Amazon Comprehend 用于 Python 的SDK示例 (Boto3) - AWS SDK代码示例

AWS 文档 AWS SDK示例 GitHub 存储库中还有更多SDK示例

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

Amazon Comprehend 用于 Python 的SDK示例 (Boto3)

以下代码示例向您展示了如何使用 AWS SDK for Python (Boto3) 与 Amazon Comprehend 配合使用来执行操作和实现常见场景。

操作是大型程序的代码摘录,必须在上下文中运行。您可以通过操作了解如何调用单个服务函数,还可以通过函数相关场景的上下文查看操作。

场景是向您展示如何通过在一个服务中调用多个函数或与其他 AWS 服务结合来完成特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接,您可以在其中找到有关如何在上下文中设置和运行代码的说明。

操作

以下代码示例演示如何使用 CreateDocumentClassifier

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def create( self, name, language_code, training_bucket, training_key, data_access_role_arn, mode, ): """ Creates a custom classifier. After the classifier is created, it immediately starts training on the data found in the specified Amazon S3 bucket. Training can take 30 minutes or longer. The `describe_document_classifier` function can be used to get training status and returns a status of TRAINED when the classifier is ready to use. :param name: The name of the classifier. :param language_code: The language the classifier can operate on. :param training_bucket: The Amazon S3 bucket that contains the training data. :param training_key: The prefix used to find training data in the training bucket. If multiple objects have the same prefix, all of them are used. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the training bucket. :return: The ARN of the newly created classifier. """ try: response = self.comprehend_client.create_document_classifier( DocumentClassifierName=name, LanguageCode=language_code, InputDataConfig={"S3Uri": f"s3://{training_bucket}/{training_key}"}, DataAccessRoleArn=data_access_role_arn, Mode=mode.value, ) self.classifier_arn = response["DocumentClassifierArn"] logger.info("Started classifier creation. Arn is: %s.", self.classifier_arn) except ClientError: logger.exception("Couldn't create classifier %s.", name) raise else: return self.classifier_arn

以下代码示例演示如何使用 DeleteDocumentClassifier

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def delete(self): """ Deletes the classifier. """ try: self.comprehend_client.delete_document_classifier( DocumentClassifierArn=self.classifier_arn ) logger.info("Deleted classifier %s.", self.classifier_arn) self.classifier_arn = None except ClientError: logger.exception("Couldn't deleted classifier %s.", self.classifier_arn) raise

以下代码示例演示如何使用 DescribeDocumentClassificationJob

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def describe_job(self, job_id): """ Gets metadata about a classification job. :param job_id: The ID of the job to look up. :return: Metadata about the job. """ try: response = self.comprehend_client.describe_document_classification_job( JobId=job_id ) job = response["DocumentClassificationJobProperties"] logger.info("Got classification job %s.", job["JobName"]) except ClientError: logger.exception("Couldn't get classification job %s.", job_id) raise else: return job

以下代码示例演示如何使用 DescribeDocumentClassifier

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def describe(self, classifier_arn=None): """ Gets metadata about a custom classifier, including its current status. :param classifier_arn: The ARN of the classifier to look up. :return: Metadata about the classifier. """ if classifier_arn is not None: self.classifier_arn = classifier_arn try: response = self.comprehend_client.describe_document_classifier( DocumentClassifierArn=self.classifier_arn ) classifier = response["DocumentClassifierProperties"] logger.info("Got classifier %s.", self.classifier_arn) except ClientError: logger.exception("Couldn't get classifier %s.", self.classifier_arn) raise else: return classifier

以下代码示例演示如何使用 DescribeTopicsDetectionJob

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def describe_job(self, job_id): """ Gets metadata about a topic modeling job. :param job_id: The ID of the job to look up. :return: Metadata about the job. """ try: response = self.comprehend_client.describe_topics_detection_job( JobId=job_id ) job = response["TopicsDetectionJobProperties"] logger.info("Got topic detection job %s.", job_id) except ClientError: logger.exception("Couldn't get topic detection job %s.", job_id) raise else: return job

