本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
TensorFlow 服务
TensorFlow S@@ er
预装了tensorflow-serving-api
单框架 DLAMI。要使用 tensorflow 服务,请先激活环境。 TensorFlow
$
source /opt/tensorflow/bin/activate
然后,使用您的首选文本编辑器创建具有以下内容的脚本。将它命名为 test_train_mnist.py
。此脚本引自TensorFlow 教程,该教程
import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 model = tf.keras.models.Sequential([ tf.keras.layers.Flatten(input_shape=(28, 28)), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.2), tf.keras.layers.Dense(10, activation='softmax') ]) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, epochs=5) model.evaluate(x_test, y_test)
现在,运行将服务器位置和端口以及哈士奇照片的文件名作为参数传递的脚本。
$
/opt/tensorflow/bin/python3 test_train_mnist.py
请耐心等待,因为此脚本可能需要一段时间才能提供输出。培训完成后,您应该会看到以下内容:
I0000 00:00:1739482012.389276 4284 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process. 1875/1875 [==============================] - 24s 2ms/step - loss: 0.2973 - accuracy: 0.9134 Epoch 2/5 1875/1875 [==============================] - 3s 2ms/step - loss: 0.1422 - accuracy: 0.9582 Epoch 3/5 1875/1875 [==============================] - 3s 1ms/step - loss: 0.1076 - accuracy: 0.9687 Epoch 4/5 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0872 - accuracy: 0.9731 Epoch 5/5 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0731 - accuracy: 0.9771 313/313 [==============================] - 0s 1ms/step - loss: 0.0749 - accuracy: 0.9780
更多功能和示例
如果您有兴趣了解有关 TensorFlow 服务的更多信息,请TensorFlow 访问该网站