
Leverage the Power of NoSQL for Suitable Workloads

Best Practices for Migrating from RDBMS to
Amazon DynamoDB

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Best Practices for Migrating from RDBMS to Amazon DynamoDB:
Leverage the Power of NoSQL for Suitable Workloads

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Table of Contents

Abstract and introduction ... 1
Abstract ... 1
Introduction ... 1

Overview of Amazon DynamoDB ... 4
Suitable workloads .. 6
Unsuitable workloads .. 9
Key concepts .. 10
Migrating to DynamoDB from RDBMS ... 16
Planning phase .. 17
Data analysis phase ... 20
Data modeling phase .. 22

Data modeling example .. 23
Cost estimate calculation .. 31

Testing Phase ... 34
Data migration phase .. 36
Conclusion .. 37
Contributors ... 38
Further reading .. 39
Document history .. 40
Appendix: Concepts ... 41
Notices .. 42
AWS Glossary ... 43

iii

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Abstract and introduction

Publication date: February 28, 2022 (Document history)

Abstract

Software architects and developers have an array of choices for data storage and persistence.
These include not only traditional relational database management systems (RDBMS), but also
NoSQL databases, such as Amazon DynamoDB. Certain workloads will scale better and be more
cost-effective to run using a NoSQL solution. This whitepaper highlights the best practices for
migrating these workloads from an RDBMS to DynamoDB. It also discusses how NoSQL databases
like DynamoDB differ from a traditional RDBMS, and proposes a framework for analysis, data
modeling, and migration of data from an RDBMS into DynamoDB.

Introduction

For decades, the RDBMS was the de facto choice for data storage and persistence. Any data driven
application, be it an e-commerce website or an expense reporting system, was almost certain to
use a relational database to retrieve and store the data required by the application. The reasons for
this are numerous and include the following:

• RDBMS is a mature and stable technology.

• The query language, SQL, is feature-rich and versatile.

• The servers that run an RDBMS engine are typically some of the most stable and powerful in the
IT infrastructure.

• All major programming languages contain support for the drivers used to communicate with
an RDBMS, as well as a rich set of tools for simplifying the development of database-driven
applications.

These factors, and many others, have supported the wide adoption of the RDBMS. For architects
and software developers, there simply wasn’t a reasonable alternative for data storage and
persistence – until now.

The growth of internet scale web applications, such as e-commerce and social media, the explosion
of connected devices like smart phones and tablets, and the rise of big data have resulted in

Abstract 1

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

new workloads that traditional relational databases are not well suited to handle. As systems
designed for transaction processing, all RDBMS must support certain fundamental properties.
These properties are defined by the acronym ACID: Atomicity, Consistency, Isolation, and Durability.
Atomicity refers to all or nothing operations – a transaction processes completely or not at
all. Consistency means that the process of a transaction causes a valid state transition or the
transaction is cancelled. Once the transaction is committed, the state of the resulting data must
conform to the constraints imposed by the database schema. Isolation requires that concurrent
transactions run separately from one another. The isolation property guarantees that if concurrent
transactions are run in serial, the end state of the data will be the same. Durability requires that
the state of the data, once a transaction processes, be preserved. In the event of power or system
failure, the database must be able to recover to the last known state.

These ACID properties are all desirable, but support for all four requires an architecture that poses
some challenges for today’s data intensive workloads. For example, consistency requires a well-
defined schema and that all data stored in a database conform to that schema. This is great for ad-
hoc queries and read-heavy workloads. For a workload consisting almost entirely of writes, such
as the saving of a player’s state in a gaming application, this enforcement of schema is expensive
from a storage and compute standpoint. The game developer benefits little by forcing this data
into rows and tables that relate to one another through a well-defined set of keys.

Consistency also requires locking some portion of the data until the transaction modifying
it completes and then making the change immediately visible. For a bank transaction, which
debits one account and credits another, this is required. This type of transaction is called strongly
consistent. For a social media application, on the other hand, there really is no requirement that all
users see an update to a data feed at precisely the same time. In this latter case, the transaction
is eventually consistent. It is far more important that the social media application scale to handle
potentially millions of simultaneous users even if those users see changes to the data at different
times. Scaling an RDBMS to handle this level of concurrency, while maintaining strong consistency,
requires upgrading to more powerful (and often proprietary) hardware. This is called scaling up or
vertical scaling, it usually carries an extremely high cost and has an upper scalability limit. The more
cost-effective way to scale a database to support this level of concurrency is to add server instances
running on commodity hardware. This is called scaling out or horizontal scaling and it is typically
far more cost-effective than vertical scaling.

NoSQL databases, such as Amazon DynamoDB, address the scaling and performance challenges
found with RDBMS. The term NoSQL simply means that the database doesn’t follow the relational
model espoused by E.F Codd in his 1970 paper A Relational Model of Data for Large Shared Data
Banks, which would become the basis for all modern RDBMS. As a result, NoSQL databases

Introduction 2

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

vary much more widely in features and functionality than a traditional RDBMS. There is no
common query language analogous to SQL, and query flexibility is generally replaced by high I/
O performance and horizontal scalability. NoSQL databases don’t enforce the notion of schema in
the same way as an RDBMS. NoSQL databases may store semi-structured data, like JSON, they may
store related values as column sets, or they may simply store key/value pairs.

