本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
Neptune ML 中自定义模型的概述
何时在 Neptune ML 中使用自定义模型
Neptune ML 的内置模型可处理 Neptune ML 支持的所有标准任务,但在某些情况下,您可能希望对特定任务的模型进行更精细的控制,或者需要自定义模型训练过程。例如,自定义模型适用于以下情况:
非常大的文本模型的文本特征的特征编码需要在 GPU 上运行。
您想使用自己在深度图表库 (DGL) 中开发的自定义图形神经网络 (GNN) 模型。
您想使用表格模型或集合模型进行节点分类和回归。
在 Neptune ML 中开发和使用自定义模型的工作流程
Neptune ML 中的自定义模型支持旨在无缝集成到现有的 Neptune ML 工作流程中。它的工作原理是在 Neptune ML 基础设施上的源模块中运行自定义代码来训练模型。与内置模式一样,Neptune ML 会自动启动 A SageMaker I HyperParameter 调优作业,并根据评估指标选择最佳模型。然后,它使用源模块中提供的实现来生成模型构件以进行部署。
自定义模型的数据导出、训练配置和数据预处理与内置模型相同。
在数据预处理之后,您可以使用 Python 以迭代和交互方式开发和测试您的自定义模型实现。当您的模型可以投入生产时,您可以将生成的 Python 模块上传到 Amazon S3,如下所示:
aws s3 cp --recursive
(source path to module)
s3://(bucket name)
/(destination path for your module)
然后,您可以使用普通的默认数据或增量数据工作流程将模型部署到生产环境中,但有一些区别。
要使用自定义模型进行模型训练,必须向 Neptune ML 模型训练 API 提供 customModelTrainingParameters
JSON 对象,以确保使用您的自定义代码。customModelTrainingParameters
对象中的字段如下所示:
sourceS3DirectoryPath
–(必需)实现您的模型的 Python 模块所在的 Amazon S3 位置的路径。这必须指向有效的现有 Amazon S3 位置,其中至少包含训练脚本、转换脚本和model-hpo-configuration.json
文件。-
trainingEntryPointScript
–(可选)执行模型训练并将超参数作为命令行参数(包括固定的超参数)的脚本模块中入口点的名称。默认值:
training.py
。 -
transformEntryPointScript
–(可选)脚本模块中入口点的名称,该脚本应在确定超参数搜索中的最佳模型之后运行,以计算模型部署所需的模型构件。它应该能够在没有命令行参数的情况下运行。默认值:
transform.py
。
例如:
curl \ -X POST https://
(your Neptune endpoint)
/ml/modeltraining -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique model-training job ID)
", "dataProcessingJobId" : "(the data-processing job-id of a completed job)
", "trainModelS3Location" : "s3://(your Amazon S3 bucket)
/neptune-model-graph-autotrainer" "modelName": "custom", "customModelTrainingParameters" : { "sourceS3DirectoryPath": "s3://(your Amazon S3 bucket)
/(path to your Python module)
", "trainingEntryPointScript": "(your training script entry-point name in the Python module)
", "transformEntryPointScript": "(your transform script entry-point name in the Python module)
" } }'
同样,要启用自定义模型转换,您必须向 Neptune ML 模型转换 API 提供一个 customModelTransformParameters
JSON 对象,其字段值必须与训练任务中保存的模型参数兼容。customModelTransformParameters
对象包含以下字段:
sourceS3DirectoryPath
–(必需)实现您的模型的 Python 模块所在的 Amazon S3 位置的路径。这必须指向有效的现有 Amazon S3 位置,其中至少包含训练脚本、转换脚本和model-hpo-configuration.json
文件。-
transformEntryPointScript
–(可选)脚本模块中入口点的名称,该脚本应在确定超参数搜索中的最佳模型之后运行,以计算模型部署所需的模型构件。它应该能够在没有命令行参数的情况下运行。默认值:
transform.py
。
例如:
curl \ -X POST https://
(your Neptune endpoint)
/ml/modeltransform -H 'Content-Type: application/json' \ -d '{ "id" : "(a unique model-training job ID)
", "trainingJobName" : "(name of a completed SageMaker AI training job)
", "modelTransformOutputS3Location" : "s3://(your Amazon S3 bucket)
/neptune-model-transform/" "customModelTransformParameters" : { "sourceS3DirectoryPath": "s3://(your Amazon S3 bucket)
/(path to your Python module)
", "transformEntryPointScript": "(your transform script entry-point name in the Python module)
" } }'