以下代码示例演示如何使用 DetectDominantLanguage

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_languages(self, text): """ Detects languages used in a document. :param text: The document to inspect. :return: The list of languages along with their confidence scores. """ try: response = self.comprehend_client.detect_dominant_language(Text=text) languages = response["Languages"] logger.info("Detected %s languages.", len(languages)) except ClientError: logger.exception("Couldn't detect languages.") raise else: return languages

以下代码示例演示如何使用 DetectEntities

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_entities(self, text, language_code): """ Detects entities in a document. Entities can be things like people and places or other common terms. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of entities along with their confidence scores. """ try: response = self.comprehend_client.detect_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s entities.", len(entities)) except ClientError: logger.exception("Couldn't detect entities.") raise else: return entities
  • 有关API详细信息,请参阅DetectEntities中的 AWS SDKPython (Boto3) API 参考。

以下代码示例演示如何使用 DetectKeyPhrases

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_key_phrases(self, text, language_code): """ Detects key phrases in a document. A key phrase is typically a noun and its modifiers. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of key phrases along with their confidence scores. """ try: response = self.comprehend_client.detect_key_phrases( Text=text, LanguageCode=language_code ) phrases = response["KeyPhrases"] logger.info("Detected %s phrases.", len(phrases)) except ClientError: logger.exception("Couldn't detect phrases.") raise else: return phrases
  • 有关API详细信息,请参阅DetectKeyPhrases中的 AWS SDKPython (Boto3) API 参考。

以下代码示例演示如何使用 DetectPiiEntities

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_pii(self, text, language_code): """ Detects personally identifiable information (PII) in a document. PII can be things like names, account numbers, or addresses. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of PII entities along with their confidence scores. """ try: response = self.comprehend_client.detect_pii_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s PII entities.", len(entities)) except ClientError: logger.exception("Couldn't detect PII entities.") raise else: return entities
  • 有关API详细信息,请参阅DetectPiiEntities中的 AWS SDKPython (Boto3) API 参考。

以下代码示例演示如何使用 DetectSentiment

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_sentiment(self, text, language_code): """ Detects the overall sentiment expressed in a document. Sentiment can be positive, negative, neutral, or a mixture. :param text: The document to inspect. :param language_code: The language of the document. :return: The sentiments along with their confidence scores. """ try: response = self.comprehend_client.detect_sentiment( Text=text, LanguageCode=language_code ) logger.info("Detected primary sentiment %s.", response["Sentiment"]) except ClientError: logger.exception("Couldn't detect sentiment.") raise else: return response
  • 有关API详细信息,请参阅DetectSentiment中的 AWS SDKPython (Boto3) API 参考。

以下代码示例演示如何使用 DetectSyntax

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_syntax(self, text, language_code): """ Detects syntactical elements of a document. Syntax tokens are portions of text along with their use as parts of speech, such as nouns, verbs, and interjections. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of syntax tokens along with their confidence scores. """ try: response = self.comprehend_client.detect_syntax( Text=text, LanguageCode=language_code ) tokens = response["SyntaxTokens"] logger.info("Detected %s syntax tokens.", len(tokens)) except ClientError: logger.exception("Couldn't detect syntax.") raise else: return tokens
  • 有关API详细信息,请参阅DetectSyntax中的 AWS SDKPython (Boto3) API 参考。

以下代码示例演示如何使用 ListDocumentClassificationJobs

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def list_jobs(self): """ Lists the classification jobs for the current account. :return: The list of jobs. """ try: response = self.comprehend_client.list_document_classification_jobs() jobs = response["DocumentClassificationJobPropertiesList"] logger.info("Got %s document classification jobs.", len(jobs)) except ClientError: logger.exception( "Couldn't get document classification jobs.", ) raise else: return jobs

