终止支持通知:2025年10月31日, AWS 将停止对亚马逊 Lookout for Vision 的支持。2025 年 10 月 31 日之后,你将无法再访问 Lookout for Vision 主机或 Lookout for Vision 资源。如需更多信息,请访问此博客文章。
本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
启动您的 Amazon Lookout for Vision 模型
在使用 Amazon Lookout for Vision 模型进行异常检测之前,必须先启动该模型。您可以通过调用 StartModel API 并传递以下项来启动模型:
ProjectName:包含要启动的模型的项目的名称。
ModelVersion:要启动的模型版本。
MinInferenceUnits:推理单位的最小数量。有关更多信息,请参阅 推理单位。
(可选)MaxInferenceUnits:Amazon Lookout for Vision 可用来自动扩缩模型的最大推理单位数量。有关更多信息,请参阅 自动扩缩推理单位数量。
Amazon Lookout for Vision 控制台提供了示例代码,可用于启动和停止模型。
启动您的模型(控制台)
Amazon Lookout for Vision 控制台提供了 AWS CLI 命令,可用于启动模型。模型启动后,您便可以开始检测图像中的异常。有关更多信息,请参阅 检测图像中的异常。
启动模型(控制台)
-
安装并配置 AWS CLI 和 AWS SDK(如果尚未如此)。有关更多信息,请参阅 第 4 步:设置 AWS CLI 以及 AWS SDKs。
打开 Amazon Lookout for Vision 控制台,网址为 https://console.aws.amazon.com/lookoutvision/。
选择开始使用。
在左侧导航窗格中,选择项目。
在项目资源页面上,选择包含要启动的已训练模型的项目。
在模型部分,选择要启动的模型。
在模型的详细信息页面上,选择使用模型,然后选择将 API 集成到云。
在 Amazon CLI 命令下,复制用于调用 start-model
的 AWS CLI 命令。
在命令提示符处,输入您在上一步中复制的 start-model
命令。如果您使用 lookoutvision
配置文件来获取凭证,请添加 --profile lookoutvision-access
参数。
在控制台中,选择左侧导航页面中的模型。
查看状态列以了解模型的当前状态,当状态为已托管时,您便可以使用模型来检测图像中的异常。有关更多信息,请参阅 检测图像中的异常。
启动您的 Amazon Lookout for Vision 模型 (SDK)
您可以通过调用 StartModel 操作来启动模型。
模型可能需要一段时间才能启动。您可以通过调用 DescribeModel 来检查当前状态。有关更多信息,请参阅 查看您的模型。
启动您的模型 (SDK)
-
安装并配置 AWS CLI 和 AWS SDK(如果尚未如此)。有关更多信息,请参阅 第 4 步:设置 AWS CLI 以及 AWS SDKs。
使用以下示例代码启动模型。
- CLI
-
更改以下值:
project-name
更改为包含要启动的模型的项目的名称。
model-version
更改为要启动的模型版本。
--min-inference-units
更改为要使用的推理单位数。
(可选)--max-inference-units
更改为 Amazon Lookout for Vision 可用来自动扩缩模型的最大推理单位数量。
aws lookoutvision start-model --project-name "project name
"\
--model-version model version
\
--min-inference-units minimum number of units
\
--max-inference-units max number of units
\
--profile lookoutvision-access
- Python
-
此代码取自 AWS 文档 SDK 示例 GitHub 存储库。请在此处查看完整示例。
@staticmethod
def start_model(
lookoutvision_client, project_name, model_version, min_inference_units, max_inference_units = None):
"""
Starts the hosting of a Lookout for Vision model.
:param lookoutvision_client: A Boto3 Lookout for Vision client.
:param project_name: The name of the project that contains the version of the
model that you want to start hosting.
:param model_version: The version of the model that you want to start hosting.
:param min_inference_units: The number of inference units to use for hosting.
:param max_inference_units: (Optional) The maximum number of inference units that
Lookout for Vision can use to automatically scale the model.
