("Queue sub arn: " + sqsSubscriptionArn ); } static void DeleteTopicandQueue() { if (sqs !=null) { sqs.deleteQueue(sqsQueueUrl); System.out.println("SQS queue deleted"); } if (sns!=null) { sns.deleteTopic(snsTopicArn); System.out.println("SNS topic deleted"); } } //Starts the processing of the input document. static void ProcessDocument(String inBucket, String inDocument, String inRoleArn, ProcessType type) throws Exception { bucket=inBucket; document=inDocument; roleArn=inRoleArn; switch(type) { case DETECTION: StartDocumentTextDetection(bucket, document); System.out.println("Processing type: Detection"); break; case ANALYSIS: StartDocumentAnalysis(bucket,document); System.out.println("Processing type: Analysis"); break; default: System.out.println("Invalid processing type. Choose Detection or Analysis"); throw new Exception("Invalid processing type"); } System.out.println("Waiting for job: " + startJobId); //Poll queue for messages List<Message> messages=null; int dotLine=0; boolean jobFound=false; //loop until the job status is published. Ignore other messages in queue. do{ messages = sqs.receiveMessage(sqsQueueUrl).getMessages(); if (dotLine++<40){ System.out.print("."); }else{ System.out.println(); dotLine=0; } if (!messages.isEmpty()) { //Loop through messages received. for (Message message: messages) { String notification = message.getBody(); // Get status and job id from notification. ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found was " + operationJobId); // Found job. Get the results and display. if(operationJobId.asText().equals(startJobId)){ jobFound=true; System.out.println("Job id: " + operationJobId ); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")){ switch(type) { case DETECTION: GetDocumentTextDetectionResults(); break; case ANALYSIS: GetDocumentAnalysisResults(); break; default: System.out.println("Invalid processing type. Choose Detection or Analysis"); throw new Exception("Invalid processing type"); } } else{ System.out.println("Document analysis failed"); } sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } else{ System.out.println("Job received was not job " + startJobId); //Delete unknown message. Consider moving message to dead letter queue sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } } } else { Thread.sleep(5000); } } while (!jobFound); System.out.println("Finished processing document"); } private static void StartDocumentTextDetection(String bucket, String document) throws Exception{ //Create notification channel NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartDocumentTextDetectionRequest req = new StartDocumentTextDetectionRequest() .withDocumentLocation(new DocumentLocation() .withS3Object(new S3Object() .withBucket(bucket) .withName(document))) .withJobTag("DetectingText") .withNotificationChannel(channel); StartDocumentTextDetectionResult startDocumentTextDetectionResult = textract.startDocumentTextDetection(req); startJobId=startDocumentTextDetectionResult.getJobId(); } //Gets the results of processing started by StartDocumentTextDetection private static void GetDocumentTextDetectionResults() throws Exception{ int maxResults=1000; String paginationToken=null; GetDocumentTextDetectionResult response=null; Boolean finished=false; while (finished==false) { GetDocumentTextDetectionRequest documentTextDetectionRequest= new GetDocumentTextDetectionRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken); response = textract.getDocumentTextDetection(documentTextDetectionRequest); DocumentMetadata documentMetaData=response.getDocumentMetadata(); System.out.println("Pages: " + documentMetaData.getPages().toString()); //Show blocks information List<Block> blocks= response.