

开发人员指南

Amazon Route 53 应用程序恢复控制器

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Route 53 应用程序恢复控制器: 开发人员指南

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon 的商标和商业外观不得用于任何非 Amazon 的商品或服务,也不得以任何可能引起客户混 淆、贬低或诋毁 Amazon 的方式使用。所有非 Amazon 拥有的其他商标均为各自所有者的财产,这些 所有者可能附属于 Amazon、与 Amazon 有关联或由 Amazon 赞助,也可能不是如此。

Table of Contents

什么是	Route 53 ARC?	. 1
比较多	,可用区和多区域功能	3
多可用	区恢复	. 5
可月	用区转移	. 5
•	可用区转移的工作原理	. 6
/	AWS 区域	7
-	可用区转移组件	10
3	数据和控制平面	12
;	定价	12
j	最佳实践	13
/	API 操作	14
1	使用 CLI 操作的示例	15
3	支持的资源	18
J	启动、更新或取消区域偏移	19
	日记账记录和监控	21
J	用于区域转移的 IAM	28
可月	用区自动转移	37
-	可用区自动转移的工作原理	38
=	关于区域自动换档	43
/	AWS 区域	43
-	可用区自动转移组件	43
3	数据和控制平面	46
,	定价	46
3	最佳实践	47
/	API 操作	50
1	使用 CLI 操作的示例	51
J	启用和使用分区自动换档	56
	日记账记录和监控	59
I	Identity and Access Management	66
多区域	ໄ恢复	79
路由	由控制	79
;	关于路由控制	80
,	AWS 区域	81
4	组件	83

数据和控制平面	84
标记	85
定价	86
多区域恢复入门	86
最佳实践	88
API 操作	90
使用 CLI 操作的示例	94
使用路由控制组件	110
日记账记录和监控	125
Identity and Access Management	129
配额	142
就绪检查	142
什么是准备情况检查?	
AWS 区域	148
组件	
数据和控制平面	
标记	
定价	
设置弹性应用程序	
最佳实践	
API 操作	
使用 CLI 操作的示例	
与恢复小组合作并进行准备情况检查	
监控就绪状态	
获取架构建议	
创建跨账户授权	
就绪规则、资源类型和 ARNS	
日记账记录和监控	
Identity and Access Management	
配额	
代码示例	
操作	
GetRoutingControlState	
UpdateRoutingControlState	
安全性	
数据保护	

静态加密	227
传输中加密	227
Identity and Access Management	228
受众	228
使用身份进行身份验证	228
使用策略管理访问	231
Route 53 ARC 功能如何与 IAM 配合使用	233
基于身份的策略示例	233
AWS 托管策略	233
故障排除	238
日记账记录和监控	240
合规性验证	240
韧性	241
基础设施安全性	242
文档历史记录	243
	ccliii

什么是 Amazon Route 53 应用程序恢复控制器?

Amazon Route 53 应用程序恢复控制器(Route 53 ARC)可帮助您为正在运行的应用程序做好准备并更快地完成恢复 AWS。Route 53 ARC 提供两组功能:多可用区 (AZ) 恢复(包括区域转移和区域自动切换)和多区域恢复(包括路由控制和就绪检查)。借助 Route 53 ARC,您可以利用高度可用的恢复工具来快速缓解影响您的多区域或多可用区应用程序的损失。您还可以使用就绪检查来深入了解您的应用程序和资源是否为恢复做好了准备。

AWS 全球云基础设施提供容错和弹性,每个可用区都 AWS 区域 由多个完全隔离的可用区组成。Route 53 ARC 在此 AWS 结构中运行,可帮助您的应用程序保持弹性。

多可用区恢复

如果您的应用程序是为利用中的可用区而构建的 AWS,则可以使用区域转移来快速隔离可用区损伤并从中恢复。区域转移使您能够从可用区 (AZ) 中恢复过来,方法是暂时将受支持资源的流量从可用区 (AZ) 转移到中健康的可用区。 AWS 区域开始区域转移可以帮助您的应用程序快速恢复,例如,从开发人员的错误代码部署或单个可用区域的 AWS 损坏中恢复。当一个可用区出现问题时,通过转移流量,可以减少对正在使用您的应用程序的客户的影响。

您可以为某个区域中账户中任何受支持的资源开始区域切换。 AWS 服务会自动在 Route 53 ARC 中使用区域偏移注册支持的 AWS 资源,这样您就可以随时开始区域移动。

区域自动切换是 Route 53 ARC 中的一项功能,您可以启用该功能,代表您授权 AWS 将受支持资源的流量从可用区转移到中健康的可用区。 AWS 区域 AWS 当内部遥测显示某个区域中的一个可用区存在可能影响客户的减值时,会启动自动换档。内部遥测包含来自多个来源的指标,包括 AWS 网络、Amazon EC2 和 Elastic Load Balancing 服务。

区域移位和自动换档是暂时的。开始手动分区切换时,必须指定(可延长)到期时间,最初最长为三天。如果您想继续让流量远离可用区,则可以更新区域偏移并设置新的过期时间。使用区域自动换档, 当指示器显示不再存在问题或潜在问题时,会 AWS 结束自动换档。

要了解有关这些功能的更多信息,请参阅以下章节:

- Amazon Route 53 应用程序恢复控制器中的可用区转移
- Amazon Route 53 应用程序恢复控制器中的可用区自动转移

多区域恢复

如果您的应用程序设计为在另一个应用程序中运行 AWS 区域 以继续运行,则可以使用路由控制进行 故障转移。路由控制使您能够在出现问题时将流量从一个故障转移 AWS 区域 到另一个流量,这样您 就可以确保您的应用程序保持可用。路线控制包括安全规则,这些规则通过强加您定义的护栏来帮助保 护您免受意外结果的影响。例如,使用这些规则,您可以确保一次只有一个应用程序副本(活动副本或 备用副本)处于启用和使用状态。

为了进行多区域恢复,Route 53 ARC 可以帮助您通过故障切换 DNS 流 AWS 区域量。Route 53 ARC 中极其可靠的路由控制使您可以通过将流量从受损区域重新路由到健康区域来恢复应用程序。

通过就绪检查,Route 53 ARC 可以持续监控 AWS 资源配额、容量和网络路由策略,并可以通知您有关会影响您故障转移到副本和恢复能力的更改。持续的就绪性检查有助于确保您可以持续地将多区域应用程序保持在经过扩展和配置以处理故障转移流量的状态。首次配置 Route 53 ARC 时,以及在应用程序正常运行期间,就绪性检查非常有用。准备情况检查不打算用于事件期间故障转移的关键路径。

要了解有关这些功能的更多信息,请参阅以下章节:

- Amazon Route 53 应用程序恢复控制器中的路由控制
- Amazon Route 53 应用程序恢复控制器中的就绪检查

比较 Amazon Route 53 应用程序恢复控制器中的多可用区和 多区域恢复功能

Amazon Route 53 应用程序恢复控制器中的区域切换、区域自动切换和路由控制都可以实现快速恢复,并帮助您确保应用程序的弹性。 AWS 这些选项高度可用,有助于在应用程序延迟增加或可用性降低的情况下支持恢复。这些选项可将流量从孤立的损伤中移开,从而限制损伤造成的影响和时间损失,从而帮助快速恢复应用程序。

路由控制主要集中在多个 AWS 区域(多区域)中的 AWS 应用程序上,而区域转移和区域自动切换仅 支持使用多可用区应用程序的负载均衡器的流量转移。另外还有其它区别,如本节所述。

下表中的信息包括区域偏移、分区自动移位和路径控制的一些关键功能,以及这些选项之间的比较情况。这些描述可以帮助您更好地了解特定选项如何成为满足组织灾难恢复需求的最佳选择。