The net result is that NoSQL databases usually trade some of the query capabilities and ACID
properties of an RDBMS for a much more flexible data model that scales horizontally. These
characteristics make NoSQL databases an excellent choice in situations where use of an RDBMS
(like the aforementioned game state example) is resulting in some combination of performance
bottlenecks, operational complexity, and rising costs. DynamoDB offers solutions to all these
problems, and is an excellent platform for migrating these workloads off of an RDBMS. In addition,
DynamoDB supports strong consistency and ACID transactions, so even workloads that require
such capabilities, which traditionally were not considered suitable for NoSQL databases, can take
advantage of DynamoDB’s scalability, flexible data model, and operational simplicity.

Introduction 3

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Overview of Amazon DynamoDB

Amazon DynamoDB is a fully managed, serverless, NoSQL database service running in the AWS
cloud. The complexity of running a massively scalable, distributed NoSQL database is managed
by the service itself, enabling software developers to focus on building applications rather
than managing infrastructure. NoSQL databases are designed for scale, but their architectures
are sophisticated, and there can be significant operational overhead in running a large NoSQL
cluster. With DynamoDB, instead of having to become experts in advanced distributed computing
concepts, the developer need only learn DynamoDB’s straightforward API using the software
development kit (SDK) for the programming language of choice.

DynamoDB is also cost-effective. With DynamoDB, you pay for the storage you are consuming
and the read and write operations you are performing. It is designed to scale elastically. When the
storage and throughput requirements of an application are low, only a small amount of capacity
needs to be provisioned in the DynamoDB service. As the number of users of an application grows
and the required I/O throughput increases, additional capacity can be provisioned by the service on
the fly. This enables an application to seamlessly grow to support millions of users who are making
millions of concurrent requests to the database every second.

Tables are the fundamental construct for organizing and storing data in DynamoDB. These tables
consist of items and each item is composed of a primary key that uniquely identifies it and key/
value pairs called attributes. While an item is similar to a row in an RDBMS table, all the items in
the same DynamoDB table need not share the same set of attributes in the way that all rows in a
relational table share the same columns. The figure DynamoDB Table Structure shows the structure
of a DynamoDB table and the items it contains.

4

https://aws.amazon.com/dynamodb/

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

DynamoDB table structure

There is no concept of a column in a DynamoDB table. Each item in the table can be expressed
as a tuple containing an arbitrary number of elements, up to a maximum size of 400KB. This
schema flexibility of a DynamoDB table simplifies the process of modifying the data structure as
requirements change over time and it allows a flexible data model where you can store multiple
versions and types of objects in the same table. This data model is well suited for storing data
in the formats commonly used for object serialization and messaging in distributed systems. As
explained in the next section, workloads that involve this type of data are good candidates to
migrate to DynamoDB.

Tables and items are created, updated, queried, and deleted through the DynamoDB API. In
addition, DynamoDB supports PartiQL, a SQL-compatible query language that allows access to
structured, semi-structured, and nested data. Whether using the native DynamoDB API, or PartiQL,
to access the data, it’s important to understand your application’s data access patterns well in
order to make the most effective use of DynamoDB.

5

https://partiql.org/

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Suitable workloads

With the introduction of DynamoDB features like ACID transactions, Amazon DynamoDB
Accelerator (DAX), global tables, Amazon DynamoDB Time to Live (TTL), and Amazon DynamoDB
Streams, the variety of workloads suitable for DynamoDB has expanded during the recent years.
The following table outlines some of the more common use-cases for DynamoDB workloads.

Table 1 – Common use-cases for DynamoDB workloads

Application Use case

Adtech Capturing browser cookie state User events, clickstream, impressio
ns datastore

Mobile applications Storing application data and session state

Gaming applications Storing user preferences and application state

Storing players’ game states

Consumer voting applicati
ons

Reality TV contests, Superbowl commercials

Large scale websites Session state User data used for personalization Access control

Application monitoring Storing application log and event data JSON data

Internet of Things Sensor data and log ingestion

Retail Shopping cart Customer profiles Inventory tracking and fulfillme
nt

Finance User transactions Event-driven transaction processing, fraud
detection

All of the use-cases in this table benefit from some combination of the features that make
DynamoDB so powerful. Adtech applications typically require extremely low and consistent latency,
which is well suited for DynamoDB’s low single digit millisecond read and write performance. DAX,

6

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/transactions.html
https://aws.amazon.com/dynamodb/dax/
https://aws.amazon.com/dynamodb/dax/
https://aws.amazon.com/dynamodb/global-tables/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TTL.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

an in-memory cache for DynamoDB, provides microseconds latency for reads in cases where even
lower read latency is a requirement. Because DAX is API-compatible with DynamoDB, you don't
have to make functional application code changes and don’t need to make separate calls to your
in-memory cache.

Mobile applications and consumer voting applications often have millions of users and need to
handle many thousands of requests per second. DynamoDB can scale horizontally to meet this
load. Gaming applications can rely on DynamoDB global tables for multi-region, active-active
replication of data for business continuity and to allow globally distributed users to access the
game in a region closest to them to reduce latency. Application monitoring solutions typically
ingest hundreds of thousands or millions of data points per minute and DynamoDB’s schema-less
data model, high performance, and support for a native JSON data type is a great fit for these
types of applications. Finally, financial applications make use of DynamoDB ACID transactions in
order to assure data integrity and correctness. They also utilize DynamoDB Streams and TTL to
perform event driven processing, while taking advantage of DynamoDB scalability to support their
workloads.

