使用 Amazon Comprehend Medical 的示例 AWS CLI - AWS SDK代码示例

AWS 文档 AWS SDK示例 GitHub 存储库中还有更多SDK示例

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

使用 Amazon Comprehend Medical 的示例 AWS CLI

以下代码示例向您展示了如何使用 AWS Command Line Interface 与 Amazon Comprehend Medical 一起使用来执行操作和实现常见场景。

操作是大型程序的代码摘录,必须在上下文中运行。您可以通过操作了解如何调用单个服务函数,还可以通过函数相关场景的上下文查看操作。

每个示例都包含一个指向完整源代码的链接,您可以在其中找到有关如何在上下文中设置和运行代码的说明。

主题

操作

以下代码示例演示如何使用 describe-entities-detection-v2-job

AWS CLI

描述实体检测作业

以下describe-entities-detection-v2-job示例显示了与异步实体检测作业关联的属性。

aws comprehendmedical describe-entities-detection-v2-job \ --job-id "ab9887877365fe70299089371c043b96"

输出:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "ab9887877365fe70299089371c043b96", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-18T21:20:15.614000+00:00", "EndTime": "2020-03-18T21:27:07.350000+00:00", "ExpirationTime": "2020-07-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-EntitiesDetection-ab9887877365fe70299089371c043b96/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "DetectEntitiesModelV20190930" } }

有关更多信息,请参阅《亚马逊 Comprehend Medical 开发者指南》APIs中的 B at c h。

以下代码示例演示如何使用 describe-icd10-cm-inference-job

AWS CLI

描述一个 ICD -10-CM 的推理作业

以下describe-icd10-cm-inference-job示例描述了具有指定作业 ID 的请求推理作业的属性。

aws comprehendmedical describe-icd10-cm-inference-job \ --job-id "5780034166536cdb52ffa3295a1b00a7"

输出:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "5780034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-18T21:20:15.614000+00:00", "EndTime": "2020-05-18T21:27:07.350000+00:00", "ExpirationTime": "2020-09-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

  • 有关API详细信息,请参阅CmInferenceJob《AWS CLI 命令参考》中的 DescribeIcd10

以下代码示例演示如何使用 describe-phi-detection-job

AWS CLI

描述PHI检测作业

以下describe-phi-detection-job示例显示了与异步受保护的健康信息 (PHI) 检测作业关联的属性。

aws comprehendmedical describe-phi-detection-job \ --job-id "4750034166536cdb52ffa3295a1b00a3"

输出:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "4750034166536cdb52ffa3295a1b00a3", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-19T20:38:37.594000+00:00", "EndTime": "2020-03-19T20:45:07.894000+00:00", "ExpirationTime": "2020-07-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-PHIDetection-4750034166536cdb52ffa3295a1b00a3/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "PHIModelV20190903" } }

有关更多信息,请参阅《亚马逊 Comprehend Medical 开发者指南》APIs中的 B at c h。

以下代码示例演示如何使用 describe-rx-norm-inference-job

AWS CLI

描述 RxNorm 推理工作

以下describe-rx-norm-inference-job示例描述了具有指定作业 ID 的请求推理作业的属性。

aws comprehendmedical describe-rx-norm-inference-job \ --job-id "eg8199877365fc70299089371c043b96"

输出:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "g8199877365fc70299089371c043b96", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-18T21:20:15.614000+00:00", "EndTime": "2020-05-18T21:27:07.350000+00:00", "ExpirationTime": "2020-09-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.0.0" } }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

以下代码示例演示如何使用 describe-snomedct-inference-job

AWS CLI

描述 SNOMED CT 推理工作

以下describe-snomedct-inference-job示例描述了具有指定作业 ID 的请求推理作业的属性。

aws comprehendmedical describe-snomedct-inference-job \ --job-id "2630034166536cdb52ffa3295a1b00a7"

输出:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "2630034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2021-12-18T21:20:15.614000+00:00", "EndTime": "2021-12-18T21:27:07.350000+00:00", "ExpirationTime": "2022-05-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

以下代码示例演示如何使用 detect-entities-v2

AWS CLI

示例 1:直接从文本中检测实体

以下detect-entities-v2示例显示了检测到的实体,并直接从输入文本中根据类型对其进行标记。

aws comprehendmedical detect-entities-v2 \ --text "Sleeping trouble on present dosage of Clonidine. Severe rash on face and leg, slightly itchy."