路由控制	可用区转移	可用区自动转移
区域性	可用区	可用区
将流量从一个 AWS 区域重新	将流量从一个可用区移走	将流量从一个可用区移走
路由到另一个区域(主要)也可用于跨可用区重新路由	流量流向该区域的其他可用 区,而非特定目标	流量流向该区域的其他可用 区,而非特定目标
需要设置	无需设置即可使用	需要练习运行设置
需要配置和设置	由支持的服务自动启用	适用于支持的服务
	(当前为网络负载均衡器和应 用程序负载均衡器)	(当前为网络负载均衡器和应 用程序负载均衡器)
客户发起	客户发起	AWS发起
客户决定何时重新路由流量	客户决定何时启动可用区转移	AWS 代表你将应用程序流量从 可用区转移出去
收费	包含在服务中	包含在服务中
需要单独收取路由控制费用		

路由控制	可用区转移	可用区自动转移
	对于支持的负载均衡器,包含 创建可用区转移以将流量从可 用区移走的服务	对于支持的负载均衡器,包含 启动自动转移以代表您从可用 区移出流量的服务
不会过期	暂时	暂时
流量可以无限期地重新路由到 副本	所有可用区转移都必须设置为 到期	AWS 开始和结束自动换档

要了解上述每个功能的更多信息,请参阅以下章节:

- Amazon Route 53 应用程序恢复控制器中的可用区转移
- Amazon Route 53 应用程序恢复控制器中的可用区自动转移
- Amazon Route 53 应用程序恢复控制器中的路由控制

使用区域移位和区域自动移位恢复 Amazon Route 53 应用程序恢复控制器中的应用程序

本节介绍如何使用 Amazon Route 53 应用程序恢复控制器中的功能可靠地从可用区 (AZ) 的问题中恢复 AWS 应用程序。这些功能,即区域转移和区域自动切换,可以暂时将流量从可用区移开 Elastic Load Balancing 资源,从而缩短应用程序的恢复时间。

区域移位和区域自动换档之间的主要区别在于,一种是您可以控制的手动交通换档,另一种是代表您自动将交通从障碍中移开。

- 通过区域切换,您可以手动将托管 Elastic Load Balancing 资源的流量转移到 AWS 区域 远离可用区域的地方。
- 借助区域自动切换, Elastic Load Balancing 流量会在活动期间代表您自动从受损的可用区转移到某个区域内的健康可用区。

以下主题描述了分区移位和分区自动移位功能以及如何使用它们。

主题

- Amazon Route 53 应用程序恢复控制器中的可用区转移
- Amazon Route 53 应用程序恢复控制器中的可用区自动转移

Amazon Route 53 应用程序恢复控制器中的可用区转移

借助 Amazon Route 53 应用程序恢复控制器的区域转移,您可以将 Elastic Load Balancing 资源的流量从可用区域移开 AWS 区域,从而快速缓解问题并快速恢复应用程序。请注意,Elastic Load Balancing 资源必须关闭跨区域负载平衡才能使用此功能。

当您在一个区域的多个(通常是三个)可用区的负载均衡器上部署和运行 AWS 应用程序时,您可以通过开始区域转移来快速恢复受损可用区中的应用程序。将应用程序流量转移到运行状况良好的可用区可以缩短由停电或可用区中的硬件或软件问题造成的影响的持续时间和严重性。

例如,您可能会选择转移流量,因为部署不当会导致延迟问题,或者因为可用区受损。区域转移不需要高级配置步骤,但是您的 AWS 配置必须支持在没有您离开的可用区域的情况下处理您的客户端负载。 支持的负载均衡器资源会自动为您注册到 Amazon Route 53 应用程序恢复控制器,这样您就可以在需要时简单地开始负载均衡器的区域切换。

可用区转移 5

开始区域偏移无需进行任何设置或配置。在确保有足够的容量将流量从可用区转移出去之后,选择要转移的可用区和要转移流量的资源,然后开始区域切换。您可以随时取消班次,让流量开始返回可用区。

所有区域变化都是暂时的缓解措施。在开始分区班次时,您可以设置初始到期时间,从一小时到三天 (72 小时),如果您需要继续进行流量切换,则可以将其延长。

请注意,在某些特定情况下,区域转移不会转移来自可用区的流量。有关可用区转移支持的更多信息, 请参阅可用区转移和可用区自动转移支持的资源。

可用区转移的工作原理

当您开始对负载均衡器资源进行区域转移时,该资源的流量将从您指定的可用区移开。为了开始转移,Amazon Route 53 应用程序恢复控制器请求将可用区的负载均衡器运行状况检查设置为不健康,使其无法通过运行状况检查。反过来,不健康的运行状况检查会导致 Amazon Route 53 自动从 DNS中提取该资源的相应的 IP 地址,从而将流量从可用区域重定向。现在,新连接将 AWS 区域 改为路由到中的其他可用区。

值得注意的是,区域转移不会像典型方式那样使用运行状况检查,即运行状况检查会监控负载均衡器或应用程序的底层运行状况。相反,Route 53 ARC 使用运行状况检查作为将流量从可用区转移出去的机制。该机制要求将运行状况检查明确设置为不健康,然后再次设置为健康,以更改流量的流动方式。

流量开始转移-当您在 Route 53 ARC 中开始分区转移时,由于交通流涉及的步骤,您可能不会看到流量立即从可用区移出。可用区中正在进行的现有连接也可能需要短暂的时间才能结束,具体取决于客户端行为和连接重用情况。根据您的 DNS 设置和其他因素,现有连接可以在几分钟内完成,或者可能需要更长的时间。有关更多信息,请参阅确保交通转移快速完成。

交通转移结束——当分区班次到期或你取消时,Route 53 ARC会采取措施停止交通移动。它颠倒了启动流量转移的过程,并请求将 Route 53 运行状况检查再次设置为运行正常。健康检查会导致恢复原来的区域 IP 地址。现在,恢复的可用区再次包含在负载均衡器的路由中,流量开始恢复流向可用区。

您必须将所有区域班次设置为在开始轮班时到期。最初,可用区转移最多可设置为三天(72 小时)后到期。但是您可以随时更新可用区转移,以设置新的到期时间。如果您已准备好将流量恢复到可用区,也可以在可用区转移到期之前取消它。

当交通不偏离时

在一些特定的情况下,可用区转移不会从可用区转移流量。例如,如果可用区中的负载均衡器目标组没有任何实例,或者所有实例都运行状况不佳,则负载均衡器进入打开失败状态。如果在这种情况下对负载均衡器启动可用区转移,则可用区转移不会更改负载均衡器使用的可用区,因为负载均衡器已经处于打开失败状态。这是预料之中的行为。如果所有可用区都无法打开(不正常),则可用区转移不能强制

可用区转移的工作原理 6

将一个可用区设为不正常,并将流量转移到区域中的其他可用区。第二种情况是,您对应用程序负载 均衡器启动可用区转移,而该均衡器是 AWS Global Accelerator中的加速器端点。可用区转移不支持 Global Accelerator 中作为加速器端点的应用程序负载均衡器。

有关可用区转移支持的更多信息,请参阅可用区转移和可用区自动转移支持的资源。

AWS 区域 区域转移的可用性

有关 Amazon Route 53 应用程序恢复控制器的区域支持和服务端点的详细信息,请参阅《Amazon Web Services 一般参考》中的 Amazon Route 53 应用程序恢复控制器端点和限额。

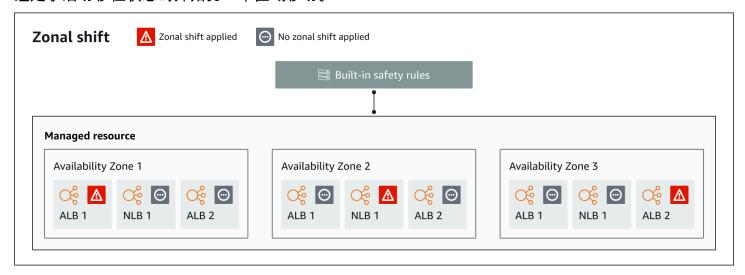
此处 AWS 区域 列出的区域偏移目前可用。可用区转移也适用于中国区,即中国(北京)区域和中国(宁夏)区域。