Another important characteristic to consider when determining if a workload is suitable for a
NoSQL database like DynamoDB is whether it requires horizontal scaling. A mobile application may
have millions of users, but each installation of the application will only read and write session data
for a single user. This means the user session data in the DynamoDB table can be distributed across
multiple storage partitions. A read or write of data for a given user will be confined to a single
partition. This allows the DynamoDB table to scale horizontally—as more users are added, more
partitions are created. As long as requests to read and write this data are uniformly distributed
across partitions, DynamoDB will be able to handle a very large amount of concurrent data access.
This type of horizontal scaling is difficult to achieve with an RDBMS without the use of sharding,
which can add significant complexity to an application’s data access layer. When data in an RDBMS
is sharded, it is split across different database instances. This requires maintaining an index of the
instances and the range of data they contain. In order to read and write data, a client application
needs to know which shard contains the range of data to be read or written. Sharding also adds
administrative overhead and cost – instead of a single database instance, you are now responsible
for keeping several up and running.

It’s also important to evaluate the data consistency requirement of an application when
determining if a workload would be suitable for DynamoDB. Writes are always strongly consistent
in DynamoDB. For reads there are two consistency models supported in DynamoDB: strong
consistency and eventual consistency, with the former requiring more capacity than the latter.
This flexibility enables the developer to get the best possible performance from the database

7

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

while being able to support the consistency requirements of the application. If an application
does not require strongly consistent reads, meaning that updates made by one client do not need
to be immediately visible to others, then use of an RDBMS that will force strong consistency can
result in a tax on performance with no net benefit to the application. The reason is that strong
consistency usually involves having to lock some portion of the data, which can cause performance
bottlenecks.

8

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Unsuitable workloads

Some workloads are unsuitable for DynamoDB, including:

• Ad-hoc queries

• Online analytical processing (OLAP)

• Binary Large Object (Blob) storage

Because there is no concept of a table join in DynamoDB, constructing ad-hoc queries is not as
efficient as it is with RDBMS. Running such queries with DynamoDB is possible, but requires the
use of Amazon EMR, or AWS Glue with Hive, or Apache Spark. Likewise, OLAP applications are
difficult to deliver as well, because the dimensional data model used for analytical processing
requires joining fact tables to dimension tables. Finally, due to the size limitation of a DynamoDB
item, storing Blobs is often not practical. DynamoDB does support a binary data type, but this is
not suited for storing large binary objects, like images or documents. However, storing a pointer in
the DynamoDB table to a large Blob stored in Amazon Simple Storage Service (Amazon S3) easily
supports this last use-case.

9

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Key concepts

As described in the previous section, DynamoDB organizes data into tables consisting of items.
Each item in a DynamoDB table can define an arbitrary set of attributes, but all items in the table
must define a primary key that uniquely identifies the item. This key must contain an attribute
known as the partition key and optionally an attribute called the sort key. The following figure
shows the structure of a DynamoDB table that defines both a partition and sort key.

DynamoDB Table with partition and sort keys

If an item can be uniquely identified by a single attribute value, then this attribute can function
as the partition key. In other cases, an item may be uniquely identified by two values. In this case,
the primary key will be defined as a composite of the partition key and the sort key. The following
figure demonstrates this concept.

10

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Example of partition and sort keys

RDBMS tables relating media files with the codec used to transcode them can be modeled as a
single table in DynamoDB using a primary key consisting of a partition and sort key. Note how the
data is de-normalized in the DynamoDB table. This is a common practice when migrating data from
an RDBMS to a NoSQL database, and will be discussed in more detail later in this whitepaper.

The ideal partition key will contain a large number of distinct values uniformly distributed across
the items in the table. A user ID is a good example of an attribute that tends to be uniformly
distributed across items in a table. Attributes that would be modeled as lookup values or
enumerations in an RDBMS tend to make poor partition keys. The reason is that certain values may
occur much more frequently than others. These concepts are shown in Table 2. Notice how the
counts of user_id are uniform whereas the counts of status_code are not. If the status_code is used
as a partition key in a DynamoDB table, the value that occurs most frequently will end up being
stored on a single partition, and this means that most reads and writes will be hitting that single
partition. This is called a hot partition and this will negatively impact performance.

Table 2 – Uniform and non-uniform distribution of potential key values

select user_id, count(*) as total from user_preferences group by user_id

user_id total

8a9642f7-5155-4138-
bb63-870cd45d7e19

1

11

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

user_id total

31667c72-86c5-4afb-82a1-
a988bfe34d49

1

693f8265-b0d2-40f1-add0-
bbe2e8650c08

1

select status_code, count(*) as total from status_code sc, log l where
l.status_code_id = sc.status_code_id

status_code total

400 125000

403 250

500 1000

505 2

Items can be fetched from a table using the primary key. Often, it is useful to be able to fetch items
using a different set of values than the partition and the sort keys. DynamoDB supports these
operations through local and global secondary indexes. A local secondary index uses the same
partition key as defined on the table, but a different attribute as the sort key. The following figure
shows how a local secondary index is defined on a table. A global secondary index can use any
scalar attribute as the partition or sort key. An important difference between the two index types
is that a local secondary index can only be created at the time of the table’s creation and it stays
present until the table is deleted, while a global secondary index can be created and deleted at any
moment. Fetching items using secondary indexes is done using the query interface defined in the
DynamoDB API.

12

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

A local secondary index

Adding secondary indexes consumes additional storage and capacity for writes and so, as with
any database, it is important to limit the number of indexes you define for a table. This requires
understanding the data access requirements of any application that uses DynamoDB for persistent
storage. In addition, global secondary indexes require that attribute values be projected into the
index. What this means is that when an index is created, a subset of attributes from the parent
table needs to be selected for inclusion into the index. When an item is queried using a global
secondary index, the only attributes that will be populated in the returned item are those that have
been projected into the index. The following figure demonstrates this concept.