"""
try:
logger.info(
"Starting model version %s for project %s", model_version, project_name)
if max_inference_units is None:
lookoutvision_client.start_model(
ProjectName = project_name,
ModelVersion = model_version,
MinInferenceUnits = min_inference_units)
else:
lookoutvision_client.start_model(
ProjectName = project_name,
ModelVersion = model_version,
MinInferenceUnits = min_inference_units,
MaxInferenceUnits = max_inference_units)
print("Starting hosting...")
status = ""
finished = False
# Wait until hosted or failed.
while finished is False:
model_description = lookoutvision_client.describe_model(
ProjectName=project_name, ModelVersion=model_version)
status = model_description["ModelDescription"]["Status"]
if status == "STARTING_HOSTING":
logger.info("Host starting in progress...")
time.sleep(10)
continue
if status == "HOSTED":
logger.info("Model is hosted and ready for use.")
finished = True
continue
logger.info("Model hosting failed and the model can't be used.")
finished = True
if status != "HOSTED":
logger.error("Error hosting model: %s", status)
raise Exception(f"Error hosting model: {status}")
except ClientError:
logger.exception("Couldn't host model.")
raise
- Java V2
-
此代码取自 AWS 文档 SDK 示例 GitHub 存储库。请在此处查看完整示例。
/**
* Starts hosting an Amazon Lookout for Vision model. Returns when the model has
* started or if hosting fails. You are charged for the amount of time that a
* model is hosted. To stop hosting a model, use the StopModel operation.
*
* @param lfvClient An Amazon Lookout for Vision client.
* @param projectName The name of the project that contains the model that you
* want to host.
* @modelVersion The version of the model that you want to host.
* @minInferenceUnits The number of inference units to use for hosting.
* @maxInferenceUnits The maximum number of inference units that Lookout for
* Vision can use for automatically scaling the model. If the
* value is null, automatic scaling doesn't happen.
* @return ModelDescription The description of the model, which includes the
* model hosting status.
*/
public static ModelDescription startModel(LookoutVisionClient lfvClient, String projectName, String modelVersion,
Integer minInferenceUnits, Integer maxInferenceUnits) throws LookoutVisionException, InterruptedException {
logger.log(Level.INFO, "Starting Model version {0} for project {1}.",
new Object[] { modelVersion, projectName });
StartModelRequest startModelRequest = null;
if (maxInferenceUnits == null) {
startModelRequest = StartModelRequest.builder().projectName(projectName).modelVersion(modelVersion)
.minInferenceUnits(minInferenceUnits).build();
} else {
startModelRequest = StartModelRequest.builder().projectName(projectName).modelVersion(modelVersion)
.minInferenceUnits(minInferenceUnits).maxInferenceUnits(maxInferenceUnits).build();
}
// Start hosting the model.
lfvClient.startModel(startModelRequest);
DescribeModelRequest describeModelRequest = DescribeModelRequest.builder().projectName(projectName)
.modelVersion(modelVersion).build();
ModelDescription modelDescription = null;
boolean finished = false;
// Wait until model is hosted or failure occurs.
do {
modelDescription = lfvClient.describeModel(describeModelRequest).modelDescription();
switch (modelDescription.status()) {
case HOSTED:
logger.log(Level.INFO, "Model version {0} for project {1} is running.",
new Object[] { modelVersion, projectName });
finished = true;
break;
case STARTING_HOSTING:
logger.log(Level.INFO, "Model version {0} for project {1} is starting.",
new Object[] { modelVersion, projectName });
TimeUnit.SECONDS.sleep(60);
break;
case HOSTING_FAILED:
logger.log(Level.SEVERE, "Hosting failed for model version {0} for project {1}.",
new Object[] { modelVersion, projectName });
finished = true;
break;
default:
logger.log(Level.SEVERE, "Unexpected error when hosting model version {0} for project {1}: {2}.",
new Object[] { projectName, modelVersion, modelDescription.status() });
finished = true;
break;
}
} while (!finished);
logger.log(Level.INFO, "Finished starting model version {0} for project {1} status: {2}",
new Object[] { modelVersion, projectName, modelDescription.statusMessage() });
return modelDescription;
}
如果代码的输出为 Model is hosted and ready for use
,则可以使用模型来检测图像中的异常。有关更多信息,请参阅 检测图像中的异常。