输出:

{ "Id": 0, "BeginOffset": 38, "EndOffset": 47, "Score": 0.9942955374717712, "Text": "Clonidine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Traits": [] }

有关更多信息,请参阅亚马逊 Compre hend Medical 开发者指南中的检测实体版本 2

示例 2:检测文件路径中的实体

以下detect-entities-v2示例显示了检测到的实体,并根据文件路径中的类型对其进行标记。

aws comprehendmedical detect-entities-v2 \ --text file://medical_entities.txt

medical_entities.txt 的内容:

{ "Sleeping trouble on present dosage of Clonidine. Severe rash on face and leg, slightly itchy." }

输出:

{ "Id": 0, "BeginOffset": 38, "EndOffset": 47, "Score": 0.9942955374717712, "Text": "Clonidine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Traits": [] }

有关更多信息,请参阅亚马逊 Compre hend Medical 开发者指南中的检测实体版本 2

  • 有关API详细信息,请参阅《AWS CLI 命令参考》中的 DetectEntitiesV2

以下代码示例演示如何使用 detect-phi

AWS CLI

示例 1:直接从文本中检测受保护的健康信息 (PHI)

以下detect-phi示例直接从输入文本中显示检测到的受保护健康信息 (PHI) 实体。

aws comprehendmedical detect-phi \ --text "Patient Carlos Salazar presented with rash on his upper extremities and dry cough. He lives at 100 Main Street, Anytown, USA where he works from his home as a carpenter."

输出:

{ "Entities": [ { "Id": 0, "BeginOffset": 8, "EndOffset": 21, "Score": 0.9914507269859314, "Text": "Carlos Salazar", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "NAME", "Traits": [] }, { "Id": 1, "BeginOffset": 94, "EndOffset": 109, "Score": 0.871849775314331, "Text": "100 Main Street, Anytown, USA", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "ADDRESS", "Traits": [] }, { "Id": 2, "BeginOffset": 145, "EndOffset": 154, "Score": 0.8302185535430908, "Text": "carpenter", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "PROFESSION", "Traits": [] } ], "ModelVersion": "0.0.0" }

有关更多信息,请参阅《亚马逊 Compre hend Medical 开发者指南》PHI中的检测

示例 2:直接从文件路径检测保护健康信息 (PHI)

以下detect-phi示例显示了从文件路径中检测到的受保护健康信息 (PHI) 实体。

aws comprehendmedical detect-phi \ --text file://phi.txt

phi.txt 的内容:

"Patient Carlos Salazar presented with a rash on his upper extremities and a dry cough. He lives at 100 Main Street, Anytown, USA, where he works from his home as a carpenter."

输出:

{ "Entities": [ { "Id": 0, "BeginOffset": 8, "EndOffset": 21, "Score": 0.9914507269859314, "Text": "Carlos Salazar", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "NAME", "Traits": [] }, { "Id": 1, "BeginOffset": 94, "EndOffset": 109, "Score": 0.871849775314331, "Text": "100 Main Street, Anytown, USA", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "ADDRESS", "Traits": [] }, { "Id": 2, "BeginOffset": 145, "EndOffset": 154, "Score": 0.8302185535430908, "Text": "carpenter", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "PROFESSION", "Traits": [] } ], "ModelVersion": "0.0.0" }

有关更多信息,请参阅《亚马逊 Compre hend Medical 开发者指南》PHI中的检测

以下代码示例演示如何使用 infer-icd10-cm

AWS CLI

示例 1:检测医疗状况实体并直接从文本链接到 ICD -10-CM 本体论

以下infer-icd10-cm示例标记了检测到的医疗状况实体,并将这些实体与2019年版《国际疾病分类临床修改》(ICD-10-CM)中的代码关联起来。

aws comprehendmedical infer-icd10-cm \ --text "The patient complains of abdominal pain, has a long-standing history of diabetes treated with Micronase daily."