区域名称	区域	端点	协议
美国东部 (俄亥俄 州)	us-east-2	arc-zonal-shift.us-east-2.amazonaws.com	HTTPS
美国东部 (弗吉尼 亚州北 部)	us-east-1	arc-zonal-shift.us-east-1.amazonaws.com	HTTPS
美国西部 (加利福 尼亚北 部)	us-west-1	arc-zonal-shift.us-west-1.amazonaws.com	HTTPS
美国西部 (俄勒冈 州)	us-west-2	arc-zonal-shift.us-west-2.amazonaws.com	HTTPS
非洲(开 普敦)	af-south- 1	arc-zonal-shift.af-south-1.amazonaws.com	HTTPS
亚太地区 (香港)	ap-east-1	arc-zonal-shift.ap-east-1.amazonaws.com	HTTPS

AWS 区域 7

区域名称	区域	端点	协议
亚太地区 (海得拉 巴)	ap-south- 2	arc-zonal-shift.ap-south-2.amazonaws.com	HTTPS
亚太地区 (雅加 达)	ap- southe ast-3	arc-zonal-shift.ap-southeast-3.amazonaws.com	HTTPS
亚太地区 (墨尔 本)	ap- southe ast-4	arc-zonal-shift.ap-southeast-4.amazonaws.com	HTTPS
亚太地区 (孟买)	ap-south- 1	arc-zonal-shift.ap-south-1.amazonaws.com	HTTPS
亚太地区 (大阪)	ap-northe ast-3	arc-zonal-shift.ap-northeast-3.amazonaws.com	HTTPS
亚太地区 (首尔)	ap-northe ast-2	arc-zonal-shift.ap-northeast-2.amazonaws.com	HTTPS
亚太地区 (新加 坡)	ap- southe ast-1	arc-zonal-shift.ap-southeast-1.amazonaws.com	HTTPS
亚太地区 (悉尼)	ap- southe ast-2	arc-zonal-shift.ap-southeast-2.amazonaws.com	HTTPS
亚太地区 (东京)	ap-northe ast-1	arc-zonal-shift.ap-northeast-1.amazonaws.com	HTTPS
加拿大 (中部)	ca-centra I-1	arc-zonal-shift.ca-central-1.amazonaws.com	HTTPS

AWS 区域


区域名称	区域	端点	协议
加拿大西 部(卡尔 加里)	ca-west-1	arc-zonal-shift.ca-west-1.amazonaws.com	HTTPS
欧洲地区 (法兰克 福)	eu-centra I-1	arc-zonal-shift.eu-central-1.amazonaws.com	HTTPS
欧洲地区 (爱尔 兰)	eu- west-1	arc-zonal-shift.eu-west-1.amazonaws.com	HTTPS
欧洲地区 (伦敦)	eu- west-2	arc-zonal-shift.eu-west-2.amazonaws.com	HTTPS
欧洲地区 (米兰)	eu-south- 1	arc-zonal-shift.eu-south-1.amazonaws.com	HTTPS
欧洲地区 (巴黎)	eu- west-3	arc-zonal-shift.eu-west-3.amazonaws.com	HTTPS
欧洲(西 班牙)	eu-south- 2	arc-zonal-shift.eu-south-2.amazonaws.com	HTTPS
欧洲地区 (斯德哥 尔摩)	eu-north- 1	arc-zonal-shift.eu-north-1.amazonaws.com	HTTPS
欧洲(苏 黎世)	eu-centra I-2	arc-zonal-shift.eu-central-2.amazonaws.com	HTTPS
以色列 (特拉维 夫)	il-centra I-1	arc-zonal-shift.il-central-1.amazonaws.com	HTTPS
中东(巴 林)	me- south-1	arc-zonal-shift.me-south-1.amazonaws.com	HTTPS

AWS 区域

区域名称	区域	端点	协议	
中东(阿 联酋)	me- central-1	arc-zonal-shift.me-central-1.amazonaws.com	HTTPS	
南美洲 (圣保 罗)	sa-east-1	arc-zonal-shift.sa-east-1.amazonaws.com	HTTPS	
AWS GovCloud (美国东 部)	us-gov- east-1	arc-zonal-shift.us-gov-east-1.amazonaws.com	HTTPS	
AWS GovCloud (美国西 部)	us-gov- west-1	arc-zonal-shift.us-gov-west-1.amazonaws.com	HTTPS	

可用区转移组件

下图说明了区域转移将流量从可用区转移的示例。 AWS 区域区域偏移中内置的检查可防止您在资源已经处于活动移位状态时开始另一个区域移动。

以下是 Route 53 ARC 中区域偏移功能的组成部分。

可用区转移组件 10

可用区转移

您可以开始对 AWS 账户中的托管资源进行区域切换,以暂时将流量从中的可用区转移到该区域中 运行良好的可用区,从而快速从一个可用区中的问题中恢复过来。 AWS 区域目前,您只能为没有 配置跨可用区负载均衡的网络负载均衡器和应用程序负载均衡器启动可用区转移。支持的负载均衡 器会自动在 Route 53 ARC 中为您注册。

内置安全检查

Route 53 ARC 中内置的检查可防止资源同时发生多个流量切换。也就是说,只能针对资源执行一 次客户发起的可用区转移、练习运行可用区转移或自动转移,才能主动将流量从可用区转移出去。 例如,如果您对某个资源启动可用区转移,而该资源当前正在通过自动转移而转移出去,则优先进 行可用区转移。有关更多信息,请参阅 Amazon Route 53 应用程序恢复控制器中的可用区自动转 移和练习运行结果。

资源标识符

要包含在可用区转移中的资源的标识符。资源标识符是资源的 Amazon 资源名称 (ARN)。

对于区域转移,您只能在账户中为 Route 53 ARC 支持的 AWS 服务选择资源。这些 AWS 服务中 支持的资源由服务自动注册到 Route 53 ARC。 AWS

Note

目前,您只能在关闭跨区域负载平衡的情况下开始网络负载均衡器和应用程序负载均衡器的 区域切换。

托管资源

AWS 服务会自动向 Route 53 ARC 注册资源以进行区域移动。已注册的资源是 Route 53 ARC 中 的托管资源。

资源名称

Route 53 ARC 中可以为区域偏移指定的资源名称。

状态(可用区转移状态)

可用区转移的状态。可用区转移的 Status 可以具有以下值之一:

- ACTIVE:可用区转移已启动并处于活动状态。
- EXPIRED:可用区转移已到期(已超过到期时间)。

可用区转移组件 11 • CANCELED:可用区转移已取消。

已应用状态

已应用状态表示资源的转移是否有效。状态为的转移APPLIED决定了资源应用程序流量转移到哪个可用区,以及该转移何时结束。

到期时间(过期时间)

可用区转移的到期时间(过期时间)。可用区转移是暂时的。对于客户发起的可用区转移,您可以 最初将可用区转移设置为最多三天(72 小时)处于活动状态。

启动可用区转移时,您可以指定期望的活动时长,Route 53 ARC 会将其转换为到期时间(过期时间)。您可以取消客户发起的可用区转移,例如您准备好将流量恢复到可用区时。您也可以通过更新客户发起的可用区转移,指定另一个到期时长,从而延长其时间。

您可以取消客户启动的区域移动,也可以取消从使用区域自动换档的练习跑 AWS 开始的区域移动。

用于区域偏移的数据和控制平面

在规划故障转移和灾难恢复时,请考虑故障转移机制的弹性。我们建议您确保在故障转移期间所依赖的机制具有高可用性,以便在灾难情况下可以根据需要使用它们。通常,应尽可能为机制使用数据平面函数,以获得最大的可靠性和容错性。考虑到这一点,请务必了解服务的功能如何在控制面板和数据面板之间划分,以及何时可以依赖服务的数据面板可预期的极高可靠性。