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); } paginationToken=response.getNextToken(); if (paginationToken==null) finished=true; } } private static void StartDocumentAnalysis(String bucket, String document) throws Exception{ //Create notification channel NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartDocumentAnalysisRequest req = new StartDocumentAnalysisRequest() .withFeatureTypes("TABLES","FORMS") .withDocumentLocation(new DocumentLocation() .withS3Object(new S3Object() .withBucket(bucket) .withName(document))) .withJobTag("AnalyzingText") .withNotificationChannel(channel); StartDocumentAnalysisResult startDocumentAnalysisResult = textract.startDocumentAnalysis(req); startJobId=startDocumentAnalysisResult.getJobId(); } //Gets the results of processing started by StartDocumentAnalysis private static void GetDocumentAnalysisResults() throws Exception{ int maxResults=1000; String paginationToken=null; GetDocumentAnalysisResult response=null; Boolean finished=false; //loops until pagination token is null while (finished==false) { GetDocumentAnalysisRequest documentAnalysisRequest= new GetDocumentAnalysisRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken); response = textract.getDocumentAnalysis(documentAnalysisRequest); DocumentMetadata documentMetaData=response.getDocumentMetadata(); System.out.println("Pages: " + documentMetaData.getPages().toString()); //Show blocks, confidence and detection times List<Block> blocks= response.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); } paginationToken=response.getNextToken(); if (paginationToken==null) finished=true; } } //Displays Block information for text detection and text analysis private static void DisplayBlockInfo(Block block) { System.out.println("Block Id : " + block.getId()); if (block.getText()!=null) System.out.println("\tDetected text: " + block.getText()); System.out.println("\tType: " + block.getBlockType()); if (block.getBlockType().equals("PAGE") !=true) { System.out.println("\tConfidence: " + block.getConfidence().toString()); } if(block.getBlockType().equals("CELL")) { System.out.println("\tCell information:"); System.out.println("\t\tColumn: " + block.getColumnIndex()); System.out.println("\t\tRow: " + block.getRowIndex()); System.out.println("\t\tColumn span: " + block.getColumnSpan()); System.out.println("\t\tRow span: " + block.getRowSpan()); } System.out.println("\tRelationships"); List<Relationship> relationships=block.getRelationships(); if(relationships!=null) { for (Relationship relationship : relationships) { System.out.println("\t\tType: " + relationship.getType()); System.out.println("\t\tIDs: " + relationship.getIds().toString()); } } else { System.out.println("\t\tNo related Blocks"); } System.out.println("\tGeometry"); System.out.println("\t\tBounding Box: " + block.getGeometry().getBoundingBox().toString()); System.out.println("\t\tPolygon: " + block.getGeometry().getPolygon().toString()); List<String> entityTypes = block.getEntityTypes(); System.out.println("\tEntity Types"); if(entityTypes!=null) { for (String entityType : entityTypes) { System.out.println("\t\tEntity Type: " + entityType); } } else { System.out.println("\t\tNo entity type"); } if(block.getBlockType().equals("SELECTION_ELEMENT")) { System.out.print(" Selection element detected: "); if (block.getSelectionStatus().equals("SELECTED")){ System.out.println("Selected"); }else { System.out.println(" Not selected"); } } if(block.getPage()!=null) System.out.println("\tPage: " + block.getPage()); System.out.println(); } }
- Java V2
-
Replace the value of
profile-name
in the line that creates theTextractClient
with the name of your developer profile.import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.textract.model.S3Object; import software.amazon.awssdk.services.textract.TextractClient; import software.amazon.awssdk.services.textract.model.StartDocumentAnalysisRequest; import software.amazon.awssdk.services.textract.model.DocumentLocation; import software.amazon.awssdk.services.textract.model.TextractException; import software.amazon.awssdk.services.textract.model.StartDocumentAnalysisResponse; import software.amazon.awssdk.services.textract.model.GetDocumentAnalysisRequest; import software.amazon.awssdk.services.textract.model.GetDocumentAnalysisResponse; import software.amazon.awssdk.services.textract.model.FeatureType; import java.util.ArrayList; import java.util.List; // snippet-end:[textract.java2._start_doc_analysis.import] /** * Before running this Java V2 code example, set up your development environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class StartDocumentAnalysis { public static void main(String[] args) { final String usage = "\n" + "Usage:\n" + " <bucketName> <docName> \n\n" + "Where:\n" + " bucketName - The name of the Amazon S3 bucket that contains the document. \n\n" + " docName - The document name (must be an image, for example, book.png). \n"; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucketName = args[0]; String docName = args[1]; Region region = Region.US_EAST_1; TextractClient textractClient = TextractClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); String jobId = startDocAnalysisS3 (textractClient, bucketName, docName); System.out.println("Getting results for job "+jobId); String status = getJobResults(textractClient, jobId); System.out.println("The job status is "+status); textractClient.close(); } // snippet-start:[textract.java2._start_doc_analysis.main] public static String startDocAnalysisS3 (TextractClient textractClient, String bucketName, String docName) { try { List<FeatureType> myList = new ArrayList<>(); myList.add(FeatureType.TABLES); myList.add(FeatureType.FORMS); S3Object s3Object = S3Object.builder() .bucket(bucketName) .name(docName) .build(); DocumentLocation location = DocumentLocation.builder() .s3Object(s3Object) .build(); StartDocumentAnalysisRequest documentAnalysisRequest = StartDocumentAnalysisRequest.builder() .documentLocation(location) .featureTypes(myList) .build(); StartDocumentAnalysisResponse response = textractClient.startDocumentAnalysis(documentAnalysisRequest); // Get the job ID String jobId = response.jobId(); return jobId; } catch (TextractException e) { System.err.println(e.getMessage()); System.exit(1); } return "" ; } private static String getJobResults(TextractClient textractClient, String jobId) { boolean finished = false; int index = 0 ; String status = "" ; try { while (!finished) { GetDocumentAnalysisRequest analysisRequest = GetDocumentAnalysisRequest.builder() .jobId(jobId) .maxResults(1000) .build(); GetDocumentAnalysisResponse response = textractClient.getDocumentAnalysis(analysisRequest); status = response.jobStatus().toString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(index + " status is: " + status); Thread.sleep(1000); } index++ ; } return status; } catch( InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } return ""; } // snippet-end:[textract.java2._start_doc_analysis.main] }
- AWS CLI
-
This AWS CLI command starts the asynchronous detection of text in a specified document. It returns a
job-id
that can be used to retreive the results of the detection.aws textract start-document-text-detection --document-location "{\"S3Object\":{\"Bucket\":\"
bucket-name
\",\"Name\":\"file-name
\"}}" --regionregion-name
This AWS CLI command returns the results for an Amazon Textract asynchronous operation when provided with a
job-id
.aws textract get-document-text-detection --region
region-name
--job-idjob-id-number
If you are accessing the CLI on a Windows device, use double quotes instead of single quotes and escape the inner double quotes by backslash (i.e. \) to address any parser errors you may encounter. For an example, see below
aws textract start-document-text-detection --document-location "{\"S3Object\":{\"Bucket\":\"
bucket
\",\"Name\":\"document
\"}}" --regionregion-name
If you are analyzing a document with the StartDocumentAnalysis operation, you can provide values to the
feature-type
parameter. The following example demonstrates how to include theQUERIES
value in thefeature-types
parameter and then provide aQueries
object to thequeries-config
parameter.aws textract start-document-analysis \ --document '{"S3Object":{"Bucket":"
bucket
","Name":"document
"}}'\ --feature-types '["QUERIES"]' \ --queries-config '{"Queries":[{"Text":"Question
"}]}' - Python
-
Replace
profile-name