以下代码示例演示如何使用 ListDocumentClassifiers

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def list(self): """ Lists custom classifiers for the current account. :return: The list of classifiers. """ try: response = self.comprehend_client.list_document_classifiers() classifiers = response["DocumentClassifierPropertiesList"] logger.info("Got %s classifiers.", len(classifiers)) except ClientError: logger.exception( "Couldn't get classifiers.", ) raise else: return classifiers

以下代码示例演示如何使用 ListTopicsDetectionJobs

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def list_jobs(self): """ Lists topic modeling jobs for the current account. :return: The list of jobs. """ try: response = self.comprehend_client.list_topics_detection_jobs() jobs = response["TopicsDetectionJobPropertiesList"] logger.info("Got %s topic detection jobs.", len(jobs)) except ClientError: logger.exception("Couldn't get topic detection jobs.") raise else: return jobs

以下代码示例演示如何使用 StartDocumentClassificationJob

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a classification job. The classifier must be trained or the job will fail. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_document_classification_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: The Amazon S3 bucket that contains input data. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_document_classification_job( DocumentClassifierArn=self.classifier_arn, JobName=job_name, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, DataAccessRoleArn=data_access_role_arn, ) logger.info( "Document classification job %s is %s.", job_name, response["JobStatus"] ) except ClientError: logger.exception("Couldn't start classification job %s.", job_name) raise else: return response

以下代码示例演示如何使用 StartTopicsDetectionJob

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a topic modeling job. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_topics_detection_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: An Amazon S3 bucket that contains job input. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_topics_detection_job( JobName=job_name, DataAccessRoleArn=data_access_role_arn, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, ) logger.info("Started topic modeling job %s.", response["JobId"]) except ClientError: logger.exception("Couldn't start topic modeling job.") raise else: return response

场景

以下代码示例展示了如何:

  • 检测文档中的语言、实体和关键短语。

  • 检测文档中的个人身份信息 (PII)。

  • 检测文档的情绪。

  • 检测文档的语法元素。

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

创建一个包装 Amazon Comprehend 操作的类。

import logging from pprint import pprint import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) class ComprehendDetect: """Encapsulates Comprehend detection functions.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def detect_languages(self, text): """ Detects languages used in a document. :param text: The document to inspect. :return: The list of languages along with their confidence scores. """ try: response = self.comprehend_client.detect_dominant_language(Text=text) languages = response["Languages"] logger.info("Detected %s languages.", len(languages)) except ClientError: logger.exception("Couldn't detect languages.") raise else: return languages def detect_entities(self, text, language_code): """ Detects entities in a document. Entities can be things like people and places or other common terms. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of entities along with their confidence scores. """ try: response = self.comprehend_client.detect_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s entities.", len(entities)) except ClientError: logger.exception("Couldn't detect entities.") raise else: return entities def detect_key_phrases(self, text, language_code): """ Detects key phrases in a document. A key phrase is typically a noun and its modifiers. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of key phrases along with their confidence scores. """ try: response = self.comprehend_client.detect_key_phrases( Text=text, LanguageCode=language_code ) phrases = response["KeyPhrases"] logger.info("Detected %s phrases.", len(phrases)) except ClientError: logger.exception("Couldn't detect phrases.") raise else: return phrases def detect_pii(self, text, language_code): """ Detects personally identifiable information (PII) in a document. PII can be things like names, account numbers, or addresses. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of PII entities along with their confidence scores. """ try: response = self.comprehend_client.detect_pii_entities( Text=text, LanguageCode=language_code ) entities = response["Entities"] logger.info("Detected %s PII entities.", len(entities)) except ClientError: logger.exception("Couldn't detect PII entities.") raise else: return entities def detect_sentiment(self, text, language_code): """ Detects the overall sentiment expressed in a document. Sentiment can be positive, negative, neutral, or a mixture. :param text: The document to inspect. :param language_code: The language of the document. :return: The sentiments along with their confidence scores. """ try: response = self.comprehend_client.detect_sentiment( Text=text, LanguageCode=language_code ) logger.info("Detected primary sentiment %s.", response["Sentiment"]) except ClientError: logger.exception("Couldn't detect sentiment.") raise else: return response def detect_syntax(self, text, language_code): """ Detects syntactical elements of a document. Syntax tokens are portions of text along with their use as parts of speech, such as nouns, verbs, and interjections. :param text: The document to inspect. :param language_code: The language of the document. :return: The list of syntax tokens along with their confidence scores. """ try: response = self.comprehend_client.detect_syntax( Text=text, LanguageCode=language_code ) tokens = response["SyntaxTokens"] logger.info("Detected %s syntax tokens.", len(tokens)) except ClientError: logger.exception("Couldn't detect syntax.") raise else: return tokens

