Transcribing an audio file of a medical dictation
Use a batch transcription job to transcribe audio files of medical conversations. You
can use this to transcribe a clinician-patient dialogue. You can start a batch
transcription job in either the StartMedicalTranscriptionJob
API or the AWS Management Console.
When you start a medical transcription job with the StartMedicalTranscriptionJob
API, you specify
PRIMARYCARE
as the value of the Specialty
parameter.
To transcribe a clinician-patient dialogue (AWS Management Console)
To use the AWS Management Console to transcribe a clinician-patient dialogue, create a transcription job and choose Conversation for Audio input type.
-
Sign in to the AWS Management Console
. -
In the navigation pane, under Amazon Transcribe Medical, choose Transcription jobs.
-
Choose Create job.
-
On the Specify job details page, under Job settings , specify the following.
-
Name – the name of the transcription job.
-
Audio input type – Dictation
-
-
For the remaining fields, specify the Amazon S3 location of your audio file and where you want to store the output of your transcription job.
-
Choose Next.
-
Choose Create.
To transcribe a medical conversation using a batch transcription job (API)
-
For the
StartMedicalTranscriptionJob
API, specify the following.-
For
MedicalTranscriptionJobName
, specify a name unique in your AWS account. -
For
LanguageCode
, specify the language code that corresponds to the language spoken in your audio file and the language of your vocabulary filter. -
In the
MediaFileUri
parameter of theMedia
object, specify the name of the audio file that you want to transcribe. -
For
Specialty
, specify the medical specialty of the clinician speaking in the audio file. -
For
Type
, specifyDICTATION
. -
For
OutputBucketName
, specify the Amazon S3 bucket to store the transcription results.
The following is an example request that uses the AWS SDK for Python (Boto3) to transcribe a medical dictation of a clinician in the
PRIMARYCARE
specialty.from __future__ import print_function import time import boto3 transcribe = boto3.client('transcribe') job_name = "
my-first-med-transcription-job
" job_uri = "s3://amzn-s3-demo-bucket
/my-input-files
/my-audio-file
.flac
" transcribe.start_medical_transcription_job( MedicalTranscriptionJobName = job_name, Media = { 'MediaFileUri': job_uri }, OutputBucketName = 'amzn-s3-demo-bucket
', OutputKey = 'my-output-files
/', LanguageCode = 'en-US', Specialty = 'PRIMARYCARE', Type = 'DICTATION' ) while True: status = transcribe.get_medical_transcription_job(MedicalTranscriptionJobName = job_name) if status['MedicalTranscriptionJob']['TranscriptionJobStatus'] in ['COMPLETED', 'FAILED']: break print("Not ready yet...") time.sleep(5) print(status) -
The following example code shows the transcription results of a medical dictation.
{ "jobName": "dictation-medical-transcription-job", "accountId": "
111122223333
", "results": { "transcripts": [ { "transcript": "... came for a follow up visit today..." } ], "items": [ {...
"start_time": "4.85", "end_time": "5.12", "alternatives": [ { "confidence": "1.0", "content": "came" } ], "type": "pronunciation" }, { "start_time": "5.12", "end_time": "5.29", "alternatives": [ { "confidence": "1.0", "content": "for" } ], "type": "pronunciation" }, { "start_time": "5.29", "end_time": "5.33", "alternatives": [ { "confidence": "0.9955", "content": "a" } ], "type": "pronunciation" }, { "start_time": "5.33", "end_time": "5.66", "alternatives": [ { "confidence": "0.9754", "content": "follow" } ], "type": "pronunciation" }, { "start_time": "5.66", "end_time": "5.75", "alternatives": [ { "confidence": "0.9754", "content": "up" } ], "type": "pronunciation" }, { "start_time": "5.75", "end_time": "6.02", "alternatives": [ { "confidence": "1.0", "content": "visit" } ]...
}, "status": "COMPLETED" }
To enable speaker partitioning in a batch transcription job (AWS CLI)
-
Run the following code.
aws transcribe start-medical-transcription-job \ --region
us-west-2
\ --cli-input-json file://example-start-command
.jsonThe following code shows the contents of
example-start-command.json
.{ "MedicalTranscriptionJobName": "
my-first-med-transcription-job
", "Media": { "MediaFileUri": "s3://amzn-s3-demo-bucket
/my-input-files
/my-audio-file
.flac
" }, "OutputBucketName": "amzn-s3-demo-bucket
", "OutputKey": "my-output-files
/", "LanguageCode": "en-US", "Specialty": "PRIMARYCARE", "Type": "DICTATION" }