与大多数 AWS 服务一样,控制平面和数据平面支持区域移位功能的功能。虽然这两者都是为了可靠而构建的,但控制平面针对数据一致性进行了优化,而数据平面则针对可用性进行了优化。数据面板专为弹性而设计,因此即使在中断事件期间,当控制面板可能不可用时,它也能保持可用性。

一般而言,控制面板允许您执行基本的管理功能,例如在服务中创建、更新和删除资源。数据面板提供服务的核心功能。

有关数据平面、控制平面以及如何 AWS 构建服务以满足高可用性目标的更多信息,请参阅 Amazon Builders Library 中的 "使用可用区的静态稳定性" 论文。

Amazon Route 53 应用程序恢复控制器中区域转移的定价

对于区域转移,您可以开始对支持的资源进行区域切换,以使您的应用程序从可用区出现的问题中恢复。使用可用区转移不收取任何额外费用。

数据和控制平面 12

您只需为在 Amazon Route 53 应用程序恢复控制器中使用的内容付费。有关 Route 53 ARC 的详细定价信息和定价示例,请参阅<u>亚马逊 Route 53 定价</u>并向下滚动到亚马逊 Route 53 应用程序恢复控制器。

Route 53 ARC 中的可用区转移最佳实践

我们建议采用以下最佳实践在 Route 53 ARC 中使用可用区转移进行多可用区恢复。可用区转移通常会从活动应用程序中移除容量,因此在生产中使用它时务必要小心。

主题

- 容量规划和预扩展
- 限制客户端与您的终端保持连接的时间
- 提前测试开始区域偏移
- 确保所有可用区域都运行良好并占用流量
- 使用数据平面 API 操作进行灾难恢复
- 只能暂时通过分区移位来移动交通

容量规划和预扩展

确保您已计划好并且已经预扩展或可以自动扩展足够的容量,以适应可用区转移启动时给可用区施加的额外负载。对于面向恢复的架构,典型的建议是预扩展计算容量,保留足够的余量,以便在三个副本(典型情况下)之一离线时承担流量高峰。

例如,当您开始对单个负载均衡器资源进行可用区转移时,一个可用区的容量会暂时从负载均衡器 后面移除。根据您启动的可用区转移以及负载均衡器的配置方式,您必须确保做好精心的计划,以管理剩余可用区上增加的负载。

限制客户端与您的终端保持连接的时间

当 Amazon Route 53 应用程序恢复控制器将流量从损坏中转移出去时,例如使用区域转移或区域自动切换,Route 53 ARC 用来转移应用程序流量的机制是 DNS 更新。DNS 更新会导致所有新连接都被定向到远离受损位置。

但是,在客户端重新连接之前,具有已打开连接的客户端可能会继续向受损位置发出请求。为确保 快速恢复,我们建议您限制客户端与您的终端保持连接的时间。

如果您使用 Application Load Balancer,则可以使用该keepalive选项来配置连接的持续时间。有 关更多信息,请参阅《Application Load Balancer 用户指南》中的 HTTP 客户端保持连接时长。

最佳实践 13

默认情况下,应用程序负载均衡器将 HTTP 客户端 keepalive 持续时间值设置为 3600 秒或 1 小时。我们建议您降低该值,使其与应用程序的恢复时间目标保持一致,例如 300 秒。选择 HTTP 客户端 keepalive 持续时间时,请考虑此值是在更频繁地重新连接(这可能会影响延迟)和更快地将所有客户端从受损的可用区或区域移出受损的可用区或区域之间进行权衡。

提前测试开始区域偏移

通过启动可用区转移,定期测试从可用区移走应用程序的流量。最好是同时在测试和生产环境中计划和执行可用区转移,并将该过程纳入到定期的失效转移测试中,以测试发生灾难时恢复应用程序的能力。要确保您已准备好并有信心在运营事件发生时缓解问题,定期测试是一个关键环节。

确保所有可用区域都运行良好并占用流量

可用区转移的工作原理是,将某可用区中的一个资源(即应用程序副本)标记为运行状况不佳。这意味着,必须要确保负载均衡器中应用程序的目标总体运行状况良好,并且在区域里的可用区中主动接受流量。我们建议您使用仪表板来跟踪该情况,包括针对不正常目标的 Elastic Load Balancing 指标和每个可用区的 bytesProcessed 等。

考虑从第二个相邻区域监控资源的运行状况。这种方法的优势在于,它可以更好地代表最终用户的体验,还可以降低应用程序和监控同时受到同一灾难影响的风险("共同命运")。

使用数据平面 API 操作进行灾难恢复

要在需要快速恢复几乎没有依赖关系的应用程序时开始区域移动,我们建议使用 AWS Command Line Interface 或 API,并尽可能使用带有预存储凭据的区域移位操作和预先存储的凭据。为了便于使用 AWS Management Console,您也可以在中开始区域移动。但是,当快速、可靠的恢复至关重要时,数据面板操作是更好的选择。有关更多信息,请参阅可用区转移 API 参考指南。

只能暂时通过分区移位来移动交通

可用区转移会暂时将流量从可用区移走,以减轻损失。在采取措施纠正问题后,应立即将应用程序资源恢复为可用。这样能确保整个应用程序恢复到原始的完全冗余的弹性状态。

可用区转移 API 操作

下表列出了进行可用区转移(从多可用区应用程序的一个可用区中移走流量)时可以使用的 Route 53 ARC API 操作。该表还包括相关文档的链接。

有关如何在 AWS Command Line Interface中使用常见可用区转移 API 操作的示例,请参阅<u>使用 AWS</u> CLI 带区域移位的示例。

API 操作 14

操作	使用 Route 53 ARC 控制台	使用 Route 53 ARC API
启动可用区转移	请参阅 启动可用区转移。	参见StartZonal移动
更新可用区转移	请参阅 <u>更新或取消可用区转</u> 移。	参见 <u>UpdateZonal移动</u>
列出可用区转移	请参阅 <u>Amazon Route 53 应用</u> 程序恢复控制器中的可用区转 移。	查看ListZonal班次
列出托管资源	请参阅 <u>可用区转移和可用区自</u> <u>动转移支持的资源</u> 。	参见 <u>ListManaged资源</u>
获取托管资源	请参阅 <u>可用区转移和可用区自</u> 动转移支持的资源。	参见 <u>GetManaged资源</u>
取消可用区转移	请参阅 <u>更新或取消可用区转</u> 移。	参见 <u>CancelZonal移动</u>

使用 AWS CLI 带区域移位的示例

本节介绍使用区域偏移的简单应用示例,以及使用 API 操作在 AWS Command Line Interface Amazon Route 53 应用程序恢复控制器中使用区域偏移功能。这些示例旨在帮助您基本了解如何使用 CLI 处理 区域偏移。

Route 53 ARC 中的区域切换允许您暂时将受支持资源的流量从可用区移开,这样您的应用程序就可以继续在中的其他可用区域正常运行。 AWS 区域可用区转移目前支持关闭了跨可用区负载均衡的网络负载均衡器和应用程序负载均衡器。

我们来看一个使用 AWS Command Line Interface开始可用区转移的示例。您也可以使用 AWS CLI 更新可用区转移,例如,设置新的到期时间。所有可用区转移都是暂时性的,最初必须设置为三天内到期。但是您后期可以更新可用区转移,以设置新的到期时间。

有关使用的更多信息 AWS CLI,请参阅《<u>AWS CLI 命令参考</u>》。有关可用区转移 API 操作的列表和指向更多信息的链接,请参阅可用区转移 API 操作。