调用包装类上的函数来检测文档中的实体、短语等。

def usage_demo(): print("-" * 88) print("Welcome to the Amazon Comprehend detection demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") comp_detect = ComprehendDetect(boto3.client("comprehend")) with open("detect_sample.txt") as sample_file: sample_text = sample_file.read() demo_size = 3 print("Sample text used for this demo:") print("-" * 88) print(sample_text) print("-" * 88) print("Detecting languages.") languages = comp_detect.detect_languages(sample_text) pprint(languages) lang_code = languages[0]["LanguageCode"] print("Detecting entities.") entities = comp_detect.detect_entities(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(entities[:demo_size]) print("Detecting key phrases.") phrases = comp_detect.detect_key_phrases(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(phrases[:demo_size]) print("Detecting personally identifiable information (PII).") pii_entities = comp_detect.detect_pii(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(pii_entities[:demo_size]) print("Detecting sentiment.") sentiment = comp_detect.detect_sentiment(sample_text, lang_code) print(f"Sentiment: {sentiment['Sentiment']}") print("SentimentScore:") pprint(sentiment["SentimentScore"]) print("Detecting syntax elements.") syntax_tokens = comp_detect.detect_syntax(sample_text, lang_code) print(f"The first {demo_size} are:") pprint(syntax_tokens[:demo_size]) print("Thanks for watching!") print("-" * 88)

以下代码示例显示了如何使用 Amazon Comprehend 检测 Amazon Textract 从存储在 Amazon S3 内的图像中提取的文本中的实体。

SDK适用于 Python (Boto3)

演示如何使用 Jupyter 笔记本 AWS SDK for Python (Boto3) 中的来检测从图像中提取的文本中的实体。此示例使用 Amazon Textract 从存储在 Amazon Simple Storage Service (Amazon S3) 内的图像中提取文本,并使用 Amazon Comprehend 检测提取文本中的实体。

此示例是 Jupyter 笔记本,必须在可以托管笔记本电脑的环境中运行。有关如何使用 Amazon 运行示例的说明 SageMaker,请参阅 TextractAndComprehendNotebook.ipyn b 中的说明。

有关如何设置和运行的完整源代码和说明,请参阅上的完整示例GitHub

本示例中使用的服务
  • Amazon Comprehend

  • Amazon S3

  • Amazon Textract

以下代码示例展示了如何:

  • 对示例数据运行 Amazon Comprehend 主题建模任务。

  • 获取该任务的相关信息。

  • 从 Amazon S3 提取任务输出数据。

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

创建一个包装类来调用 Amazon Comprehend 主题建模操作。

class ComprehendTopicModeler: """Encapsulates a Comprehend topic modeler.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a topic modeling job. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_topics_detection_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: An Amazon S3 bucket that contains job input. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_topics_detection_job( JobName=job_name, DataAccessRoleArn=data_access_role_arn, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, ) logger.info("Started topic modeling job %s.", response["JobId"]) except ClientError: logger.exception("Couldn't start topic modeling job.") raise else: return response def describe_job(self, job_id): """ Gets metadata about a topic modeling job. :param job_id: The ID of the job to look up. :return: Metadata about the job. """ try: response = self.comprehend_client.describe_topics_detection_job( JobId=job_id ) job = response["TopicsDetectionJobProperties"] logger.info("Got topic detection job %s.", job_id) except ClientError: logger.exception("Couldn't get topic detection job %s.", job_id) raise else: return job def list_jobs(self): """ Lists topic modeling jobs for the current account. :return: The list of jobs. """ try: response = self.comprehend_client.list_topics_detection_jobs() jobs = response["TopicsDetectionJobPropertiesList"] logger.info("Got %s topic detection jobs.", len(jobs)) except ClientError: logger.exception("Couldn't get topic detection jobs.") raise else: return jobs

使用包装器类运行主题建模任务并获取任务数据。

def usage_demo(): print("-" * 88) print("Welcome to the Amazon Comprehend topic modeling demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") input_prefix = "input/" output_prefix = "output/" demo_resources = ComprehendDemoResources( boto3.resource("s3"), boto3.resource("iam") ) topic_modeler = ComprehendTopicModeler(boto3.client("comprehend")) print("Setting up storage and security resources needed for the demo.") demo_resources.setup("comprehend-topic-modeler-demo") print("Copying sample data from public bucket into input bucket.") demo_resources.bucket.copy( {"Bucket": "public-sample-us-west-2", "Key": "TopicModeling/Sample.txt"}, f"{input_prefix}sample.txt", ) print("Starting topic modeling job on sample data.") job_info = topic_modeler.start_job( "demo-topic-modeling-job", demo_resources.bucket.name, input_prefix, JobInputFormat.per_line, demo_resources.bucket.name, output_prefix, demo_resources.data_access_role.arn, ) print( f"Waiting for job {job_info['JobId']} to complete. This typically takes " f"20 - 30 minutes." ) job_waiter = JobCompleteWaiter(topic_modeler.comprehend_client) job_waiter.wait(job_info["JobId"]) job = topic_modeler.describe_job(job_info["JobId"]) print(f"Job {job['JobId']} complete:") pprint(job) print( f"Getting job output data from the output Amazon S3 bucket: " f"{job['OutputDataConfig']['S3Uri']}." ) job_output = demo_resources.extract_job_output(job) lines = 10 print(f"First {lines} lines of document topics output:") pprint(job_output["doc-topics.csv"]["data"][:lines]) print(f"First {lines} lines of terms output:") pprint(job_output["topic-terms.csv"]["data"][:lines]) print("Cleaning up resources created for the demo.") demo_resources.cleanup() print("Thanks for watching!") print("-" * 88)

以下代码示例展示了如何:

  • 创建 Amazon Comprehend 多标签分类器。

  • 在示例数据上训练分类器。

  • 对第二组数据运行分类任务。

  • 从 Amazon S3 提取任务输出数据。

SDK适用于 Python (Boto3)
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

创建一个包装类来调用 Amazon Comprehend 文档分类器操作。

class ComprehendClassifier: """Encapsulates an Amazon Comprehend custom classifier.""" def __init__(self, comprehend_client): """ :param comprehend_client: A Boto3 Comprehend client. """ self.comprehend_client = comprehend_client self.classifier_arn = None def create( self, name, language_code, training_bucket, training_key, data_access_role_arn, mode, ): """ Creates a custom classifier. After the classifier is created, it immediately starts training on the data found in the specified Amazon S3 bucket. Training can take 30 minutes or longer. The `describe_document_classifier` function can be used to get training status and returns a status of TRAINED when the classifier is ready to use. :param name: The name of the classifier. :param language_code: The language the classifier can operate on. :param training_bucket: The Amazon S3 bucket that contains the training data. :param training_key: The prefix used to find training data in the training bucket. If multiple objects have the same prefix, all of them are used. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the training bucket. :return: The ARN of the newly created classifier. """ try: response = self.comprehend_client.create_document_classifier( DocumentClassifierName=name, LanguageCode=language_code, InputDataConfig={"S3Uri": f"s3://{training_bucket}/{training_key}"}, DataAccessRoleArn=data_access_role_arn, Mode=mode.value, ) self.classifier_arn = response["DocumentClassifierArn"] logger.info("Started classifier creation. Arn is: %s.", self.classifier_arn) except ClientError: logger.exception("Couldn't create classifier %s.", name) raise else: return self.classifier_arn def describe(self, classifier_arn=None): """ Gets metadata about a custom classifier, including its current status. :param classifier_arn: The ARN of the classifier to look up. :return: Metadata about the classifier. """ if classifier_arn is not None: self.classifier_arn = classifier_arn try: response = self.comprehend_client.describe_document_classifier( DocumentClassifierArn=self.classifier_arn ) classifier = response["DocumentClassifierProperties"] logger.info("Got classifier %s.", self.classifier_arn) except ClientError: logger.exception("Couldn't get classifier %s.", self.classifier_arn) raise else: return classifier def list(self): """ Lists custom classifiers for the current account. :return: The list of classifiers. """ try: response = self.comprehend_client.list_document_classifiers() classifiers = response["DocumentClassifierPropertiesList"] logger.info("Got %s classifiers.", len(classifiers)) except ClientError: logger.exception( "Couldn't get classifiers.", ) raise else: return classifiers def delete(self): """ Deletes the classifier. """ try: self.comprehend_client.delete_document_classifier( DocumentClassifierArn=self.classifier_arn ) logger.info("Deleted classifier %s.", self.classifier_arn) self.classifier_arn = None except ClientError: logger.exception("Couldn't deleted classifier %s.", self.classifier_arn) raise def start_job( self, job_name, input_bucket, input_key, input_format, output_bucket, output_key, data_access_role_arn, ): """ Starts a classification job. The classifier must be trained or the job will fail. Input is read from the specified Amazon S3 input bucket and written to the specified output bucket. Output data is stored in a tar archive compressed in gzip format. The job runs asynchronously, so you can call `describe_document_classification_job` to get job status until it returns a status of SUCCEEDED. :param job_name: The name of the job. :param input_bucket: The Amazon S3 bucket that contains input data. :param input_key: The prefix used to find input data in the input bucket. If multiple objects have the same prefix, all of them are used. :param input_format: The format of the input data, either one document per file or one document per line. :param output_bucket: The Amazon S3 bucket where output data is written. :param output_key: The prefix prepended to the output data. :param data_access_role_arn: The Amazon Resource Name (ARN) of a role that grants Comprehend permission to read from the input bucket and write to the output bucket. :return: Information about the job, including the job ID. """ try: response = self.comprehend_client.start_document_classification_job( DocumentClassifierArn=self.classifier_arn, JobName=job_name, InputDataConfig={ "S3Uri": f"s3://{input_bucket}/{input_key}", "InputFormat": input_format.value, }, OutputDataConfig={"S3Uri": f"s3://{output_bucket}/{output_key}"}, DataAccessRoleArn=data_access_role_arn, ) logger.info( "Document classification job %s is %s.", job_name, response["JobStatus"] ) except ClientError: logger.exception("Couldn't start classification job %s.", job_name) raise else: return response def describe_job(self, job_id): """ Gets metadata about a classification job. :param job_id: The ID of the job to look up. :return: Metadata about the job. """ try: response = self.comprehend_client.describe_document_classification_job( JobId=job_id ) job = response["DocumentClassificationJobProperties"] logger.info("Got classification job %s.", job["JobName"]) except ClientError: logger.exception("Couldn't get classification job %s.", job_id) raise else: return job def list_jobs(self): """ Lists the classification jobs for the current account. :return: The list of jobs. """ try: response = self.comprehend_client.list_document_classification_jobs() jobs = response["DocumentClassificationJobPropertiesList"] logger.info("Got %s document classification jobs.", len(jobs)) except ClientError: logger.exception( "Couldn't get document classification jobs.", ) raise else: return jobs