输出:

{ "Entities": [ { "Id": 0, "Text": "abdominal pain", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9475538730621338, "BeginOffset": 28, "EndOffset": 42, "Attributes": [], "Traits": [ { "Name": "SYMPTOM", "Score": 0.6724207401275635 } ], "ICD10CMConcepts": [ { "Description": "Unspecified abdominal pain", "Code": "R10.9", "Score": 0.6904221177101135 }, { "Description": "Epigastric pain", "Code": "R10.13", "Score": 0.1364113688468933 }, { "Description": "Generalized abdominal pain", "Code": "R10.84", "Score": 0.12508003413677216 }, { "Description": "Left lower quadrant pain", "Code": "R10.32", "Score": 0.10063883662223816 }, { "Description": "Lower abdominal pain, unspecified", "Code": "R10.30", "Score": 0.09933677315711975 } ] }, { "Id": 1, "Text": "diabetes", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9899052977561951, "BeginOffset": 75, "EndOffset": 83, "Attributes": [], "Traits": [ { "Name": "DIAGNOSIS", "Score": 0.9258432388305664 } ], "ICD10CMConcepts": [ { "Description": "Type 2 diabetes mellitus without complications", "Code": "E11.9", "Score": 0.7158446311950684 }, { "Description": "Family history of diabetes mellitus", "Code": "Z83.3", "Score": 0.5704703330993652 }, { "Description": "Family history of other endocrine, nutritional and metabolic diseases", "Code": "Z83.49", "Score": 0.19856023788452148 }, { "Description": "Type 1 diabetes mellitus with ketoacidosis without coma", "Code": "E10.10", "Score": 0.13285516202449799 }, { "Description": "Type 2 diabetes mellitus with hyperglycemia", "Code": "E11.65", "Score": 0.0993388369679451 } ] } ], "ModelVersion": "0.1.0" }

有关更多信息,请参阅亚马逊 Comprehend Medical 开发者指南中的推断 ICD1 0-CM

示例 2:检测医疗状况实体并从文件路径链接到 ICD -10-CM 本体论

以下infer-icd-10-cm示例标记了检测到的医疗状况实体,并将这些实体与2019年版《国际疾病分类临床修改》(ICD-10-CM)中的代码关联起来。

aws comprehendmedical infer-icd10-cm \ --text file://icd10cm.txt

icd10cm.txt 的内容:

{ "The patient complains of abdominal pain, has a long-standing history of diabetes treated with Micronase daily." }

输出:

{ "Entities": [ { "Id": 0, "Text": "abdominal pain", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9475538730621338, "BeginOffset": 28, "EndOffset": 42, "Attributes": [], "Traits": [ { "Name": "SYMPTOM", "Score": 0.6724207401275635 } ], "ICD10CMConcepts": [ { "Description": "Unspecified abdominal pain", "Code": "R10.9", "Score": 0.6904221177101135 }, { "Description": "Epigastric pain", "Code": "R10.13", "Score": 0.1364113688468933 }, { "Description": "Generalized abdominal pain", "Code": "R10.84", "Score": 0.12508003413677216 }, { "Description": "Left lower quadrant pain", "Code": "R10.32", "Score": 0.10063883662223816 }, { "Description": "Lower abdominal pain, unspecified", "Code": "R10.30", "Score": 0.09933677315711975 } ] }, { "Id": 1, "Text": "diabetes", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9899052977561951, "BeginOffset": 75, "EndOffset": 83, "Attributes": [], "Traits": [ { "Name": "DIAGNOSIS", "Score": 0.9258432388305664 } ], "ICD10CMConcepts": [ { "Description": "Type 2 diabetes mellitus without complications", "Code": "E11.9", "Score": 0.7158446311950684 }, { "Description": "Family history of diabetes mellitus", "Code": "Z83.3", "Score": 0.5704703330993652 }, { "Description": "Family history of other endocrine, nutritional and metabolic diseases", "Code": "Z83.49", "Score": 0.19856023788452148 }, { "Description": "Type 1 diabetes mellitus with ketoacidosis without coma", "Code": "E10.10", "Score": 0.13285516202449799 }, { "Description": "Type 2 diabetes mellitus with hyperglycemia", "Code": "E11.65", "Score": 0.0993388369679451 } ] } ], "ModelVersion": "0.1.0" }