使用 CLI 操作的示例 15

启动可用区转移

您可以使用 start-zonal-shift 命令在 CLI 中启动可用区转移。

获取托管资源

您可以使用 get-managed-resource 命令在 CLI 中获取有关托管资源的信息。

```
aws arc-zonal-shift get-managed-resource \
    --resource-identifier="arn:aws:testservice::111122223333:ExampleALB123456890

{
    "arn": "arn:aws:testservice::111122223333:ExampleALB123456890",
    "name": "TestResource",
    "appliedWeights": {
        "usw2-az1": 1.0,
        "usw2-az2": 1.0,
        "usw2-az3": 1.0
    },
    "zonalShifts": []
}
```

列出托管资源

您可以使用 list-managed-resources 命令在 CLI 中列出您账户中的托管资源。

使用 CLI 操作的示例 16

aws arc-zonal-shift list-managed-resources

列出可用区转移

您可以使用 list-zonal-shifts 命令在 CLI 中列出您账户中的可用区转移。

```
aws arc-zonal-shift list-zonal-shifts
```

更新可用区转移

您可以使用 update-zonal-shift 命令在 CLI 中更新可用区转移。

使用 CLI 操作的示例 17

```
aws arc-zonal-shift update-zonal-shift \
    --zonal-shift-id="="arn:aws:testservice::111122223333:ExampleALB123456890" \
    --expires-in="1h" \
    --comment="Still shifting traffic away from USW2-AZ1"

{
    "zonalShiftId": "22222222-3333-444-1111",
    "resourceIdentifier": "arn:aws:testservice::111122223333:ExampleALB123456890",
    "awayFrom": "usw2-az1",
    "expiryTime": 2022-11-15T10:35:42+00:00,
    "startTime": 2022-11-15T09:35:42+00:00,
    "status": "ACTIVE",
    "comment": "Still shifting traffic away from USW2-AZ1"
}
```

取消可用区转移

您可以使用 cancel-zonal-shift 命令在 CLI 中取消可用区转移。

```
aws arc-zonal-shift cancel-zonal-shift \
    --zonal-shift-id="="arn:aws:testservice::111122223333:ExampleALB123456890"

{
    "zonalShiftId": "22222222-3333-444-1111",
    "resourceIdentifier": "arn:aws:testservice::111122223333:ExampleALB123456890",
    "awayFrom": "usw2-az1",
    "expiryTime": 2022-11-15T10:35:42+00:00,
    "startTime": 2022-11-15T09:35:42+00:00,
    "status": "CANCELED",
    "comment": "Shifting traffic away from USW2-AZ1"
}
```

可用区转移和可用区自动转移支持的资源

Amazon Route 53 应用程序恢复控制器目前支持以下资源用于区域转移和区域自动切换:

- 网络负载均衡器
- 应用程序负载均衡器

支持的资源 18

支持的负载平衡资源会自动注册到 Route 53 ARC,因此您可以将它们用于区域移动(和区域自动移位)。您可以在 Elastic Load Balancing 控制台(大多数 AWS 区域)或 Route 53 ARC 中启动负载均衡器的区域切换。

查看在 Route 53 ARC 中使用可用区转移和资源的以下条件:

- 可用区转移不支持跨区域负载均衡。要在 Route 53 ARC 中注册负载均衡器,请确保已在 Elastic Load Balancing 中关闭该负载均衡器的跨区域负载均衡器。
- 在一些特定场景中,区域转移不会转移来自可用区的流量。例如,如果可用区中的负载均衡器目标组 没有任何实例,或者所有实例均运行不正常,则负载均衡器进入打开失败状态,您无法移出其中一个 可用区。
- 公共和内部(私有)的网络负载均衡器和应用程序负载均衡器均受支持。
- 资源必须处于活动状态并已完全预置,才能为其转移流量。开始对资源进行可用区转移之前,请进行检查以确保该资源是 Route 53 ARC 中的托管资源。例如,您可以在中查看托管资源的列表 AWS Management Console,也可以使用带有资源标识符的get-managed-resource操作。
- 可用区转移不支持 AWS Global Accelerator中作为加速器端点的应用程序负载均衡器。
- 当应用程序负载均衡器是网络负载均衡器的目标时,请从网络负载均衡器启动可用区转移。如果从应用程序负载均衡器启动可用区转移,则网络负载均衡器不会停止向应用程序负载均衡器及其目标发送流量。
- 区域转移的资源必须是 AWS 服务机构已在 Route 53 ARC 注册的托管资源。在跨区域负载均衡关闭的情况下,Elastic Load Balancing 自动向 Route 53 ARC 注册网络负载均衡器和应用程序负载均衡器。
- 要开始使用资源进行区域转移,必须将其部署在可用区以及您开始转移 AWS 区域 的地方。请确保 在执行转移的可用区所在的同一区域启动可用区转移,并且要转移流量的资源也位于同一可用区和区域中。
- 请确保您具有正确的 IAM 权限对资源进行可用区转移。有关更多信息,请参阅 <u>IAM 和可用区转移权</u>限。

启动、更新或取消区域偏移

本节提供了处理区域偏移的程序,包括开始区域偏移和取消区域偏移。

启动可用区转移

本节中的步骤说明了如何在 Amazon Route 53 应用程序恢复控制器控制台上启动客户发起的可用区转移。要以编程方式使用可用区转移,请参阅《可用区转移 API 参考指南》。

启动、更新或取消区域偏移 19

除了在 Route 53 ARC 中启动区域转移外,您还可以在 Elastic Load Balancing 控制台(在支持的区域)中启动负载均衡器的区域切换。有关更多信息,请参阅《Elastic Load Balancing 用户指南》中的区域偏移。

启动可用区转移

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 在多可用区下,选择可用区转移。
- 3. 在可用区转移页面上,选择启动可用区转移。
- 4. 选择要将流量移走的可用区。
- 5. 从资源表中选择一个要转移流量的负载均衡器。
- 6. 在设置可用区转移到期时间中,选择或输入可用区转移的到期时间。可用区转移的活动时间最初可设置为 1 分钟到三天(72 小时)。

所有可用区转移都是暂时的。您必须设置到期时间,但稍后可以更新活动的可用区转移,以设置新的到期时间,最长是三天。

- 7. 输入注释。如果您愿意,可以稍后更新可用区转移以编辑注释。
- 8. 选中该复选框以确认启动可用区转移,这会将流量移离该可用区,从而减少应用程序的可用容量。
- 9. 选择启动。

更新或取消可用区转移

本节中的步骤说明了如何在 Amazon Route 53 应用程序恢复控制器控制台上更新您启动的可用区转移,或取消可用区转移。要以编程方式使用可用区转移,请参阅《可用区转移 API 参考指南》。

您可以更新可用区转移,以设置新的到期时间,也可以编辑或替换可用区转移的注释。在可用区转移到期之前,您可以随时取消它。

你可以取消你启动的区域移动,也可以取消为区域自动移位练习跑而 AWS 开始的区域移动。要详细了解区域自动换档中的练习移动,请参阅。可用区自动转移和练习运行的工作原理

更新可用区转移

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 在多可用区下,选择可用区转移。

启动、更新或取消区域偏移 20

- 3. 选择要更新的可用区转移,然后选择更新可用区转移。
- 4. 对于设置可用区转移到期时间,可以选择或输入到期时间。
- 5. 对于 Comment (注释),可以选择编辑现有注释或输入新注释。
- 6. 选择更新。

取消可用区转移

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 在多可用区下,选择可用区转移。
- 3. 选择要取消的可用区转移,然后选择取消可用区转移。
- 4. 在确认模态对话框中,选择确认。

在 Amazon Route 53 应用程序恢复控制器中记录和监控区域偏移

您可以使用 AWS CloudTrail 和 Amazon EventBridge 来监控 Amazon Route 53 应用程序恢复控制器中的区域偏移,以分析模式并帮助解决问题。