创建帮组运行场景的类。

class ClassifierDemo: """ Encapsulates functions used to run the demonstration. """ def __init__(self, demo_resources): """ :param demo_resources: A ComprehendDemoResources class that manages resources for the demonstration. """ self.demo_resources = demo_resources self.training_prefix = "training/" self.input_prefix = "input/" self.input_format = JobInputFormat.per_line self.output_prefix = "output/" def setup(self): """Creates AWS resources used by the demo.""" self.demo_resources.setup("comprehend-classifier-demo") def cleanup(self): """Deletes AWS resources used by the demo.""" self.demo_resources.cleanup() @staticmethod def _sanitize_text(text): """Removes characters that cause errors for the document parser.""" return text.replace("\r", " ").replace("\n", " ").replace(",", ";") @staticmethod def _get_issues(query, issue_count): """ Gets issues from GitHub using the specified query parameters. :param query: The query string used to request issues from the GitHub API. :param issue_count: The number of issues to retrieve. :return: The list of issues retrieved from GitHub. """ issues = [] logger.info("Requesting issues from %s?%s.", GITHUB_SEARCH_URL, query) response = requests.get(f"{GITHUB_SEARCH_URL}?{query}&per_page={issue_count}") if response.status_code == 200: issue_page = response.json()["items"] logger.info("Got %s issues.", len(issue_page)) issues = [ { "title": ClassifierDemo._sanitize_text(issue["title"]), "body": ClassifierDemo._sanitize_text(issue["body"]), "labels": {label["name"] for label in issue["labels"]}, } for issue in issue_page ] else: logger.error( "GitHub returned error code %s with message %s.", response.status_code, response.json(), ) logger.info("Found %s issues.", len(issues)) return issues def get_training_issues(self, training_labels): """ Gets issues used for training the custom classifier. Training issues are closed issues from the Boto3 repo that have known labels. Comprehend requires a minimum of ten training issues per label. :param training_labels: The issue labels to use for training. :return: The set of issues used for training. """ issues = [] per_label_count = 15 for label in training_labels: issues += self._get_issues( f"q=type:issue+repo:boto/boto3+state:closed+label:{label}", per_label_count, ) for issue in issues: issue["labels"] = issue["labels"].intersection(training_labels) return issues def get_input_issues(self, training_labels): """ Gets input issues from GitHub. For demonstration purposes, input issues are open issues from the Boto3 repo with known labels, though in practice any issue could be submitted to the classifier for labeling. :param training_labels: The set of labels to query for. :return: The set of issues used for input. """ issues = [] per_label_count = 5 for label in training_labels: issues += self._get_issues( f"q=type:issue+repo:boto/boto3+state:open+label:{label}", per_label_count, ) return issues def upload_issue_data(self, issues, training=False): """ Uploads issue data to an Amazon S3 bucket, either for training or for input. The data is first put into the format expected by Comprehend. For training, the set of pipe-delimited labels is prepended to each document. For input, labels are not sent. :param issues: The set of issues to upload to Amazon S3. :param training: Indicates whether the issue data is used for training or input. """ try: obj_key = ( self.training_prefix if training else self.input_prefix ) + "issues.txt" if training: issue_strings = [ f"{'|'.join(issue['labels'])},{issue['title']} {issue['body']}" for issue in issues ] else: issue_strings = [ f"{issue['title']} {issue['body']}" for issue in issues ] issue_bytes = BytesIO("\n".join(issue_strings).encode("utf-8")) self.demo_resources.bucket.upload_fileobj(issue_bytes, obj_key) logger.info( "Uploaded data as %s to bucket %s.", obj_key, self.demo_resources.bucket.name, ) except ClientError: logger.exception( "Couldn't upload data to bucket %s.", self.demo_resources.bucket.name ) raise def extract_job_output(self, job): """Extracts job output from Amazon S3.""" return self.demo_resources.extract_job_output(job) @staticmethod def reconcile_job_output(input_issues, output_dict): """ Reconciles job output with the list of input issues. Because the input issues have known labels, these can be compared with the labels added by the classifier to judge the accuracy of the output. :param input_issues: The list of issues used as input. :param output_dict: The dictionary of data that is output by the classifier. :return: The list of reconciled input and output data. """ reconciled = [] for archive in output_dict.values(): for line in archive["data"]: in_line = int(line["Line"]) in_labels = input_issues[in_line]["labels"] out_labels = { label["Name"] for label in line["Labels"] if float(label["Score"]) > 0.3 } reconciled.append( f"{line['File']}, line {in_line} has labels {in_labels}.\n" f"\tClassifier assigned {out_labels}." ) logger.info("Reconciled input and output labels.") return reconciled