13

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Create a global secondary index on a table

The original partition and sort key attributes are automatically projected into the global secondary
index. Reads on global secondary indexes are always eventually consistent, whereas local
secondary indexes support eventual or strong consistency. Finally, both local and global secondary
indexes consume capacity for reads and writes to the index. This means that when an item is
inserted or updated in the main table, secondary indexes will consume capacity to update the
index. The only exceptions to this are cases where the item isn’t written to an index, because the
attributes that are part of the index’s primary key are not present in the item (refer to Sparse
Indexes) or when an item modification isn’t reflected in the index because the changed attributes
aren’t projected to the index.

DynamoDB allows for specifying the capacity mode for each table. With the on-demand capacity
mode, which is suitable for workloads that are less predictable, the service takes care of managing
capacity for you, and you only pay for what you consume. With provisioned capacity mode you
are required to specify the table’s read and write capacity and you pay based on the provisioned
capacity.

Whenever an item is read from or written to a DynamoDB table or index, the amount of
capacity required to perform the read or write operation is expressed as read capacity units
(RCUs) or write capacity units (WCUs). One RCU represents one strongly consistent read per
second, or two eventually consistent reads per second, for items up to 4KB in combined size.

14

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-indexes-general-sparse-indexes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-indexes-general-sparse-indexes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadWriteCapacityMode.html

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Transactional read requests require two RCUs to perform one read per second for items up to
4KB. One WCU represents one write per second for an item up to 1KB in size. Transactional write
requests require two WCUs to perform one write per second for item up to 1KB. This means
that fetching one or more items with a total size of 8KB in a single strongly consistent read will
consume two RCUs. Making a regular (non-transactional) insert of an item of 8KB in size will
consume eight WCUs.

With provisioned capacity mode you choose the number of RCUs and WCUs the table supports. If
your application requires that 1000 4KB items be written per second, then the provisioned write
capacity of the table would need to be a minimum of 4000 WCUs. When an insufficient amount
of read or write capacity is provisioned on a table, the DynamoDB service will throttle the read
and write operations. This can result in poor performance and in some cases throttling exceptions
in the client application. For this reason, it is important to understand an application’s I/O
requirements when designing the tables. However, both read and write capacity can be dynamically
altered on an existing table. If an application suddenly experiences a spike in usage that results in
throttling, the provisioned capacity can be increased to handle the new workload. Similarly, if load
decreases for some reason, the provisioned capacity can be reduced. This dynamic change in the
table’s read or write capacity can be achieved through a simple API call, or automatically through
DynamoDB Auto Scaling. In addition, you can change the table’s capacity mode once per 24 hours.
This ability to dynamically alter the I/O characteristics of a table is a key differentiator between
DynamoDB and a traditional RDBMS, in which I/O throughput is going to be fixed based on the
underlying hardware the database engine is running on. This means that in many cases DynamoDB
can be much more cost-effective than a traditional RDBMS, that is usually provisioned for peak
consumption and stays underutilized for the majority of time.

15

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Migrating to DynamoDB from RDBMS

In the previous section, some of the key features of DynamoDB were discussed, as well as some
of the key differences between DynamoDB and a traditional RDBMS. In this section, a strategy for
migrating from an RDBMS to DynamoDB that takes into account these key features and differences
is proposed. Because database migrations tend to be complex and risky, we advocate taking a
phased, iterative approach. As is the case with the adoption of any new technology, it’s also good
to focus on the easiest use cases first. It’s also important to remember, as we propose in this
section, that migration to DynamoDB doesn’t need to be an all or nothing process. For certain
migrations, it may be feasible to run the workload on both DynamoDB and the RDBMS in parallel,
and switch over to DynamoDB only when it’s clear that the migration has succeeded and the
application is working properly.

The following state diagram expresses the proposed migration strategy:

Migration phases

It is important to note that this process is iterative. The outcome of certain states can result in
a return to a previous state. Oversights in the data analysis and data-modeling phase may not
become apparent until the testing phase. In most cases, it will be necessary to iterate over these
phases multiple times before reaching the final data migration state. Each phase is discussed in
detail in the following sections.

16

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Planning phase

The first part of the planning phase is to identify the goals of the data migration. These often
include, but are not limited to:

• Increasing application performance

• Lowering costs

• Reducing the load on an RDBMS

• Reducing operational overhead

In many cases, the goals of a migration may be a combination of all of the above. Once these goals
have been defined, they can be used to inform the identification of the RDMBS tables to migrate to
DynamoDB. Some good candidates for migration are:

• Entity-Attribute-Value tables

• Application session state tables

• User preference tables

• Logging tables

Once the tables have been identified, any characteristics of the source tables that may make
migration challenging should be documented. This information will be essential for choosing a
sound migration strategy. Let’s take a look at some of the more common challenges that tend to
impact the migration strategy:

Table 3 – Challenges that impact migration strategy

Challenge Impact on migration strategy

Writes to the RDBMS source table will
continue before and during the migration.

Consider a migration strategy that involves
writing data to both the source and target
tables in parallel in addition to bulk importing
the existing data. As an alternative migration
strategy, you can use the AWS Database
Migration Service with ongoing replication to
DynamoDB.

17

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.DynamoDB.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.DynamoDB.html

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Challenge Impact on migration strategy

The amount of data in the source table is in
excess of what can reasonably be transferred
with the existing network bandwidth.