主题

- 使用记录区域移动 API 调用 AWS CloudTrail
- 在 Amazon 上使用区域偏移 EventBridge

使用记录区域移动 API 调用 AWS CloudTrail

Amazon Route 53 应用程序恢复控制器的区域转移与 AWS CloudTrail一项服务集成,该服务提供用户、角色或 AWS 服务在 Route 53 ARC 中采取的操作的记录。 CloudTrail 将所有用于区域偏移的 API 调用捕获为事件。捕获的呼叫包括来自 Route 53 ARC 控制台的调用以及对用于区域转移的 Route 53 ARC API 操作的代码调用。

如果您创建跟踪,则可以将 CloudTrail 事件持续传输到 Amazon S3 存储桶,包括用于区域转移的事件。如果您未配置跟踪,您仍然可以在 CloudTrail 控制台的 "事件历史记录" 中查看最新的事件。

使用收集的信息 CloudTrail,您可以确定向 Route 53 ARC 发出的区域转移请求、发出请求的 IP 地址、谁提出了请求、何时发出请求以及其他详细信息。

要了解更多信息 CloudTrail,请参阅《AWS CloudTrail 用户指南》。

区域偏移信息在 CloudTrail

CloudTrail 在您创建账户 AWS 账户 时已在您的账户上启用。当活动发生在 Route 53 ARC 中进行区域转移时,该活动将与其他 AWS 服务 CloudTrail 事件一起记录在事件历史记录中。您可以在中查看、搜索和下载最近发生的事件 AWS 账户。有关更多信息,请参阅使用 CloudTrail 事件历史记录。

要持续记录您的事件 AWS 账户,包括 Route 53 ARC 中区域偏移的事件,请创建一条跟踪。跟踪允许 CloudTrail 将日志文件传输到 Amazon S3 存储桶。预设情况下,在控制台中创建跟踪记录时,此跟踪记录应用于所有 AWS 区域。跟踪记录 AWS 分区中所有区域的事件,并将日志文件传送到您指定的 Amazon S3 存储桶。此外,您可以配置其他 AWS 服务,以进一步分析和处理 CloudTrail 日志中收集的事件数据。有关更多信息,请参阅下列内容:

- 创建跟踪记录概述
- CloudTrail 支持的服务和集成
- 配置 Amazon SNS 通知 CloudTrail
- 接收来自多个区域的 CloudTrail 日志文件和接收来自多个账户的 CloudTrail 日志文件

所有 Route 53 ARC 操作都由 Amazon Route 53 应用程序恢复控制器的路由控制 API 参考指南记录 CloudTrail 并记录在案。例如,调用StartZonalShift和ListManagedResources操作会在CloudTrail 日志文件中生成条目。

每个事件或日记账条目都包含有关生成请求的人员信息。身份信息有助于您确定以下内容:

- 请求是使用根证书还是 AWS Identity and Access Management (IAM) 用户凭证发出。
- 请求是使用角色还是联合用户的临时安全凭证发出的。
- 请求是否由其他 AWS 服务发出。

有关更多信息,请参阅CloudTrail 用户身份元素。

在事件历史记录中查看 Route 53 ARC 事件

CloudTrail 允许您在事件历史记录中查看最近的事件。有关更多信息,请参阅《AWS CloudTrail 用户指南》中的 "使用 CloudTrail 事件历史记录"。

了解分区移位日志文件条目

跟踪是一种配置,允许将事件作为日志文件传输到您指定的 Amazon S3 存储桶。 CloudTrail 日志文件 包含一个或多个日志条目。事件代表来自任何来源的单个请求,包括有关请求的操作、操作的日期和时

间、请求参数等的信息。 CloudTrail 日志文件不是公共 API 调用的有序堆栈跟踪,因此它们不会按任何特定的顺序出现。

以下示例显示了一个演示区域偏移ListManagedResources操作的 CloudTrail 日志条目。

```
{
      "eventVersion": "1.08",
      "userIdentity": {
        "type": "AssumedRole",
        "principalId": "A1B2C3D4E5F6G7EXAMPLE",
        "arn": "arn:aws:iam::111122223333:role/admin",
        "accountId": "111122223333",
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
        "sessionContext": {
          "sessionIssuer": {
            "type": "Role",
            "principalId": "AROA33L3W36EXAMPLE",
            "arn": "arn:aws:iam::111122223333:role/admin",
            "accountId": "111122223333",
            "userName": "EXAMPLENAME"
          },
          "webIdFederationData": {},
          "attributes": {
            "creationDate": "2022-11-14T16:01:51Z",
            "mfaAuthenticated": "false"
          }
        }
      },
      "eventTime": "2022-11-14T16:14:41Z",
      "eventSource": "arc-zonal-shift.amazonaws.com",
      "eventName": "ListManagedResources",
      "awsRegion": "us-west-2",
      "sourceIPAddress": "192.0.2.50",
      "userAgent": "Boto3/1.17.101 Python/3.8.10 Linux/4.14.231-180.360.amzn2.x86_64
 exec-env/AWS_Lambda_python3.8 Botocore/1.20.102",
      "requestParameters": null,
      "responseElements": null,
      "requestID": "VGXG4ZUE7UZTVCMTJGIAF_EXAMPLE",
      "eventID": "4b5c42df-1174-46c8-be99-d67_EXAMPLE",
      "readOnly": true,
      "eventType": "AwsApiCall",
      "managementEvent": true,
      "recipientAccountId": "111122223333"
      "eventCategory": "Management"
```

```
}
}
```

以下示例显示了一个 CloudTrail 日志条目,该条目演示了带有区域偏移冲突异常的StartZonalShift操作。

```
{
      "eventVersion": "1.08",
      "userIdentity": {
        "type": "AssumedRole",
        "principalId": "A1B2C3D4E5F6G7EXAMPLE",
        "arn": "arn:aws:iam::111122223333:role/admin",
        "accountId": "111122223333",
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
        "sessionContext": {
          "sessionIssuer": {
            "type": "Role",
            "principalId": "AROA33L3W36EXAMPLE",
            "arn": "arn:aws:iam::111122223333:role/admin",
            "accountId": "111122223333",
            "userName": "EXAMPLENAME"
          },
          "webIdFederationData": {},
          "attributes": {
            "creationDate": "2022-11-14T16:01:51Z",
            "mfaAuthenticated": "false"
          }
        }
      },
      "eventTime": "2022-11-14T16:10:38Z",
      "eventSource": "arc-zonal-shift.amazonaws.com",
      "eventName": "StartZonalShift",
     "awsRegion": "us-west-2",
      "sourceIPAddress": "192.0.2.50",
      "userAgent": "Boto3/1.17.101 Python/3.8.10 Linux/4.14.231-180.360.amzn2.x86_64
 exec-env/AWS_Lambda_python3.8 Botocore/1.20.102",
      "errorCode": "ConflictException",
      "errorMessage": "There's already an active zonal shift for that resource
 identifier: 'arn:aws:testservice:us-west-2:077059137270:testResource/456apples'.
 Active zonal shift: 'bac23b74-176e-c073-de8f-484ca508910f'",
      "requestParameters": {
        "resourceIdentifier": "arn:aws:testservice:us-
west-2:077059137270:testResource/456apples",
```

```
"awayFrom": "usw2-az1",
    "expiresIn": "2m",
    "comment": "HIDDEN_FOR_SECURITY_REASONS"
},
    "responseElements": null,
    "requestID": "0P40YXZ54HUPMIPGWH_EXAMPLE",
    "eventID": "0bca6660-e999-43a5-9008-EXAMPLE",
    "readOnly": false,
    "eventType": "AwsApiCall",
    "managementEvent": true,
    "recipientAccountId": "111122223333"
    "eventCategory": "Management"
}
```

在 Amazon 上使用区域偏移 EventBridge

使用 Amazon EventBridge,您可以设置事件驱动的规则,以监控您的区域转移资源并启动使用其他服务的目标操作。 AWS 例如,您可以通过在区域转移开始时向 Amazon SNS 主题发送信号,来设置发送电子邮件通知的规则。

您可以在 Amazon 中创建规则 EventBridge 以对区域偏移采取行动。区域偏移事件指定有关区域偏移的状态信息。例如,当你开始区域偏移时,就会创建一个事件。