in the line that creates the TextractClient with the name of your developer profile.import boto3 import json import sys import time class ProcessType: DETECTION = 1 ANALYSIS = 2 class DocumentProcessor: jobId = '' region_name = '' roleArn = '' bucket = '' document = '' sqsQueueUrl = '' snsTopicArn = '' processType = '' def __init__(self, role, bucket, document, region): self.roleArn = role self.bucket = bucket self.document = document self.region_name = region self.textract = boto3.client('textract', region_name=self.region_name) self.sqs = boto3.client('sqs', region_name=self.region_name) self.sns = boto3.client('sns', region_name=self.region_name) def ProcessDocument(self, type): jobFound = False self.processType = type validType = False # Determine which type of processing to perform if self.processType == ProcessType.DETECTION: response = self.textract.start_document_text_detection( DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name': self.document}}, NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}) print('Processing type: Detection') validType = True # For document analysis, select which features you want to obtain with the FeatureTypes argument if self.processType == ProcessType.ANALYSIS: response = self.textract.start_document_analysis( DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name': self.document}}, FeatureTypes=["TABLES", "FORMS"], NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}) print('Processing type: Analysis') validType = True if validType == False: print("Invalid processing type. Choose Detection or Analysis.") return print('Start Job Id: ' + response['JobId']) dotLine = 0 while jobFound == False: sqsResponse = self.sqs.receive_message(QueueUrl=self.sqsQueueUrl, MessageAttributeNames=['ALL'], MaxNumberOfMessages=10) if sqsResponse: if 'Messages' not in sqsResponse: if dotLine < 40: print('.', end='') dotLine = dotLine + 1 else: print() dotLine = 0 sys.stdout.flush() time.sleep(5) continue for message in sqsResponse['Messages']: notification = json.loads(message['Body']) textMessage = json.loads(notification['Message']) print(textMessage['JobId']) print(textMessage['Status']) if str(textMessage['JobId']) == response['JobId']: print('Matching Job Found:' + textMessage['JobId']) jobFound = True self.GetResults(textMessage['JobId']) self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) else: print("Job didn't match:" + str(textMessage['JobId']) + ' : ' + str(response['JobId'])) # Delete the unknown message. Consider sending to dead letter queue self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) print('Done!') def CreateTopicandQueue(self): millis = str(int(round(time.time() * 1000))) # Create SNS topic snsTopicName = "AmazonTextractTopic" + millis topicResponse = self.sns.create_topic(Name=snsTopicName) self.snsTopicArn = topicResponse['TopicArn'] # create SQS queue sqsQueueName = "AmazonTextractQueue" + millis self.sqs.create_queue(QueueName=sqsQueueName) self.sqsQueueUrl = self.sqs.get_queue_url(QueueName=sqsQueueName)['QueueUrl'] attribs = self.sqs.get_queue_attributes(QueueUrl=self.sqsQueueUrl, AttributeNames=['QueueArn'])['Attributes'] sqsQueueArn = attribs['QueueArn'] # Subscribe SQS queue to SNS topic self.sns.subscribe( TopicArn=self.snsTopicArn, Protocol='sqs', Endpoint=sqsQueueArn) # Authorize SNS to write SQS queue policy = """{{ "Version":"2012-10-17", "Statement":[ {{ "Sid":"MyPolicy", "Effect":"Allow", "Principal" : {{"AWS" : "*"}}, "Action":"SQS:SendMessage", "Resource": "{}", "Condition":{{ "ArnEquals":{{ "aws:SourceArn": "{}" }} }} }} ] }}""".format(sqsQueueArn, self.snsTopicArn) response = self.sqs.set_queue_attributes( QueueUrl=self.sqsQueueUrl, Attributes={ 'Policy': policy }) def DeleteTopicandQueue(self): self.sqs.delete_queue(QueueUrl=self.sqsQueueUrl) self.sns.delete_topic(TopicArn=self.snsTopicArn) # Display information about a block def DisplayBlockInfo(self, block): print("Block Id: " + block['Id']) print("Type: " + block['BlockType']) if 'EntityTypes' in block: print('EntityTypes: {}'.format(block['EntityTypes'])) if 'Text' in block: print("Text: " + block['Text']) if block['BlockType'] != 'PAGE' and "Confidence" in str(block['BlockType']): print("Confidence: " + "{:.2f}".format(block['Confidence']) + "%") print('Page: {}'.format(block['Page'])) if block['BlockType'] == 'CELL': print('Cell Information') print('\tColumn: {} '.format(block['ColumnIndex'])) print('\tRow: {}'.format(block['RowIndex'])) print('\tColumn span: {} '.format(block['ColumnSpan'])) print('\tRow span: {}'.format(block['RowSpan'])) if 'Relationships' in block: print('\tRelationships: {}'.format(block['Relationships'])) if ("Geometry") in