Create and refine an Amazon Transcribe custom vocabulary using an AWS SDK - Amazon Transcribe

Create and refine an Amazon Transcribe custom vocabulary using an AWS SDK

The following code example shows how to:

  • Upload an audio file to Amazon S3.

  • Run an Amazon Transcribe job to transcribe the file and get the results.

  • Create and refine a custom vocabulary to improve transcription accuracy.

  • Run jobs with custom vocabularies and get the results.

Python
SDK for Python (Boto3)
Note

There's more on GitHub. Find the complete example and learn how to set up and run in the AWS Code Examples Repository.

Transcribe an audio file that contains a reading of Jabberwocky by Lewis Carroll. Start by creating functions that wrap Amazon Transcribe actions.

def start_job( job_name, media_uri, media_format, language_code, transcribe_client, vocabulary_name=None, ): """ Starts a transcription job. This function returns as soon as the job is started. To get the current status of the job, call get_transcription_job. The job is successfully completed when the job status is 'COMPLETED'. :param job_name: The name of the transcription job. This must be unique for your AWS account. :param media_uri: The URI where the audio file is stored. This is typically in an Amazon S3 bucket. :param media_format: The format of the audio file. For example, mp3 or wav. :param language_code: The language code of the audio file. For example, en-US or ja-JP :param transcribe_client: The Boto3 Transcribe client. :param vocabulary_name: The name of a custom vocabulary to use when transcribing the audio file. :return: Data about the job. """ try: job_args = { "TranscriptionJobName": job_name, "Media": {"MediaFileUri": media_uri}, "MediaFormat": media_format, "LanguageCode": language_code, } if vocabulary_name is not None: job_args["Settings"] = {"VocabularyName": vocabulary_name} response = transcribe_client.start_transcription_job(**job_args) job = response["TranscriptionJob"] logger.info("Started transcription job %s.", job_name) except ClientError: logger.exception("Couldn't start transcription job %s.", job_name) raise else: return job def get_job(job_name, transcribe_client): """ Gets details about a transcription job. :param job_name: The name of the job to retrieve. :param transcribe_client: The Boto3 Transcribe client. :return: The retrieved transcription job. """ try: response = transcribe_client.get_transcription_job( TranscriptionJobName=job_name ) job = response["TranscriptionJob"] logger.info("Got job %s.", job["TranscriptionJobName"]) except ClientError: logger.exception("Couldn't get job %s.", job_name) raise else: return job def delete_job(job_name, transcribe_client): """ Deletes a transcription job. This also deletes the transcript associated with the job. :param job_name: The name of the job to delete. :param transcribe_client: The Boto3 Transcribe client. """ try: transcribe_client.delete_transcription_job(TranscriptionJobName=job_name) logger.info("Deleted job %s.", job_name) except ClientError: logger.exception("Couldn't delete job %s.", job_name) raise def create_vocabulary( vocabulary_name, language_code, transcribe_client, phrases=None, table_uri=None ): """ Creates a custom vocabulary that can be used to improve the accuracy of transcription jobs. This function returns as soon as the vocabulary processing is started. Call get_vocabulary to get the current status of the vocabulary. The vocabulary is ready to use when its status is 'READY'. :param vocabulary_name: The name of the custom vocabulary. :param language_code: The language code of the vocabulary. For example, en-US or