有关更多信息,请参阅《亚马逊 Comprehend Medical 开发者指南》中的 Infer-ICD1 0-CM

  • 有关API详细信息,请参阅《AWS CLI 命令参考》中的 InferIcd10Cm

以下代码示例演示如何使用 infer-rx-norm

AWS CLI

示例 1:检测药物实体并 RxNorm 直接从文本链接到

以下infer-rx-norm示例显示并标记了检测到的药物实体,并将这些实体与美国国家医学图书馆 RxNorm 数据库中的概念标识符 (RxCUI) 关联起来。

aws comprehendmedical infer-rx-norm \ --text "Patient reports taking Levothyroxine 125 micrograms p.o. once daily, but denies taking Synthroid."

输出:

{ "Entities": [ { "Id": 0, "Text": "Levothyroxine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Score": 0.9996285438537598, "BeginOffset": 23, "EndOffset": 36, "Attributes": [ { "Type": "DOSAGE", "Score": 0.9892290830612183, "RelationshipScore": 0.9997978806495667, "Id": 1, "BeginOffset": 37, "EndOffset": 51, "Text": "125 micrograms", "Traits": [] }, { "Type": "ROUTE_OR_MODE", "Score": 0.9988924860954285, "RelationshipScore": 0.998291552066803, "Id": 2, "BeginOffset": 52, "EndOffset": 56, "Text": "p.o.", "Traits": [] }, { "Type": "FREQUENCY", "Score": 0.9953463673591614, "RelationshipScore": 0.9999889135360718, "Id": 3, "BeginOffset": 57, "EndOffset": 67, "Text": "once daily", "Traits": [] } ], "Traits": [], "RxNormConcepts": [ { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet", "Code": "966224", "Score": 0.9912070631980896 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Capsule", "Code": "966405", "Score": 0.8698278665542603 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.7448257803916931 }, { "Description": "levothyroxine", "Code": "10582", "Score": 0.7050482630729675 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Levoxyl]", "Code": "966190", "Score": 0.6921631693840027 } ] }, { "Id": 4, "Text": "Synthroid", "Category": "MEDICATION", "Type": "BRAND_NAME", "Score": 0.9946461319923401, "BeginOffset": 86, "EndOffset": 95, "Attributes": [], "Traits": [ { "Name": "NEGATION", "Score": 0.5167351961135864 } ], "RxNormConcepts": [ { "Description": "Synthroid", "Code": "224920", "Score": 0.9462039470672607 }, { "Description": "Levothyroxine Sodium 0.088 MG Oral Tablet [Synthroid]", "Code": "966282", "Score": 0.8309829235076904 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.4945160448551178 }, { "Description": "Levothyroxine Sodium 0.05 MG Oral Tablet [Synthroid]", "Code": "966247", "Score": 0.3674522042274475 }, { "Description": "Levothyroxine Sodium 0.025 MG Oral Tablet [Synthroid]", "Code": "966158", "Score": 0.2588822841644287 } ] } ], "ModelVersion": "0.0.0" }

有关更多信息,请参阅亚马逊 Comprehend Medical 开发者指南 RxNorm中的推断

示例 2:检测药物实体并 RxNorm 从文件路径链接到。

以下infer-rx-norm示例显示并标记了检测到的药物实体,并将这些实体与美国国家医学图书馆 RxNorm 数据库中的概念标识符 (RxCUI) 关联起来。

aws comprehendmedical infer-rx-norm \ --text file://rxnorm.txt

rxnorm.txt 的内容:

{ "Patient reports taking Levothyroxine 125 micrograms p.o. once daily, but denies taking Synthroid." }

输出:

{ "Entities": [ { "Id": 0, "Text": "Levothyroxine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Score": 0.9996285438537598, "BeginOffset": 23, "EndOffset": 36, "Attributes": [ { "Type": "DOSAGE", "Score": 0.9892290830612183, "RelationshipScore": 0.9997978806495667, "Id": 1, "BeginOffset": 37, "EndOffset": 51, "Text": "125 micrograms", "Traits": [] }, { "Type": "ROUTE_OR_MODE", "Score": 0.9988924860954285, "RelationshipScore": 0.998291552066803, "Id": 2, "BeginOffset": 52, "EndOffset": 56, "Text": "p.o.", "Traits": [] }, { "Type": "FREQUENCY", "Score": 0.9953463673591614, "RelationshipScore": 0.9999889135360718, "Id": 3, "BeginOffset": 57, "EndOffset": 67, "Text": "once daily", "Traits": [] } ], "Traits": [], "RxNormConcepts": [ { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet", "Code": "966224", "Score": 0.9912070631980896 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Capsule", "Code": "966405", "Score": 0.8698278665542603 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.7448257803916931 }, { "Description": "levothyroxine", "Code": "10582", "Score": 0.7050482630729675 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Levoxyl]", "Code": "966190", "Score": 0.6921631693840027 } ] }, { "Id": 4, "Text": "Synthroid", "Category": "MEDICATION", "Type": "BRAND_NAME", "Score": 0.9946461319923401, "BeginOffset": 86, "EndOffset": 95, "Attributes": [], "Traits": [ { "Name": "NEGATION", "Score": 0.5167351961135864 } ], "RxNormConcepts": [ { "Description": "Synthroid", "Code": "224920", "Score": 0.9462039470672607 }, { "Description": "Levothyroxine Sodium 0.088 MG Oral Tablet [Synthroid]", "Code": "966282", "Score": 0.8309829235076904 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.4945160448551178 }, { "Description": "Levothyroxine Sodium 0.05 MG Oral Tablet [Synthroid]", "Code": "966247", "Score": 0.3674522042274475 }, { "Description": "Levothyroxine Sodium 0.025 MG Oral Tablet [Synthroid]", "Code": "966158", "Score": 0.2588822841644287 } ] } ], "ModelVersion": "0.0.0" }

有关更多信息,请参阅亚马逊 Comprehend Medical 开发者指南 RxNorm中的推断

以下代码示例演示如何使用 infer-snomedct

AWS CLI

示例:检测实体并直接从文本链接到 SNOMED CT 本体论

以下infer-snomedct示例说明如何检测医疗实体并将其与 2021-03 版本的系统化医学命名法,临床术语 (CT) 中的概念关联起来。SNOMED

aws comprehendmedical infer-snomedct \ --text "The patient complains of abdominal pain, has a long-standing history of diabetes treated with Micronase daily."

输出:

{ "Entities": [ { "Id": 3, "BeginOffset": 26, "EndOffset": 40, "Score": 0.9598260521888733, "Text": "abdominal pain", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Traits": [ { "Name": "SYMPTOM", "Score": 0.6819021701812744 } ] }, { "Id": 4, "BeginOffset": 73, "EndOffset": 81, "Score": 0.9905840158462524, "Text": "diabetes", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Traits": [ { "Name": "DIAGNOSIS", "Score": 0.9255214333534241 } ] }, { "Id": 1, "BeginOffset": 95, "EndOffset": 104, "Score": 0.6371926665306091, "Text": "Micronase", "Category": "MEDICATION", "Type": "BRAND_NAME", "Traits": [], "Attributes": [ { "Type": "FREQUENCY", "Score": 0.9761165380477905, "RelationshipScore": 0.9984188079833984, "RelationshipType": "FREQUENCY", "Id": 2, "BeginOffset": 105, "EndOffset": 110, "Text": "daily", "Category": "MEDICATION", "Traits": [] } ] } ], "UnmappedAttributes": [], "ModelVersion": "1.0.0" }