str(block): print('Geometry') print('\tBounding Box: {}'.format(block['Geometry']['BoundingBox'])) print('\tPolygon: {}'.format(block['Geometry']['Polygon'])) if block['BlockType'] == 'SELECTION_ELEMENT': print(' Selection element detected: ', end='') if block['SelectionStatus'] == 'SELECTED': print('Selected') else: print('Not selected') if block["BlockType"] == "QUERY": print("Query info:") print(block["Query"]) if block["BlockType"] == "QUERY_RESULT": print("Query answer:") print(block["Text"]) def GetResults(self, jobId): maxResults = 1000 paginationToken = None finished = False while finished == False: response = None if self.processType == ProcessType.ANALYSIS: if paginationToken == None: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) if self.processType == ProcessType.DETECTION: if paginationToken == None: response = self.textract.get_document_text_detection(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_text_detection(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) blocks = response['Blocks'] print('Detected Document Text') print('Pages: {}'.format(response['DocumentMetadata']['Pages'])) # Display block information for block in blocks: self.DisplayBlockInfo(block) print() print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True def GetResultsDocumentAnalysis(self, jobId): maxResults = 1000 paginationToken = None finished = False while finished == False: response = None if paginationToken == None: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) # Get the text blocks blocks = response['Blocks'] print('Analyzed Document Text') print('Pages: {}'.format(response['DocumentMetadata']['Pages'])) # Display block information for block in blocks: self.DisplayBlockInfo(block) print() print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True def main(): roleArn = '' bucket = '' document = '' region_name = '' analyzer = DocumentProcessor(roleArn, bucket, document, region_name) analyzer.CreateTopicandQueue() analyzer.ProcessDocument(ProcessType.ANALYSIS) analyzer.DeleteTopicandQueue() if __name__ == "__main__": main()
In order to use different features of the
AnalyzeDocument
operation, you provide the proper feature type to thefeatures-type
parameter. For example, to use the Queries feature, include theQUERIES
value in thefeature-types
parameter and then provide aQueries
object to thequeries-config
parameter. To query your document, replace the code block that makes a request to theStartDocumentAnalysis
operation with the code block below, and enter your query.if self.processType == ProcessType.ANALYSIS: response = self.textract.start_document_analysis( DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name': self.document}}, FeatureTypes=["TABLES", "FORMS", "QUERIES"], QueriesConfig={'Queries':[ {'Text':'{}'.format("
Enter query here
")} ]}, NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}) - Node.JS
-
In this example, replace the value of
roleArn
with the IAM role ARN that you saved in Giving Amazon Textract Access to Your Amazon SNS Topic. Replace the values ofbucket
anddocument
with the bucket and document file name you specified in step 2 above. Replace the value ofprocessType
with the type of processing you'd like to use on the input document. Finally, replace the value ofREGION
with the region your client is operating in. Replace the value ofprofileName
with the name of your developer profile.// snippet-start:[sqs.JavaScript.queues.createQueueV3] // Import required AWS SDK clients and commands for Node.js import { CreateQueueCommand, GetQueueAttributesCommand, GetQueueUrlCommand, SetQueueAttributesCommand, DeleteQueueCommand, ReceiveMessageCommand, DeleteMessageCommand } from "@aws-sdk/client-sqs"; import {CreateTopicCommand, SubscribeCommand, DeleteTopicCommand } from "@aws-sdk/client-sns"; import { SQSClient } from "@aws-sdk/client-sqs"; import { SNSClient } from "@aws-sdk/client-sns"; import { TextractClient, StartDocumentTextDetectionCommand, StartDocumentAnalysisCommand, GetDocumentAnalysisCommand, GetDocumentTextDetectionCommand, DocumentMetadata } from "@aws-sdk/client-textract"; import { stdout } from "process"; import {fromIni} from '@aws-sdk/credential-providers'; // Set the AWS Region. const