Consider exporting the data from the source
table to removable disks and using the AWS
Import/Export or AWS Snowball services to
import the data to a bucket in S3. Import this
data into DynamoDB directly from S3.

Alternatively, reduce the amount of data that
needs to be migrated by exporting only those
records that were created after a recent point
in time. All data older than that point will
remain in the legacy table in the RDBMS.

The data in the source table needs to be
transformed before it can be imported into
DynamoDB.

Consider using one of the following strategies:

• Export the data from the source table and
transfer it to S3. Consider using a Glue
ETL job to perform the data transform
ation, and import the transformed data into
DynamoDB.

• Use the AWS Database Migration Service
with object mapping.

• Perform the transformation in an applicati
on code that will read data from the source
database, transform as needed and write to
DynamoDB.

The primary key structure of the source table
is not portable to DynamoDB.

Identify columns that will make suitable
partition keys and sort keys for the imported
items. Alternatively, consider adding a
surrogate key, such as a universally unique
identifier (UUID), to the source table that will
act as a suitable partition key.

Finally, and perhaps most importantly, the backup and recovery process should be defined and
documented in the planning phase. If the migration strategy requires a full cutover from the

18

https://aws.amazon.com/blogs/database/aws-database-migration-service-and-amazon-dynamodb-what-you-need-to-know/
https://aws.amazon.com/blogs/database/aws-database-migration-service-and-amazon-dynamodb-what-you-need-to-know/

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

RDBMS to DynamoDB, defining a process for restoring functionality using the RDBMS in the event
the migration fails is essential. To mitigate risk, consider running the workload on DynamoDB
and the RDBMS in parallel for some length of time. In this scenario, the legacy RDBMS-based
application can be disabled only once the workload has been sufficiently tested in production using
DynamoDB.

19

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Data analysis phase

The purpose of the data analysis phase is to understand the composition of the source data, and to
identify the data access patterns used by the application. This information is required input for the
data-modeling phase. It is also essential for understanding the cost and performance of running a
workload on DynamoDB. The analysis of the source data should include:

• An estimate of the number of items to be imported into DynamoDB

• A distribution of the item sizes

• The multiplicity of values to be used as partition or sort keys

DynamoDB pricing contains two main components – read and write capacity and storage. By
estimating the number of items that will be imported into a DynamoDB table, and the approximate
size of each item, the storage and the capacity requirements for the table can be calculated.
Common SQL data types will map to one of three scalar types in DynamoDB: string, number,
or binary. The length of the number data type is variable, and strings are encoded using binary
UTF-8. Focus should be placed on the attributes with the largest values when estimating item
size, as capacity units are given in integral 1KB increments—there is no concept of a fractional
capacity unit in DynamoDB. If an item is estimated to be 3.3KB in size, it will require four 1KB write
capacity units and one 4KB read capacity unit to write and read a single item, respectively. Since
the size will be rounded to the nearest kilobyte, the exact size of the numeric types is unimportant.
In most cases, even for large numbers with high precision, the data will be stored using a small
number of bytes. Because each item in a table may contain a variable number of attributes, it is
useful to compute a distribution of item sizes and use a percentile value to estimate item size. For
example, one may choose an item size representing the 95th percentile and use this for estimating
the storage and capacity costs. In the event that there are too many rows in the source table to
inspect individually, take samples of the source data and use these for computing the item size
distribution.

Correctly estimating the required capacity is key to both guaranteeing the required application
performance as well as understanding cost. Understanding the distribution frequency of RDBMS
column values that could be partition or sort keys is essential for obtaining maximum performance
as well. Columns containing values that are not uniformly distributed (that is, some values occur
in much larger numbers than others) are not good partition or sort keys because accessing items
with keys occurring in high frequency will hit the same DynamoDB partitions, and this has negative
performance implications.

20

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

The second purpose of the data analysis phase is to categorize the data access patterns of the
application. Because DynamoDB does not support joins and isn’t optimized for ad-hoc queries, it
is essential to document the ways in which data will be written to and read from the tables. This
information is critical for the data-modeling phase, in which the tables, the key structure, and the
indexes will be defined. Some common patterns for data access are:

• Write only – items are written to a table and never read by the application.

• Fetches by distinct value – items are fetched individually by a value that uniquely identifies the
item in the table.

• Queries across a range of items – items are fetched as groups using a value that identifies
multiple items in the table, for example, items that belong to the same user ID.

As discussed in the next section, documentation of an application’s data access patterns using
categories such as those described above will drive much of the data-modeling decisions.

21

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Data modeling phase

In this phase, the tables, partition key, sort key, and secondary indexes are defined. The data
model produced in this phase must support the data access patterns described in the data analysis
phase. The first step in data modeling is to determine the partition key and sort key for a table.
The primary key, whether consisting only of the partition key or a composite of the partition and
sort key, must be unique for all items in the table. When migrating data from an RDBMS, it is
tempting to use the primary key of the source table as the partition key, but in reality, this key is
often meaningless to the application. For example, a user table in an RDBMS may define a numeric
primary key, but an application responsible for logging in a user will ask for an email address, not
the numeric user ID. In this case, the email address is the natural key and would be better suited
as the partition key in the DynamoDB table, as items can easily be fetched by their partition key
values. Modeling the partition key in this way is appropriate for data access patterns that fetch
items by distinct value. For other data access patterns, like write only, using a randomly generated
numeric ID will work well for the partition key. In this case, the items will never be fetched from the
table by the application, and as such, the key will only be used to uniquely identify the items, not
as a means of fetching data.