有关更多信息,请参阅亚马逊 Comprehend Medical 开发者指南SNOMEDCT中的推断

以下代码示例演示如何使用 list-entities-detection-v2-jobs

AWS CLI

列出实体检测任务

以下list-entities-detection-v2-jobs示例列出了当前的异步检测作业。

aws comprehendmedical list-entities-detection-v2-jobs

输出:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "ab9887877365fe70299089371c043b96", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-19T20:38:37.594000+00:00", "EndTime": "2020-03-19T20:45:07.894000+00:00", "ExpirationTime": "2020-07-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-EntitiesDetection-ab9887877365fe70299089371c043b96/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "DetectEntitiesModelV20190930" } ] }

有关更多信息,请参阅《亚马逊 Comprehend Medical 开发者指南》APIs中的 B at c h。

以下代码示例演示如何使用 list-icd10-cm-inference-jobs

AWS CLI

列出所有当前的 ICD -10-CM 推理作业

以下示例显示该list-icd10-cm-inference-jobs操作如何返回当前异步 ICD -10-CM 批量推理作业的列表。

aws comprehendmedical list-icd10-cm-inference-jobs

输出:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "5780034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-19T20:38:37.594000+00:00", "EndTime": "2020-05-19T20:45:07.894000+00:00", "ExpirationTime": "2020-09-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } ] }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

  • 有关API详细信息,请参阅CmInferenceJobs《AWS CLI 命令参考》中的 ListIcd10

以下代码示例演示如何使用 list-phi-detection-jobs

AWS CLI

列出受保护的健康信息 (PHI) 检测作业

以下list-phi-detection-jobs示例列出了当前受保护的健康信息 (PHI) 检测作业

aws comprehendmedical list-phi-detection-jobs

输出:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "4750034166536cdb52ffa3295a1b00a3", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-19T20:38:37.594000+00:00", "EndTime": "2020-03-19T20:45:07.894000+00:00", "ExpirationTime": "2020-07-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-PHIDetection-4750034166536cdb52ffa3295a1b00a3/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "PHIModelV20190903" } ] }

有关更多信息,请参阅《亚马逊 Comprehend Medical 开发者指南》APIs中的 B at c h。

以下代码示例演示如何使用 list-rx-norm-inference-jobs

AWS CLI

列出所有当前的 Rx-Norm 推理作业

以下示例显示如何list-rx-norm-inference-jobs返回当前异步 Rx-Norm 批量推理作业的列表。

aws comprehendmedical list-rx-norm-inference-jobs

输出:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "4980034166536cfb52gga3295a1b00a3", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-19T20:38:37.594000+00:00", "EndTime": "2020-05-19T20:45:07.894000+00:00", "ExpirationTime": "2020-09-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.0.0" } ] }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

以下代码示例演示如何使用 list-snomedct-inference-jobs

AWS CLI

列出所有 SNOMED CT 推理作业

以下示例显示该list-snomedct-inference-jobs操作如何返回当前异步 SNOMED CT 批量推理作业的列表。

aws comprehendmedical list-snomedct-inference-jobs

输出:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "5780034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-19T20:38:37.594000+00:00", "EndTime": "2020-05-19T20:45:07.894000+00:00", "ExpirationTime": "2020-09-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } ] }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

以下代码示例演示如何使用 start-entities-detection-v2-job

AWS CLI

启动实体检测作业

以下start-entities-detection-v2-job示例启动异步实体检测作业。

aws comprehendmedical start-entities-detection-v2-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

输出:

{ "JobId": "ab9887877365fe70299089371c043b96" }

有关更多信息,请参阅《亚马逊 Comprehend Medical 开发者指南》APIs中的 B at c h。

以下代码示例演示如何使用 start-icd10-cm-inference-job

AWS CLI

启动 ICD -10-CM 推理作业

以下start-icd10-cm-inference-job示例启动 ICD -10-CM 推理批量分析作业。

aws comprehendmedical start-icd10-cm-inference-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