要捕获您感兴趣的特定区域偏移事件,请定义 EventBridge 可用于检测事件的特定事件模式。事件模式 与它们匹配的事件具有相同的结构。模式引用了您要匹配的字段,并提供您所查找的值。

尽最大努力发出事件。 EventBridge 在正常运营情况下,它们几乎实时地从 Route 53 ARC 运送到。但 是,可能会出现延迟或阻止事件交付的情况。

有关 EventBridge 规则如何与事件模式配合使用的信息,请参阅中的事件和事件模式 EventBridge。

使用以下方法监控区域转移资源 EventBridge

使用 EventBridge,您可以创建规则,定义在 Route 53 ARC 为其资源发出事件时要采取的操作。例如,您可以创建一条规则,在开始区域转移时发送电子邮件。

要在控制台中键入或复制并粘贴事件模式,请选择该选项以在 EventBridge 控制台中使用 Enter my ow n 选项。为了帮助您确定可能对您有用的事件模式,本主题包括区域移位事件匹配模式的示例。

要为资源事件创建规则

1. 打开亚马逊 EventBridge 控制台,网址为 https://console.aws.amazon.com/events/。

- 2. 选择您 AWS 区域 要在其中创建规则的区域,即您有兴趣观看其赛事的区域。
- 3. 选择 Create rule (创建规则)。
- 4. 输入规则的 Name (名称) 和"Description (描述)" (可选)。
- 5. 对于事件总线,保留默认值,即默认。
- 6. 选择下一步。
- 7. 对于构建事件模式步骤,对于事件源,保留默认值,即 AWS 事件。
- 8. 在示例事件下,选择输入我自己的。
- 9. 对于示例事件,键入或复制并粘贴事件模式。

Route 53 ARC 事件模式示例

事件模式与它们匹配的事件具有相同的结构。模式引用了您要匹配的字段,并提供您所查找的值。

• 从 Route 53 ARC 区域偏移中选择所有赛事。

```
{
    "source": [
        "aws.arc-zonal-shift"
    ]
}
```

指定要用作目标的 CloudWatch 日志组

创建 EventBridge 规则时,必须指定将与该规则匹配的事件发送到哪个目标。有关可用目标的列表 EventBridge,请参阅 EventBridge 控制台中的可用目标。您可以添加到 EventBridge 规则的目标之一是 Amazon CloudWatch 日志组。本节介绍将 CloudWatch 日志组添加为目标的要求,并提供了在创建规则时添加日志组的过程。

要将 CloudWatch 日志组添加为目标,可以执行以下操作之一:

- 创建新的日志组
- 选择现有的日志组

如果您在创建规则时使用控制台指定了新的日志组,则 EventBridge 会自动为您创建该日志组。确保用作 EventBridge 规则目标的日志组以开头/aws/events。如果要选择现有的日志组,请注意,只

有以开头的日志组才/aws/events会作为选项出现在下拉菜单中。有关更多信息,请参阅 Amazon CloudWatch 用户指南中的创建新日志组。

如果您使用控制台之外的 CloudWatch 操作创建或使用 CloudWatch 日志组作为目标,请确保正确设置权限。如果您使用控制台向 EventBridge 规则添加日志组,则该日志组的基于资源的策略会自动更新。但是,如果您使用 AWS Command Line Interface 或 S AWS DK 来指定日志组,则必须更新该日志组的基于资源的策略。以下示例策略说明了您必须在基于资源的策略中为日志组定义的权限:

```
{
  "Statement": [
      "Action": [
        "logs:CreateLogStream",
        "logs:PutLogEvents"
      ],
      "Effect": "Allow",
      "Principal": {
        "Service": [
          "events.amazonaws.com",
          "delivery.logs.amazonaws.com"
        ]
      },
      "Resource": "arn:aws:logs:region:account:log-group:/aws/events/*:*",
      "Sid": "TrustEventsToStoreLogEvent"
    }
  ],
  "Version": "2012-10-17"
}
```

您无法使用控制台为日志组配置基于资源的策略。要向基于资源的策略添加所需的权限,请使用CloudWatch <u>PutResourcePolicy</u>API 操作。然后,您可以使用 <u>describe-resource-policies</u>CLI 命令来检查您的策略是否已正确应用。

为资源事件创建规则并指定 CloudWatch 日志组目标

- 1. 打开亚马逊 EventBridge 控制台,网址为 https://console.aws.amazon.com/events/。
- 2. 选择 AWS 区域 要在其中创建规则的。
- 3. 选择"创建规则",然后输入有关该规则的任何信息,例如事件模式或计划详细信息。

有关为 Route 53 ARC 创建 EventBridge 规则的更多信息,请参阅本主题前面的部分。

4. 在"选择目标"页面上,选择CloudWatch作为您的目标。

5. 从下拉菜单中选择一个 CloudWatch 日志组。

用于亚马逊 Route 53 应用程序恢复控制器的区域转移的 Identity and Access Management

AWS Identity and Access Management (IAM) AWS 服务 可帮助管理员安全地控制对 AWS 资源的访问权限。IAM 管理员控制可以通过身份验证(登录)和授权(具有权限)使用 Route 53 ARC 资源的人员。您可以使用 IAM AWS 服务 ,无需支付额外费用。

内容

- 区域偏移如何与 IAM 配合使用
- IAM 和可用区转移权限
- Amazon Route 53 应用程序恢复控制器中区域转移的基于身份的策略示例

区域偏移如何与 IAM 配合使用

在使用 IAM 在 Amazon Route 53 应用程序恢复控制器中管理对区域转移的访问权限之前,请先了解哪些可用于区域转移的 IAM 功能。

可在区域偏移中使用的 IAM 功能

IAM 功能	支持区域移动
基于身份的策略	是
基于资源的策略	否
策略操作	是
策略资源	是
策略条件键	是
ACL	否
ABAC(策略中的标签)	部分
<u>临时凭证</u>	是

IAM 功能	支持区域移动
主体权限	是
服务角色	否
服务相关角色	是

要全面了解 AWS 服务如何与大多数 IAM 功能配合使用,请参阅 IAM 用户指南中的与 IAM <u>配合使用的</u> AWS 服务。

Route 53 ARC 基于身份的策略

支持基于身份的策略 是

基于身份的策略是可附加到身份(如 IAM 用户、用户组或角色)的 JSON 权限策略文档。这些策略控制用户和角色可在何种条件下对哪些资源执行哪些操作。要了解如何创建基于身份的策略,请参阅 IAM 用户指南中的创建 IAM 策略。

通过使用 IAM 基于身份的策略,您可以指定允许或拒绝的操作和资源以及允许或拒绝操作的条件。您无法在基于身份的策略中指定主体,因为它适用于其附加的用户或角色。要了解可在 JSON 策略中使用的所有元素,请参阅《IAM 用户指南》中的 IAM JSON 策略元素引用。

要查看 Route 53 ARC 基于身份的策略的示例,请参阅<u>Amazon Route 53 应用程序恢复控制器中基于</u>身份的策略示例。

Route 53 ARC 内基于资源的策略

支持基于资源的策略

基于资源的策略是附加到资源的 JSON 策略文档。基于资源的策略的示例包括 IAM 角色信任策略和 Simple Storage Service(Amazon S3)存储桶策略。在支持基于资源的策略的服务中,服务管理员可以使用它们来控制对特定资源的访问。

区域转移的政策行动

支持策略操作	是
--------	---

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体 可以对什么资源 执行操作,以及在什么 条件 下执行。

JSON 策略的 Action 元素描述可用于在策略中允许或拒绝访问的操作。策略操作通常与关联的 AWS API 操作同名。有一些例外情况,例如没有匹配 API 操作的仅限权限 操作。还有一些操作需要在策略中执行多个操作。这些附加操作称为相关操作。