RDBMS tables that contain a unique index on two key values are good candidates for defining a
primary key using both a partition key and a sort key. Intersection tables used to define many-to-
many relationships in an RDBMS are typically modeled using a unique index on the key values of
both sides of the relationship. Because fetching data in a many-to-many relationship requires a
series of table joins, migrating such a table to DynamoDB would also involve denormalization of
the data (discussed in more detail below).

Date values are also often used as sort key. A table counting the number of times a URL was
visited on any given day could define the URL as the partition key and the date as the sort key.
As with primary keys consisting solely of a partition key, fetching items with a composite primary
key requires the application to specify both the partition and sort key values. This needs to be
considered when evaluating whether a surrogate key or a natural key would make the better choice
for the partition and or sort key.

Because non-key attributes can be added to an item arbitrarily, for tables with a simple primary
key, the only attributes that must be specified in a DynamoDB definition are the partition key.
For a table with a composite primary key, the partition key and the sort key must be specified.
However, if secondary indexes are going to be defined on any non-key attributes, then these must
be included in the table definition. Inclusion of non-key attributes in the table definition does not

22

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

impose any sort of schema on all the items in the table. Aside from the primary key, each item in
the table can have an arbitrary list of attributes.

The support for SQL in an RDBMS means that records can be fetched using any of the column
values in the table. These queries may not always be efficient – if no index exists on the column
used to fetch the data, a full table scan may be required to locate the matching rows. With
DynamoDB it is possible to do a full table scan by using either the native query interface or
PartiQL, but this is inefficient and will consume substantial read units if the table is large. Instead,
items can be fetched from a DynamoDB table by the primary key of the table, or the key of a
local or global secondary index defined on the table. Because an index in a non-key column of
an RDBMS table suggests that the application commonly queries for data on this value, these
attributes make good candidates for local or global secondary indexes in a DynamoDB table. There
are limits to the number of secondary indexes allowed on a DynamoDB table and, as previously
explained, an index consumes additional storage and capacity for writes, so it is important to
choose keys for these indexes using attribute values that the application will use most frequently
for fetching data.

DynamoDB does not support the concept of a table join, so migrating data from an RDBMS table
often requires denormalization of the data. To those used to working with an RDBMS, this will be a
foreign and perhaps initially uncomfortable concept. For example, if a relational database contains
a User and a UserAddress table, related through the UserID, one would combine the User attributes
with the Address attributes into a single DynamoDB table. In the relational database, normalizing
the UserAddress information allows for multiple addresses to be specified for a given user. This is a
requirement for a contact management or CRM system. However, in DynamoDB, a user table would
likely serve a different purpose—perhaps keeping track of a mobile application’s registered users.
In this use-case, the multiplicity of users to addresses is less important than scalability and fast
retrieval of user records.

It is recommended to use the NOSQL Workbench for DynamoDB in order to perform data
modeling for your DynamoDB tables. This client graphical user interface (GUI) application simplifies
data modeling and visualization for DynamoDB.

Data modeling example

Let’s walk through an example that combines the concepts described in this section and the
previous. This example will demonstrate how to use secondary indexes for efficient data access,
and how to estimate both the item size and the required capacity for a DynamoDB table. For this

Data modeling example 23

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/workbench.html

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

example there is a gaming application that tracks players and the games they play. The following
figure contains an Entity Relationship (ER) Diagram for the RDBMS schema of this application.

RDBMS schema for gaming application

A player can play multiple games and each game can host many players, so there is a many-to-
many relationship between players and games, leading to a PlayersGamesItems association table in
RDBMS.

In order to perform data modeling for DynamoDB, we should first list the application’s access
patterns, from the most to the least frequently used. In this case the access patterns are:

Table 4 – Application access patterns

Access pattern Frequency/sec

1 Get details of a certain game 2000

2 Get details of a certain player 1000

3 Get list of games a player registered to within a certain
time range

500

4 Get list of all games a player ever played 150

5 Update the player’s score in a certain game 100

Data modeling example 24

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Access pattern Frequency/sec

6 Add an association between a player and a game he/she
played

50

7 Get list of players who ever played a specific game 1

The following is the DynamoDB table and global secondary index (GSI) structure that will support
the above access patterns:

DynamoDB schema for gaming application

In DynamoDB the user utilizes a single table with GameId being its partition key and PlayerId its
sort key. This creates a one-to-many relationship between games and players and allows retrieval
of data about a specific player or all players playing a particular game. In order to create a many-
to-many relationship between games and players, the user creates a GSI with reversed partition
and sort key. The user creates a second GSI to support additional access patterns: retrieving a list
of games a player played sorted on the registration date or a list of games a player registered to
between certain dates. The following figure shows DynamoDB table and GSIs with several added
items, as can be seen in the NoSQL Workbench.

Data modeling example 25

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Data modeling example 26

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

DynamoDB table and GSIs in NoSQL Workbench

As the DynamoDB table and GSIs in NoSQL Workbench figure shows, the user denormalized
the data. The game name, type, and player name are duplicated in each item in the table. This
increases the storage usage, but also enables retrieving these details in a single, fast query, for
example when querying for the games Player2 ever played. Depending on the requirements,
we could model our data differently. If retrieving the game name and type isn’t required for the
majority of our queries, we could store these details in a single root game item, instead of storing
these in all the items. Similarly, we could store any generic player related data in root player item.
With such data modeling the data would appear as follows:

Data modeling example 27

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Data modeling example 28

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

DynamoDB table and GSIs with alternative data modeling in NoSQL Workbench

With the alternative data modeling, the partition key attribute is called PK and the sort key
attribute is called SK. This is because the table is now overloaded with multiple types of objects.
There are root game items containing generic game details, root player items containing generic
player details, and items that associate players to games they played.

