选择您的 Cookie 首选项

我们使用必要 Cookie 和类似工具提供我们的网站和服务。我们使用性能 Cookie 收集匿名统计数据,以便我们可以了解客户如何使用我们的网站并进行改进。必要 Cookie 无法停用,但您可以单击“自定义”或“拒绝”来拒绝性能 Cookie。

如果您同意,AWS 和经批准的第三方还将使用 Cookie 提供有用的网站功能、记住您的首选项并显示相关内容,包括相关广告。要接受或拒绝所有非必要 Cookie,请单击“接受”或“拒绝”。要做出更详细的选择,请单击“自定义”。

Creating a user script

聚焦模式
Creating a user script - AWS Clean Rooms
此页面尚未翻译为您的语言。 请求翻译

The user script must be named user_script.py and must contain an entrypoint function (in other words, a handler).

The following procedure describes how to create a user script to define the core functionality of your PySpark analysis.

Prerequisites

  • PySpark 1.0 (corresponds to Python 3.9 and Spark 3.5.2)

  • Datasets in Amazon S3 can only be read as configured table associations in the Spark session you define.

  • Your code can't directly call Amazon S3 and AWS Glue

  • Your code can’t make network calls

To create a user script
  1. Open a text editor or Integrated Development Environment (IDE) of your choice.

    You can use any text editor or IDE (such as Visual Studio Code, PyCharm, or Notepad++) that supports Python files.

  2. Create a new file named user_script.py.

  3. Define an entrypoint function that accepts a context object parameter.

    def entrypoint(context)

    The context object parameter is a dictionary that provides access to essential Spark components and referenced tables. It contains Spark session access for running Spark operations and the referenced tables:

    Spark session access is available via context['sparkSession']

    Referenced tables are available via context['referencedTables']

  4. Define the results of the entrypoint function:

    return results

    The results must return an object containing a results dictionary of filenames to an output DataFrame.

    Note

    AWS Clean Rooms automatically writes the DataFrame objects to the S3 bucket of the result receiver.

  5. You are now ready to:

    1. Store this user script in S3. For more information, see Storing a user script and virtual environment in S3.

    2. Create the optional virtual environment to support any additional libraries required by your user script. For more information, see Creating a virtual environment (optional).

Example 1
The following example demonstrates a generic user script for a PySpark analysis template.
# File name: user_script.py def entrypoint(context): try: # Access Spark session spark = context['sparkSession'] # Access input tables input_table1 = context['referencedTables']['table1_name'] input_table2 = context['referencedTables']['table2_name'] # Example data processing operations output_df1 = input_table1.select("column1", "column2") output_df2 = input_table2.join(input_table1, "join_key") output_df3 = input_table1.groupBy("category").count() # Return results - each key creates a separate output folder return { "results": { "output1": output_df1, # Creates output1/ folder "output2": output_df2, # Creates output2/ folder "analysis_summary": output_df3 # Creates analysis_summary/ folder } } except Exception as e: print(f"Error in main function: {str(e)}") raise e

The folder structure of this example is as follows:

analysis_results/ │ ├── output1/ # Basic selected columns │ ├── part-00000.parquet │ └── _SUCCESS │ ├── output2/ # Joined data │ ├── part-00000.parquet │ └── _SUCCESS │ └── analysis_summary/ # Aggregated results ├── part-00000.parquet └── _SUCCESS
Example 2
The following example demonstrates a more complex user script for a PySpark analysis template.
def entrypoint(context): try: # Get DataFrames from context emp_df = context['referencedTables']['employees'] dept_df = context['referencedTables']['departments'] # Apply Transformations emp_dept_df = emp_df.join( dept_df, on="dept_id", how="left" ).select( "emp_id", "name", "salary", "dept_name" ) # Return Dataframes return { "results": { "outputTable": emp_dept_df } } except Exception as e: print(f"Error in entrypoint function: {str(e)}") raise e
隐私网站条款Cookie 首选项
© 2025, Amazon Web Services, Inc. 或其附属公司。保留所有权利。