本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
HRNN 配方(旧版)
注意
旧版 HRNN 配方不再可用。此文档仅供参考。
我们建议使用 aws-user-personalization (User-Personalization) 配方,而不是旧版 HRNN 配方。User-Personalization 改进并统一了 HRNN 配方提供的功能。有关更多信息,请参阅User-Personalization 食谱。
Amazon Personalize 分层递归神经网络 (HRNN) 配方模型改变用户行为以在会话期间提供建议。会话是给定时间范围内的一组用户交互,例如,其目标是找到满足需求的特定物品。通过将用户最近交互的权重提高,您可以在会话期间提供更相关的建议。
HRNN 适用于可随时间变化的用户意图和兴趣。它获取有序的用户历史记录并自动对它们进行加权以做出更好的推论。HRNN 使用门控机制将折扣权重建模为物品和时间戳的可学习函数。
Amazon Personalize 从数据集中为每个用户派生特征。如果您已完成实时数据集成,则会根据用户活动实时更新这些特征。要获取建议,您只需提供 USER_ID
。如果您还提供了 ITEM_ID
,则 Amazon Personalize 会将其忽略。
HRNN 配方具有以下属性:
-
名称 –
aws-hrnn
-
配方 Amazon 资源名称 (ARN) -
arn:aws:personalize:::recipe/aws-hrnn
-
算法 ARN -
arn:aws:personalize:::algorithm/aws-hrnn
-
特征转换 ARN -
arn:aws:personalize:::feature-transformation/JSON-percentile-filtering
-
配方类型 -
USER_PERSONALIZATION
下表描述 HRNN 配方的超参数。超参数 是一个算法参数,您可以调整该参数以提高模型性能。算法超参数控制模型的执行方式。特征化超参数控制如何筛选训练中使用的数据。为超参数选择最佳值的过程称为超参数优化 (HPO)。有关更多信息,请参阅超参数和 HPO。
该表还为每个超参数提供以下信息:
-
范围:[上界, 下界]
-
值类型:Integer、Continuous(浮点数)、Categorical(布尔值、列表、字符串)
-
可调 HPO:该参数是否可以参与 HPO?
名称 | 描述 |
---|---|
算法超参数 | |
hidden_dimension |
模型中使用的隐藏变量的数量。隐藏变量 重新创建用户的购买历史记录和物品统计数据来生成排名分数。当物品交互数据集包含更复杂的模式时,请指定更多数量的隐藏维度。使用更多隐藏维度需要更大的数据集和更多的处理时间。要确定最佳值,请使用 HPO。要使用 HPO,当您调用 CreateSolution 和 CreateSolutionVersion 操作时,请将 默认值:43 范围:[32, 256] 值类型:整数 HPO 可调:是 |
bptt |
确定是否使用基于时间的反向传播技术。反向传播 是一种在基于递归神经网络的算法中更新权重的技术。将 默认值:32 范围:[2, 32] 值类型:整数 HPO 可调:是 |
recency_mask |
确定模型是否应考虑物品交互数据集中的最新流行趋势。最新流行趋势可能包括交互事件的基本模式的突然变化。要训练一个使最近事件具有更高权重的模型,请将 默认值: 范围: 值类型:布尔值 HPO 可调:是 |
特征化超参数 | |
min_user_history_length_percentile |
要包含在模型训练中的用户历史记录长度的最小百分位数。历史记录长度 是有关用户的数据总量。使用 例如,设置 默认值:0.0 范围:[0.0, 1.0] 值类型:浮点数 HPO 可调:否 |
max_user_history_length_percentile |
要包含在模型训练中的用户历史记录长度的最大百分位数。历史记录长度 是有关用户的数据总量。使用 例如,设置 默认值:0.99 范围:[0.0, 1.0] 值类型:浮点数 HPO 可调:否 |