nl-NL. :param transcribe_client: The Boto3 Transcribe client. :param phrases: A list of comma-separated phrases to include in the vocabulary. :param table_uri: A table of phrases and pronunciation hints to include in the vocabulary. :return: Information about the newly created vocabulary. """ try: vocab_args = {"VocabularyName": vocabulary_name, "LanguageCode": language_code} if phrases is not None: vocab_args["Phrases"] = phrases elif table_uri is not None: vocab_args["VocabularyFileUri"] = table_uri response = transcribe_client.create_vocabulary(**vocab_args) logger.info("Created custom vocabulary %s.", response["VocabularyName"]) except ClientError: logger.exception("Couldn't create custom vocabulary %s.", vocabulary_name) raise else: return response def get_vocabulary(vocabulary_name, transcribe_client): """ Gets information about a custom vocabulary. :param vocabulary_name: The name of the vocabulary to retrieve. :param transcribe_client: The Boto3 Transcribe client. :return: Information about the vocabulary. """ try: response = transcribe_client.get_vocabulary(VocabularyName=vocabulary_name) logger.info("Got vocabulary %s.", response["VocabularyName"]) except ClientError: logger.exception("Couldn't get vocabulary %s.", vocabulary_name) raise else: return response def update_vocabulary( vocabulary_name, language_code, transcribe_client, phrases=None, table_uri=None ): """ Updates an existing custom vocabulary. The entire vocabulary is replaced with the contents of the update. :param vocabulary_name: The name of the vocabulary to update. :param language_code: The language code of the vocabulary. :param transcribe_client: The Boto3 Transcribe client. :param phrases: A list of comma-separated phrases to include in the vocabulary. :param table_uri: A table of phrases and pronunciation hints to include in the vocabulary. """ try: vocab_args = {"VocabularyName": vocabulary_name, "LanguageCode": language_code} if phrases is not None: vocab_args["Phrases"] = phrases elif table_uri is not None: vocab_args["VocabularyFileUri"] = table_uri response = transcribe_client.update_vocabulary(**vocab_args) logger.info("Updated custom vocabulary %s.", response["VocabularyName"]) except ClientError: logger.exception("Couldn't update custom vocabulary %s.", vocabulary_name) raise def list_vocabularies(vocabulary_filter, transcribe_client): """ Lists the custom vocabularies created for this AWS account. :param vocabulary_filter: The returned vocabularies must contain this string in their names. :param transcribe_client: The Boto3 Transcribe client. :return: The list of retrieved vocabularies. """ try: response = transcribe_client.list_vocabularies(NameContains=vocabulary_filter) vocabs = response["Vocabularies"] next_token = response.get("NextToken") while next_token is not None: response = transcribe_client.list_vocabularies( NameContains=vocabulary_filter, NextToken=next_token ) vocabs += response["Vocabularies"] next_token = response.get("NextToken") logger.info( "Got %s vocabularies with filter %s.", len(vocabs), vocabulary_filter ) except ClientError: logger.exception( "Couldn't list vocabularies with filter %s.", vocabulary_filter ) raise else: return vocabs def delete_vocabulary(vocabulary_name, transcribe_client): """ Deletes a custom vocabulary. :param vocabulary_name: The name of the vocabulary to delete. :param transcribe_client: The Boto3 Transcribe client. """ try: transcribe_client.delete_vocabulary(VocabularyName=vocabulary_name) logger.info("Deleted vocabulary %s.", vocabulary_name) except ClientError: logger.exception("Couldn't delete vocabulary %s.", vocabulary_name) raise