使用已知标签对分类器进行一系列 GitHub 问题训练,然后将第二组 GitHub 问题发送给分类器以便对其进行标记。

def usage_demo(): print("-" * 88) print("Welcome to the Amazon Comprehend custom document classifier demo!") print("-" * 88) logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") comp_demo = ClassifierDemo( ComprehendDemoResources(boto3.resource("s3"), boto3.resource("iam")) ) comp_classifier = ComprehendClassifier(boto3.client("comprehend")) classifier_trained_waiter = ClassifierTrainedWaiter( comp_classifier.comprehend_client ) training_labels = {"bug", "feature-request", "dynamodb", "s3"} print("Setting up storage and security resources needed for the demo.") comp_demo.setup() print("Getting training data from GitHub and uploading it to Amazon S3.") training_issues = comp_demo.get_training_issues(training_labels) comp_demo.upload_issue_data(training_issues, True) classifier_name = "doc-example-classifier" print(f"Creating document classifier {classifier_name}.") comp_classifier.create( classifier_name, "en", comp_demo.demo_resources.bucket.name, comp_demo.training_prefix, comp_demo.demo_resources.data_access_role.arn, ClassifierMode.multi_label, ) print( f"Waiting until {classifier_name} is trained. This typically takes " f"30–40 minutes." ) classifier_trained_waiter.wait(comp_classifier.classifier_arn) print(f"Classifier {classifier_name} is trained:") pprint(comp_classifier.describe()) print("Getting input data from GitHub and uploading it to Amazon S3.") input_issues = comp_demo.get_input_issues(training_labels) comp_demo.upload_issue_data(input_issues) print("Starting classification job on input data.") job_info = comp_classifier.start_job( "issue_classification_job", comp_demo.demo_resources.bucket.name, comp_demo.input_prefix, comp_demo.input_format, comp_demo.demo_resources.bucket.name, comp_demo.output_prefix, comp_demo.demo_resources.data_access_role.arn, ) print(f"Waiting for job {job_info['JobId']} to complete.") job_waiter = JobCompleteWaiter(comp_classifier.comprehend_client) job_waiter.wait(job_info["JobId"]) job = comp_classifier.describe_job(job_info["JobId"]) print(f"Job {job['JobId']} complete:") pprint(job) print( f"Getting job output data from Amazon S3: " f"{job['OutputDataConfig']['S3Uri']}." ) job_output = comp_demo.extract_job_output(job) print("Job output:") pprint(job_output) print("Reconciling job output with labels from GitHub:") reconciled_output = comp_demo.reconcile_job_output(input_issues, job_output) print(*reconciled_output, sep="\n") answer = input(f"Do you want to delete the classifier {classifier_name} (y/n)? ") if answer.lower() == "y": print(f"Deleting {classifier_name}.") comp_classifier.delete() print("Cleaning up resources created for the demo.") comp_demo.cleanup() print("Thanks for watching!") print("-" * 88)