Also note that these different types of items contain different attributes. DynamoDB’s schema-
less data model allows us to perform this kind of table overloading and it is considered a best
practice in DynamoDB. You might also notice that the PlayerID is now present in both the SK and
the PlayerID attributes. This in order to use the PlayerID attribute as the GSI’s sort key, to only
include players to games association items in the GSIs, making them sparse indexes. As can be
seen, the user prefixes the game IDs with G# and the Player IDs with P# to ensure that game and
player IDs are unique.

The next step is to list access patterns and the tables, or GSIs, that serve them. Here is the list with
the fully denormalized modeling and the list with alternative modeling:

Table 5 – Access patterns mapping to DynamoDB table and GSIs with fully denormalized modeling

Access pattern Read
served by

Passed primary key
values

1 Get game details for the given GameId Table GameId=X, limit=1

2 Get player details for the given PlayerId GSI1 PlayerId=X, limit=1

Data modeling example 29

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Access pattern Read
served by

Passed primary key
values

3 Get a list of games a player registered to
within a time range, for the given PlayerId
and time range

GSI2 PlayerId=X, Registrat
ionDate between Y and
Z

4 Get list of all games a player ever played GSI1 PlayerId=X

5 Update the player’s score in a certain game – GameId=X, PlayerId=Y

6 Add an association between a player and a
game he/she played

– GameId=X, PlayerId=Y

7 Get list of players who ever played a specific
game

Table GameId=X

Table 6 – Access patterns mapping to DynamoDB table and GSIs with alternative modeling

Access pattern Read served
by

Passed primary key
values

1 Get game details for the given game ID passed
in as PK

Table PK=X, SK=root

2 Get player details for the given player ID passed
in as PK

Table PK=X, SK=root

3 Get a list of games a player registered to within
a time range, for the given PlayerId and time
range

GSI2 PlayerId=X, Registrat
ionDate between Y
and Z

4 Get list of all games a player ever played GSI1 PlayerId=X

5 Update the player’s score in a certain game – PK=X, SK=Y

6 Add an association between a player and a game
he/she played

– PK=X, SK=Y

Data modeling example 30

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Access pattern Read served
by

Passed primary key
values

7 Get list of players who ever played a specific
game

Table PK=X

Cost estimate calculation

This section will show a cost calculation for the fully denormalized data modeling. The number of
rows that will be migrated is around 108, so computing the 95th percentile of item size iteratively
is not practical. Instead, the user will perform simple random sampling with replacement of
106 rows. This will give the user adequate precision for the purposes of estimating item size. To
do this, construct a SQL view that contains the fields that will be inserted into the DynamoDB
table. The sampling routine then randomly selects 106 rows from this view and computes the size
representing the 95th percentile.

This statistical sampling yields a 95th percentile size of 0.7 KB. The number of write capacity units
required to write a single item to the table is:

ceiling (0.7KB per item⁄1KB per write capacity unit) = 1 write capacity
unit per item

In the user’s fully denormalized data modeling, every item that is written to the table is being
propagated to both GSIs, which means that one write capacity unit will in addition be consumed
from each GSI.

The number of read capacity units required to read a single item is computed similarly:

ceiling (0.7KB per item⁄4KB per read capacity unit) = 1 read capacity
unit per item for strongly consistent read,or 0.5 read capacity unit with
eventually consistent read

The number of read capacity units required to read 100 items for example in a single operation is
computed as follows:

ceiling (0.7KB per item * 100⁄4KB per read capacity unit) = 18 read
capacity units for strongly consistent read,or 9 read capacity units with
eventually consistent read

Cost estimate calculation 31

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

All reads in this gaming application are eventually consistent. For the sake of simplicity, the user
assumes that all attributes are projected to both GSIs. This doesn’t have to be the case in real life.
For example, the score attribute doesn’t necessarily need to be projected to GSI2, which can reduce
costs.

The following table contains the capacity required for each access pattern:

Table 7 – Capacity required per access pattern

Access pattern Frequency/
sec

Comments Served by Required
capacity

1 Get details of a
certain game

2000 – Table GameId=X,
limit=1

2 Get details of a
certain player

1000 – GSI1 PlayerId=X,
limit=1

3 Get list of games a
player registered to
within a certain time
range

500 Retrieves
3 items on
average

GSI2 PlayerId=
X, Registrat
ionDate
between Y
and Z

4 Get list of all games a
player ever played

150 Retrieves
10 items on
average

GSI1 PlayerId=X

5 Update the player’s
score in a certain
game

100 – Table and
Indexes

GameId=X,
PlayerId=Y

6 Add an association
between a player and
a game he/she played

50 – Table and
Indexes

GameId=X,
PlayerId=Y

7 Get list of players who
ever played a specific
game

1 Retrieves
1000 items
on average

Table GameId=X

Cost estimate calculation 32

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

The following table contains the total capacity required for the workload:

Table 8 – Total capacity required for the workload

Table/ind
ex

WCUs RCUs

1 Table 100+50=150 1000+87.5=1087.5

2 GSI1 100+50=150 500+150=650

3 GSI2 100+50=150 250

We now have all the data we need to estimate the DynamoDB cost for this workload:

• Number of items (108)

• Item size (0.7KB)

• Number of tables and indexes (3). This number should be multiplied by the dataset size to derive
the total storage size, because in this example all the items and all attributes for each item are
projected into each index. Otherwise, when that is not the case, you need to estimate the storage
size for each index and then calculate the total storage size by adding the storage sizes for the
table and all the indexes.