REGION = "region-name"; //e.g. "us-east-1" const profileName = "profile-name"; // Create SNS service object. const textractClient = new TextractClient({region: REGION, credentials: fromIni({profile: profileName,}), }); const sqsClient = new SQSClient({region: REGION, credentials: fromIni({profile: profileName,}), }); const snsClient = new SNSClient({region: REGION, credentials: fromIni({profile: profileName,}), }); // Set bucket and video variables const bucket = "bucket-name"; const documentName = "document-name"; const roleArn = "role-arn" const processType = "DETECTION" var startJobId = "" var ts = Date.now(); const snsTopicName = "AmazonTextractExample" + ts; const snsTopicParams = {Name: snsTopicName} const sqsQueueName = "AmazonTextractQueue-" + ts; // Set the parameters const sqsParams = { QueueName: sqsQueueName, //SQS_QUEUE_URL Attributes: { DelaySeconds: "60", // Number of seconds delay. MessageRetentionPeriod: "86400", // Number of seconds delay. }, }; // Process a document based on operation type const processDocumment = async (type, bucket, videoName, roleArn, sqsQueueUrl, snsTopicArn) => { try { // Set job found and success status to false initially var jobFound = false var succeeded = false var dotLine = 0 var processType = type var validType = false if (processType == "DETECTION"){ var response = await textractClient.send(new StartDocumentTextDetectionCommand({DocumentLocation:{S3Object:{Bucket:bucket, Name:videoName}}, NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}})) console.log("Processing type: Detection") validType = true } if (processType == "ANALYSIS"){ var response = await textractClient.send(new StartDocumentAnalysisCommand({DocumentLocation:{S3Object:{Bucket:bucket, Name:videoName}}, NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}})) console.log("Processing type: Analysis") validType = true } if (validType == false){ console.log("Invalid processing type. Choose Detection or Analysis.") return } // while not found, continue to poll for response console.log(`Start Job ID: ${response.JobId}`) while (jobFound == false){ var sqsReceivedResponse = await sqsClient.send(new ReceiveMessageCommand({QueueUrl:sqsQueueUrl, MaxNumberOfMessages:'ALL', MaxNumberOfMessages:10})); if (sqsReceivedResponse){ var responseString = JSON.stringify(sqsReceivedResponse) if (!responseString.includes('Body')){ if (dotLine < 40) { console.log('.') dotLine = dotLine + 1 }else { console.log('') dotLine = 0 }; stdout.write('', () => { console.log(''); }); await new Promise(resolve => setTimeout(resolve, 5000)); continue } } // Once job found, log Job ID and return true if status is succeeded for (var message of sqsReceivedResponse.Messages){ console.log("Retrieved messages:") var notification = JSON.parse(message.Body) var rekMessage = JSON.parse(notification.Message) var messageJobId = rekMessage.JobId if (String(rekMessage.JobId).includes(String(startJobId))){ console.log('Matching job found:') console.log(rekMessage.JobId) jobFound = true // GET RESUlTS FUNCTION HERE var operationResults = await GetResults(processType, rekMessage.JobId) //GET RESULTS FUMCTION HERE console.log(rekMessage.Status) if (String(rekMessage.Status).includes(String("SUCCEEDED"))){ succeeded = true console.log("Job processing succeeded.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } }else{ console.log("Provided Job ID did not match returned ID.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } } console.log("Done!") } }catch (err) { console.log("Error", err); } } // Create the SNS topic and SQS Queue const createTopicandQueue = async () => { try { // Create SNS topic const topicResponse = await snsClient.send(new CreateTopicCommand(snsTopicParams)); const topicArn = topicResponse.TopicArn console.log("Success", topicResponse); // Create SQS Queue const sqsResponse = await sqsClient.send(new CreateQueueCommand(sqsParams)); console.log("Success", sqsResponse); const sqsQueueCommand = await sqsClient.send(new GetQueueUrlCommand({QueueName: sqsQueueName})) const sqsQueueUrl = sqsQueueCommand.QueueUrl const attribsResponse = await sqsClient.send(new GetQueueAttributesCommand({QueueUrl: sqsQueueUrl, AttributeNames: ['QueueArn']})) const