示例蓝图项目
数据格式转换是一种常见的提取、转换和加载(ETL)使用案例。在典型的分析工作负载中,基于列的文件格式(如 Parquet 或 ORC)优先于 CSV 或 JSON 等文本格式。此示例蓝图使您能够将 CSV/JSON/ 等格式的数据转换为 Amazon S3 文件的 Parquet。
此蓝图采用由蓝图参数定义的 S3 路径列表,将数据转换为 Parquet 格式,并将其写入另一个蓝图参数指定的 S3 位置。布局脚本为每个路径创建一个爬网程序和任务。布局脚本还将 Conversion.py
中的 ETL 脚本上载到另一个蓝图参数指定的 S3 存储桶。然后,布局脚本将上载的脚本指定为每个任务的 ETL 脚本。项目的 ZIP 格式归档文件包含布局脚本、ETL 脚本和蓝图配置文件。
有关更多示例蓝图项目的信息,请参阅蓝图示例。
以下是布局脚本,位于文件 Layout.py
。
from awsglue.blueprint.workflow import * from awsglue.blueprint.job import * from awsglue.blueprint.crawler import * import boto3 s3_client = boto3.client('s3') # Ingesting all the S3 paths as Glue table in parquet format def generate_layout(user_params, system_params): #Always give the full path for the file with open("ConversionBlueprint/Conversion.py", "rb") as f: s3_client.upload_fileobj(f, user_params['ScriptsBucket'], "Conversion.py") etlScriptLocation = "s3://{}/Conversion.py".format(user_params['ScriptsBucket']) crawlers = [] jobs = [] workflowName = user_params['WorkflowName'] for path in user_params['S3Paths']: tablePrefix = "source_" crawler = Crawler(Name="{}_crawler".format(workflowName), Role=user_params['PassRole'], DatabaseName=user_params['TargetDatabase'], TablePrefix=tablePrefix, Targets= {"S3Targets": [{"Path": path}]}) crawlers.append(crawler) transform_job = Job(Name="{}_transform_job".format(workflowName), Command={"Name": "glueetl", "ScriptLocation": etlScriptLocation, "PythonVersion": "3"}, Role=user_params['PassRole'], DefaultArguments={"--database_name": user_params['TargetDatabase'], "--table_prefix": tablePrefix, "--region_name": system_params['region'], "--output_path": user_params['TargetS3Location']}, DependsOn={crawler: "SUCCEEDED"}, WaitForDependencies="AND") jobs.append(transform_job) conversion_workflow = Workflow(Name=workflowName, Entities=Entities(Jobs=jobs, Crawlers=crawlers)) return conversion_workflow
以下是相应的蓝图配置文件 blueprint.cfg
。
{ "layoutGenerator": "ConversionBlueprint.Layout.generate_layout", "parameterSpec" : { "WorkflowName" : { "type": "String", "collection": false, "description": "Name for the workflow." }, "S3Paths" : { "type": "S3Uri", "collection": true, "description": "List of Amazon S3 paths for data ingestion." }, "PassRole" : { "type": "IAMRoleName", "collection": false, "description": "Choose an IAM role to be used in running the job/crawler" }, "TargetDatabase": { "type": "String", "collection" : false, "description": "Choose a database in the Data Catalog." }, "TargetS3Location": { "type": "S3Uri", "collection" : false, "description": "Choose an Amazon S3 output path: ex:s3://<target_path>/." }, "ScriptsBucket": { "type": "S3Bucket", "collection": false, "description": "Provide an S3 bucket name(in the same AWS Region) to store the scripts." } } }
文件 Conversion.py
中的以下脚本是上传的 ETL 脚本。请注意,它会在转换过程中保留分区方案。
import sys from pyspark.sql.functions import * from pyspark.context import SparkContext from awsglue.transforms import * from awsglue.context import GlueContext from awsglue.job import Job from awsglue.utils import getResolvedOptions import boto3 args = getResolvedOptions(sys.argv, [ 'JOB_NAME', 'region_name', 'database_name', 'table_prefix', 'output_path']) databaseName = args['database_name'] tablePrefix = args['table_prefix'] outputPath = args['output_path'] glue = boto3.client('glue', region_name=args['region_name']) glue_context = GlueContext(SparkContext.getOrCreate()) spark = glue_context.spark_session job = Job(glue_context) job.init(args['JOB_NAME'], args) def get_tables(database_name, table_prefix): tables = [] paginator = glue.get_paginator('get_tables') for page in paginator.paginate(DatabaseName=database_name, Expression=table_prefix+"*"): tables.extend(page['TableList']) return tables for table in get_tables(databaseName, tablePrefix): tableName = table['Name'] partitionList = table['PartitionKeys'] partitionKeys = [] for partition in partitionList: partitionKeys.append(partition['Name']) # Create DynamicFrame from Catalog dyf = glue_context.create_dynamic_frame.from_catalog( name_space=databaseName, table_name=tableName, additional_options={ 'useS3ListImplementation': True }, transformation_ctx='dyf' ) # Resolve choice type with make_struct dyf = ResolveChoice.apply( frame=dyf, choice='make_struct', transformation_ctx='resolvechoice_' + tableName ) # Drop null fields dyf = DropNullFields.apply( frame=dyf, transformation_ctx="dropnullfields_" + tableName ) # Write DynamicFrame to S3 in glueparquet sink = glue_context.getSink( connection_type="s3", path=outputPath, enableUpdateCatalog=True, partitionKeys=partitionKeys ) sink.setFormat("glueparquet") sink.setCatalogInfo( catalogDatabase=databaseName, catalogTableName=tableName[len(tablePrefix):] ) sink.writeFrame(dyf) job.commit()
注意
只能提供两个 Amazon S3 路径作为对示例蓝图的输入。这是因为 AWS Glue 触发器仅限于调用两个爬网程序操作。