Call the wrapper functions to transcribe audio without a custom vocabulary and then with different versions of a custom vocabulary to see improved results.

def usage_demo(): """Shows how to use the Amazon Transcribe service.""" logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") s3_resource = boto3.resource("s3") transcribe_client = boto3.client("transcribe") print("-" * 88) print("Welcome to the Amazon Transcribe demo!") print("-" * 88) bucket_name = f"jabber-bucket-{time.time_ns()}" print(f"Creating bucket {bucket_name}.") bucket = s3_resource.create_bucket( Bucket=bucket_name, CreateBucketConfiguration={ "LocationConstraint": transcribe_client.meta.region_name }, ) media_file_name = ".media/Jabberwocky.mp3" media_object_key = "Jabberwocky.mp3" print(f"Uploading media file {media_file_name}.") bucket.upload_file(media_file_name, media_object_key) media_uri = f"s3://{bucket.name}/{media_object_key}" job_name_simple = f"Jabber-{time.time_ns()}" print(f"Starting transcription job {job_name_simple}.") start_job( job_name_simple, f"s3://{bucket_name}/{media_object_key}", "mp3", "en-US", transcribe_client, ) transcribe_waiter = TranscribeCompleteWaiter(transcribe_client) transcribe_waiter.wait(job_name_simple) job_simple = get_job(job_name_simple, transcribe_client) transcript_simple = requests.get( job_simple["Transcript"]["TranscriptFileUri"] ).json() print(f"Transcript for job {transcript_simple['jobName']}:") print(transcript_simple["results"]["transcripts"][0]["transcript"]) print("-" * 88) print( "Creating a custom vocabulary that lists the nonsense words to try to " "improve the transcription." ) vocabulary_name = f"Jabber-vocabulary-{time.time_ns()}" create_vocabulary( vocabulary_name, "en-US", transcribe_client, phrases=[ "brillig", "slithy", "borogoves", "mome", "raths", "Jub-Jub", "frumious", "manxome", "Tumtum", "uffish", "whiffling", "tulgey", "thou", "frabjous", "callooh", "callay", "chortled", ], ) vocabulary_ready_waiter = VocabularyReadyWaiter(transcribe_client) vocabulary_ready_waiter.wait(vocabulary_name) job_name_vocabulary_list = f"Jabber-vocabulary-list-{time.time_ns()}" print(f"Starting transcription job {job_name_vocabulary_list}.") start_job( job_name_vocabulary_list, media_uri, "mp3", "en-US", transcribe_client, vocabulary_name, ) transcribe_waiter.wait(job_name_vocabulary_list) job_vocabulary_list = get_job(job_name_vocabulary_list, transcribe_client) transcript_vocabulary_list = requests.get( job_vocabulary_list["Transcript"]["TranscriptFileUri"] ).json() print(f"Transcript for job {transcript_vocabulary_list['jobName']}:") print(transcript_vocabulary_list["results"]["transcripts"][0]["transcript"]) print("-" * 88) print( "Updating the custom vocabulary with table data that provides additional " "pronunciation hints." ) table_vocab_file = "jabber-vocabulary-table.txt" bucket.upload_file(table_vocab_file, table_vocab_file) update_vocabulary( vocabulary_name, "en-US", transcribe_client, table_uri=f"s3://{bucket.name}/{table_vocab_file}", ) vocabulary_ready_waiter.wait(vocabulary_name) job_name_vocab_table = f"Jabber-vocab-table-{time.time_ns()}" print(f"Starting transcription job {job_name_vocab_table}.") start_job( job_name_vocab_table, media_uri, "mp3", "en-US", transcribe_client, vocabulary_name=vocabulary_name, ) transcribe_waiter.wait(job_name_vocab_table) job_vocab_table = get_job(job_name_vocab_table, transcribe_client) transcript_vocab_table = requests.get( job_vocab_table["Transcript"]["TranscriptFileUri"] ).json() print(f"Transcript for job {transcript_vocab_table['jobName']}:") print(transcript_vocab_table["results"]["transcripts"][0]["transcript"]) print("-" * 88) print("Getting data for jobs and vocabularies.") jabber_jobs = list_jobs("Jabber", transcribe_client) print(f"Found {len(jabber_jobs)} jobs:") for job_sum in jabber_jobs: job = get_job(job_sum["TranscriptionJobName"], transcribe_client) print( f"\t{job['TranscriptionJobName']}, {job['Media']['MediaFileUri']}, " f"{job['Settings'].get('VocabularyName')}" ) jabber_vocabs = list_vocabularies("Jabber", transcribe_client) print(f"Found {len(jabber_vocabs)} vocabularies:") for vocab_sum in jabber_vocabs: vocab = get_vocabulary(vocab_sum["VocabularyName"], transcribe_client) vocab_content = requests.get(vocab["DownloadUri"]).text print(f"\t{vocab['VocabularyName']} contents:") print(vocab_content) print("-" * 88) print("Deleting demo jobs.") for job_name in [job_name_simple, job_name_vocabulary_list, job_name_vocab_table]: delete_job(job_name, transcribe_client) print("Deleting demo vocabulary.") delete_vocabulary(vocabulary_name, transcribe_client) print("Deleting demo bucket.") bucket.objects.delete() bucket.delete() print("Thanks for watching!")

For a complete list of AWS SDK developer guides and code examples, see Using this service with an AWS SDK. This topic also includes information about getting started and details about previous SDK versions.