attribs = attribsResponse.Attributes console.log(attribs) const queueArn = attribs.QueueArn // subscribe SQS queue to SNS topic const subscribed = await snsClient.send(new SubscribeCommand({TopicArn: topicArn, Protocol:'sqs', Endpoint: queueArn})) const policy = { Version: "2012-10-17", Statement: [ { Sid: "MyPolicy", Effect: "Allow", Principal: {AWS: "*"}, Action: "SQS:SendMessage", Resource: queueArn, Condition: { ArnEquals: { 'aws:SourceArn': topicArn } } } ] }; const response = sqsClient.send(new SetQueueAttributesCommand({QueueUrl: sqsQueueUrl, Attributes: {Policy: JSON.stringify(policy)}})) console.log(response) console.log(sqsQueueUrl, topicArn) return [sqsQueueUrl, topicArn] } catch (err) { console.log("Error", err); } } const deleteTopicAndQueue = async (sqsQueueUrlArg, snsTopicArnArg) => { const deleteQueue = await sqsClient.send(new DeleteQueueCommand({QueueUrl: sqsQueueUrlArg})); const deleteTopic = await snsClient.send(new DeleteTopicCommand({TopicArn: snsTopicArnArg})); console.log("Successfully deleted.") } const displayBlockInfo = async (block) => { console.log(`Block ID: ${block.Id}`) console.log(`Block Type: ${block.BlockType}`) if (String(block).includes(String("EntityTypes"))){ console.log(`EntityTypes: ${block.EntityTypes}`) } if (String(block).includes(String("Text"))){ console.log(`EntityTypes: ${block.Text}`) } if (!String(block.BlockType).includes('PAGE')){ console.log(`Confidence: ${block.Confidence}`) } console.log(`Page: ${block.Page}`) if (String(block.BlockType).includes("CELL")){ console.log("Cell Information") console.log(`Column: ${block.ColumnIndex}`) console.log(`Row: ${block.RowIndex}`) console.log(`Column Span: ${block.ColumnSpan}`) console.log(`Row Span: ${block.RowSpan}`) if (String(block).includes("Relationships")){ console.log(`Relationships: ${block.Relationships}`) } } console.log("Geometry") console.log(`Bounding Box: ${JSON.stringify(block.Geometry.BoundingBox)}`) console.log(`Polygon: ${JSON.stringify(block.Geometry.Polygon)}`) if (String(block.BlockType).includes('SELECTION_ELEMENT')){ console.log('Selection Element detected:') if (String(block.SelectionStatus).includes('SELECTED')){ console.log('Selected') } else { console.log('Not Selected') } } } const GetResults = async (processType, JobID) => { var maxResults = 1000 var paginationToken = null var finished = false while (finished == false){ var response = null if (processType == 'ANALYSIS'){ if (paginationToken == null){ response = textractClient.send(new GetDocumentAnalysisCommand({JobId:JobID, MaxResults:maxResults})) }else{ response = textractClient.send(new GetDocumentAnalysisCommand({JobId:JobID, MaxResults:maxResults, NextToken:paginationToken})) } } if(processType == 'DETECTION'){ if (paginationToken == null){ response = textractClient.send(new GetDocumentTextDetectionCommand({JobId:JobID, MaxResults:maxResults})) }else{ response = textractClient.send(new GetDocumentTextDetectionCommand({JobId:JobID, MaxResults:maxResults, NextToken:paginationToken})) } } await new Promise(resolve => setTimeout(resolve, 5000)); console.log("Detected Documented Text") console.log(response) //console.log(Object.keys(response)) console.log(typeof(response)) var blocks = (await response).Blocks console.log(blocks) console.log(typeof(blocks)) var docMetadata = (await response).DocumentMetadata var blockString = JSON.stringify(blocks) var parsed = JSON.parse(JSON.stringify(blocks)) console.log(Object.keys(blocks)) console.log(`Pages: ${docMetadata.Pages}`) blocks.forEach((block)=> { displayBlockInfo(block) console.log() console.log() }) //console.log(blocks[0].BlockType) //console.log(blocks[1].BlockType) if(String(response).includes("NextToken")){ paginationToken = response.NextToken }else{ finished = true } } } // DELETE TOPIC AND QUEUE const main = async () => { var sqsAndTopic = await createTopicandQueue(); var process = await processDocumment(processType, bucket, documentName, roleArn, sqsAndTopic[0], sqsAndTopic[1]) var deleteResults = await deleteTopicAndQueue(sqsAndTopic[0], sqsAndTopic[1]) } main()
-
-
Run the code. The operation might take a while to finish. After it's finished, a list of blocks for detected or analyzed text is displayed.