• Write capacity units (450)

• Read capacity units (1987.5)

These can be run through the AWS Pricing Calculator to derive a cost estimate.

Cost estimate calculation 33

https://calculator.aws/

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Testing Phase

The testing phase is the most important part of the migration strategy. It is during this phase
that the entire migration process will be tested end-to-end. A comprehensive test plan should
minimally contain the following:

Table 9 – Data migration test plan

Test category Purpose

Basic acceptance
tests

These tests should be automatically executed upon completion of the
data migration routines. Their primary purpose is to verify whether the
data migration was successful. Some common outputs from these tests
will include:

• Total # items processed

• Total # items imported

• Total # items skipped

• Total # warnings

• Total # errors

If any of these totals reported by the tests deviate from the expected
values, then it means the migration was not successful and the issues
need to be resolved before moving to the next step in the process or the
next round of testing.

Functional tests These tests exercise the functionality of the application(s) using
DynamoDB for data storage. They include a combination of automated
and manual tests. The primary purpose of the functional tests is to
identify problems in the application caused by the migration of the
RDBMS data to DynamoDB. It is during this round of testing that gaps in
the data model are often revealed.

Non-functional tests These tests assess the non-functional characteristics of the applicati
on, such as performance under varying levels of load, and resiliency
to failure of any portion of the application stack. These tests can also

34

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Test category Purpose

include boundary or edge cases that are low-probability but could
negatively impact the application (for example, if a large number of
clients try to update the same record at the exact same time). The
backup and recovery process defined in the planning phase should also
be included in non-functional testing.

User acceptance
tests

These tests should be executed by the end-users of the applications
once the final data migration has completed. These tests help end-users
decide if the application is sufficient to meet their requirements.

Because the migration strategy is iterative, these tests are executed multiple times. For maximum
efficiency, consider testing the data migration routines using a sampling from the production data
if the total amount of data to migrate is large. The outcome of the testing phase often requires
revisiting a previous phase in the process. The overall migration strategy becomes more refined
through each iteration of the process. After all the tests execute successfully, it is time for the next
and final phase: data migration.

35

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Data migration phase

In the data migration phase, the full set of production data from the source RDBMS tables is
migrated into DynamoDB. By the time this phase is reached, the end-to-end data migration process
has been tested and vetted thoroughly. All the steps of the process are carefully documented, so
running it on the production data set should be as simple as following a procedure that has been
executed numerous times before.

After the data migration is complete, the user acceptance tests defined in the previous phase
should be executed one final time to ensure that the application is in a usable state. In the
event that the migration fails for any reason, the backup and recovery procedure—which is also
thoroughly tested and vetted at this point—can be initiated. When the system is back to a stable
state, a root cause analysis of the failure should be conducted and the data migration rescheduled
once the root cause is resolved. If all goes well, the application should be closely monitored over
the next several days until there is sufficient data indicating that the application is functioning
normally.

36

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Conclusion

Using DynamoDB for suitable workloads can result in lower costs, a reduction in operational
overhead, and an increase in performance, availability, and reliability when compared to a
traditional RDBMS. In this paper, AWS proposed a strategy for identifying and migrating suitable
workloads from an RDBMS to DynamoDB. While implementing such a strategy will require careful
planning and engineering effort, the return on investment (ROI) of migrating to a fully managed,
serverless, NoSQL solution such as DynamoDB should greatly exceed the upfront cost associated
with the effort.

37

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Contributors

Contributors to this document include:

• Nathaniel Slater, Senior Practice Manager, Amazon Web Services

• Leonid Koren, Principal NoSQL Solutions Architect, Amazon Web Services

38

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Further reading

For additional information, refer to:

• DynamoDB Developer Guide

• Best Practices for Designing and Architecting with DynamoDB

• NoSQL Design for DynamoDB

• Best Practices for Modeling Relational Data in DynamoDB

• Amazon DynamoDB Website

• Data modeling with NOSQL Workbench for Amazon DynamoDB blog

• How to determine if Amazon DynamoDB is appropriate for your needs blog

39

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStartedDynamoDB.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-practices.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-general-nosql-design.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/bp-relational-modeling.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/blogs/database/data-modeling-with-nosql-workbench-for-amazon-dynamodb/
https://aws.amazon.com/blogs/database/how-to-determine-if-amazon-dynamodb-is-appropriate-for-your-needs-and-then-plan-your-migration/

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Document history

40

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Cheat sheet

The following is a summary some of the key concepts discussed in this paper, and the sections
where those concepts are detailed:

Concept Section

Determining suitable workloads Suitable workloads

Choosing the right key structure Key concepts

Table indexing Data modeling phase

Provisioning read and write throughput Data modeling example

Choosing a migration strategy Planning phase

41

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

42

Best Practices for Migrating from RDBMS to Amazon DynamoDB Leverage the Power of NoSQL for Suitable Workloads

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

43

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Best Practices for Migrating from RDBMS to Amazon DynamoDB
	Table of Contents
	Abstract and introduction
	Abstract
	Introduction

	Overview of Amazon DynamoDB
	Suitable workloads
	Unsuitable workloads
	Key concepts
	Migrating to DynamoDB from RDBMS
	Planning phase
	Data analysis phase
	Data modeling phase
	Data modeling example
	Cost estimate calculation

	Testing Phase
	Data migration phase
	Conclusion
	Contributors
	Further reading
	Document history
	Cheat sheet
	Notices
	AWS Glossary