输出:

{ "JobId": "ef7289877365fc70299089371c043b96" }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

  • 有关API详细信息,请参阅CmInferenceJob《AWS CLI 命令参考》中的 StartIcd10

以下代码示例演示如何使用 start-phi-detection-job

AWS CLI

启动PHI检测作业

以下start-phi-detection-job示例启动异步PHI实体检测作业。

aws comprehendmedical start-phi-detection-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

输出:

{ "JobId": "ab9887877365fe70299089371c043b96" }

有关更多信息,请参阅《亚马逊 Comprehend Medical 开发者指南》APIs中的 B at c h。

以下代码示例演示如何使用 start-rx-norm-inference-job

AWS CLI

开始 RxNorm 推理作业

以下start-rx-norm-inference-job示例启动 RxNorm 推理批量分析作业。

aws comprehendmedical start-rx-norm-inference-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

输出:

{ "JobId": "eg8199877365fc70299089371c043b96" }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

以下代码示例演示如何使用 start-snomedct-inference-job

AWS CLI

启动 C SNOMED T 推理作业

以下start-snomedct-inference-job示例启动 SNOMED CT 推理批量分析作业。

aws comprehendmedical start-snomedct-inference-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

输出:

{ "JobId": "dg7289877365fc70299089371c043b96" }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

以下代码示例演示如何使用 stop-entities-detection-v2-job

AWS CLI

停止实体检测作业

以下stop-entities-detection-v2-job示例停止异步实体检测作业。

aws comprehendmedical stop-entities-detection-v2-job \ --job-id "ab9887877365fe70299089371c043b96"

输出:

{ "JobId": "ab9887877365fe70299089371c043b96" }

有关更多信息,请参阅《亚马逊 Comprehend Medical 开发者指南》APIs中的 B at c h。

以下代码示例演示如何使用 stop-icd10-cm-inference-job

AWS CLI

停止 ICD -10-CM 的推理作业

以下stop-icd10-cm-inference-job示例停止了 ICD -10-CM 的推理批量分析作业。

aws comprehendmedical stop-icd10-cm-inference-job \ --job-id "4750034166536cdb52ffa3295a1b00a3"

输出:

{ "JobId": "ef7289877365fc70299089371c043b96", }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

  • 有关API详细信息,请参阅CmInferenceJob《AWS CLI 命令参考》中的 StopIcd10

以下代码示例演示如何使用 stop-phi-detection-job

AWS CLI

停止受保护的健康信息 (PHI) 检测作业

以下stop-phi-detection-job示例停止异步受保护的健康信息 (PHI) 检测作业。

aws comprehendmedical stop-phi-detection-job \ --job-id "4750034166536cdb52ffa3295a1b00a3"

输出:

{ "JobId": "ab9887877365fe70299089371c043b96" }

有关更多信息,请参阅《亚马逊 Comprehend Medical 开发者指南》APIs中的 B at c h。

以下代码示例演示如何使用 stop-rx-norm-inference-job

AWS CLI

停止 RxNorm 推理作业

以下stop-rx-norm-inference-job示例停止了 ICD -10-CM 的推理批量分析作业。

aws comprehendmedical stop-rx-norm-inference-job \ --job-id "eg8199877365fc70299089371c043b96"

输出:

{ "JobId": "eg8199877365fc70299089371c043b96", }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析

以下代码示例演示如何使用 stop-snomedct-inference-job

AWS CLI

停止 C SNOMED T 推理作业

以下stop-snomedct-inference-job示例停止 SNOMED CT 推理批量分析作业。

aws comprehendmedical stop-snomedct-inference-job \ --job-id "8750034166436cdb52ffa3295a1b00a1"

输出:

{ "JobId": "8750034166436cdb52ffa3295a1b00a1", }

有关更多信息,请参阅 Amazon Comprehend Medical 开发者指南中的本体链接批量分析