在策略中包含操作以授予执行关联操作的权限。

要查看用于区域转移的 Route 53 ARC 操作列表,请参阅《服务授权参考<u>》中的 Amazon Route 53 区</u>域偏移定义的操作。

Route 53 ARC 中用干区域转移的策略操作在操作前使用以下前缀:

```
arc-zonal-shift
```

要在单个语句中指定多项操作,请使用逗号将它们隔开。例如,以下内容:

```
"Action": [
    "arc-zonal-shift:action1",
    "arc-zonal-shift:action2"
    ]
```

您也可以使用通配符(*)指定多个操作。例如,要指定以单词 Describe 开头的所有操作,包括以下操作:

```
"Action": "arc-zonal-shift:Describe*"
```

要查看 Route 53 ARC 基于身份的区域转移策略示例,请参阅。<u>Amazon Route 53 应用程序恢复控制</u> 器中区域转移的基于身份的策略示例

区域转移的政策资源

```
支持策略资源
```

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体 可以对什么资源 执行操作,以及在什么条件 下执行。

Resource JSON 策略元素指定要向其应用操作的一个或多个对象。语句必须包含 Resource 或 NotResource 元素。作为最佳实践,请使用其 <u>Amazon 资源名称 (ARN)</u>指定资源。对于支持特定资源类型(称为资源级权限)的操作,您可以执行此操作。

对于不支持资源级权限的操作(如列出操作),请使用通配符 (*) 指示语句应用于所有资源。

"Resource": "*"

要查看资源类型及其 ARN 的列表,以及您可以使用每种资源的 ARN 指定的操作,请参阅《服务授权 参考》中的以下主题:

• Amazon Route 53 定义的操作——区域移动

要查看可与条件键配合使用的操作和资源,请参阅《服务授权参考》中的以下主题:

• 由 Amazon Route 53 定义的条件键——区域移动

要查看 Route 53 ARC 基于身份的区域转移策略示例,请参阅。Amazon Route 53 应用程序恢复控制器中区域转移的基于身份的策略示例

区域转移的策略条件密钥

支持特定干服务的策略条件键

是

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体可以对什么资源执行操作,以及在什么条件下执行。

在 Condition 元素(或 Condition 块)中,可以指定语句生效的条件。Condition 元素是可选的。您可以创建使用条件运算符(例如,等于或小于)的条件表达式,以使策略中的条件与请求中的值相匹配。

如果您在一个语句中指定多个 Condition 元素,或在单个 Condition 元素中指定多个键,则 AWS 使用逻辑 AND 运算评估它们。如果您为单个条件键指定多个值,则使用逻辑OR运算来 AWS 评估条件。在授予语句的权限之前必须满足所有的条件。

在指定条件时,您也可以使用占位符变量。例如,只有在使用 IAM 用户名标记 IAM 用户时,您才能为 其授予访问资源的权限。有关更多信息,请参阅 IAM 用户指南中的 IAM 策略元素:变量和标签。

用于区域转移的 IAM 31

AWS 支持全局条件密钥和特定于服务的条件密钥。要查看所有 AWS 全局条件键,请参阅 IAM 用户指南中的AWS 全局条件上下文密钥。

要查看区域移位条件键列表,请参阅《服务授权参考》中的以下主题:

• 由 Amazon Route 53 定义的条件键——区域移动

要查看可与条件键配合使用的操作和资源,请参阅《服务授权参考》中的以下主题:

- Amazon Route 53 定义的操作——区域移动
- 由 Amazon Route 53 定义的资源类型——区域偏移

要查看 Route 53 ARC 基于身份的区域转移策略示例,请参阅。Amazon Route 53 应用程序恢复控制器中区域转移的基于身份的策略示例

Route 53 ARC 中的访问控制列表 (ACL)

支持 ACL 否

访问控制列表(ACL)控制哪些主体(账户成员、用户或角色)有权访问资源。ACL 与基于资源的策略类似,尽管它们不使用 JSON 策略文档格式。

Route 53 ARC 中基于属性的访问权限控制 (ABAC)

支持 ABAC (策略中的标签)

部分

基于属性的访问权限控制(ABAC)是一种授权策略,该策略基于属性来定义权限。在中 AWS,这些属性称为标签。您可以向 IAM 实体(用户或角色)和许多 AWS 资源附加标签。标记实体和资源是 ABAC 的第一步。然后设计 ABAC 策略,以在主体的标签与他们尝试访问的资源标签匹配时允许操作。

ABAC 在快速增长的环境中非常有用,并在策略管理变得繁琐的情况下可以提供帮助。

要基于标签控制访问,您需要使用 aws:ResourceTag/key-name、aws:RequestTag/key-name或 aws:TagKeys 条件键在策略的条件元素中提供标签信息。

如果某个服务对于每种资源类型都支持所有这三个条件键,则对于该服务,该值为 Yes(是)。如果某个服务仅对于部分资源类型支持所有这三个条件键,则该值为 Partial(部分)。

有关 ABAC 的更多信息,请参阅《IAM 用户指南》中的<u>什么是 ABAC?</u>。要查看设置 ABAC 步骤的教程,请参阅《IAM 用户指南》中的使用基于属性的访问权限控制(ABAC)。

Route 53 ARC 包括对 ABAC 的以下部分支持:

• 对于在 Route 53 ARC 中注册的要进行可用区转移的托管资源,可用区转移支持 ABAC。有关网络负载均衡器和应用程序负载均衡器托管资源的 ABAC 的更多信息,请参阅《Elastic Load Balancing 用户指南》之 Elastic Load Balancing 中的 ABAC。

在 Route 53 ARC 中使用临时凭证

支持临时凭证

是

当你使用临时证书登录时,有些 AWS 服务 不起作用。有关更多信息,包括哪些 AWS 服务 适用于临时证书,请参阅 IAM 用户指南中的AWS 服务 与 IA M 配合使用的信息。

如果您使用除用户名和密码之外的任何方法登录,则 AWS Management Console 使用的是临时证书。例如,当您 AWS 使用公司的单点登录 (SSO) 链接进行访问时,该过程会自动创建临时证书。当您以用户身份登录控制台,然后切换角色时,您还会自动创建临时凭证。有关切换角色的更多信息,请参阅《IAM 用户指南》中的 切换到角色(控制台)。

您可以使用 AWS CLI 或 AWS API 手动创建临时证书。然后,您可以使用这些临时证书进行访问 AWS。 AWS 建议您动态生成临时证书,而不是使用长期访问密钥。有关更多信息,请参阅 IAM 中的临时安全凭证。

Route 53 ARC 的跨服务主体权限

支持转发访问会话 (FAS)

是

当您使用 IAM 实体(用户或角色)在中执行操作时 AWS,您被视为委托人。策略向主体授予权限。使用某些服务时,您可能会执行一个操作,此操作然后在不同服务中触发另一个操作。在这种情况下,您必须具有执行这两个操作的权限。

要查看某项操作是否需要策略中的其他相关操作,请参阅《服务授权参考》中的以下主题:

Amazon Route 53 可用区转移

Route 53 ARC 服务角色

支持服务角色

否

服务角色是由一项服务担任、代表您执行操作的 <u>IAM 角色</u>。IAM 管理员可以在 IAM 中创建、修改和删除服务角色。有关更多信息,请参阅《IAM 用户指南》中的创建向 AWS 服务委派权限的角色。

Route 53 ARC 服务相关角色

支持服务相关角色

是

服务相关角色是一种链接到的服务角色。 AWS 服务服务可以代入代表您执行操作的角色。服务相关角色出现在您的中 AWS 账户 ,并且归服务所有。IAM 管理员可以查看但不能编辑服务相关角色的权限。

区域转移不使用与服务相关的角色。

IAM 和可用区转移权限

本节提供有关权限如何使用 Amazon Route 53 应用程序恢复控制器中的区域转移功能的更多信息,尤其是在您使用其他 AWS 服务(例如 Elastic Load Balancing)的功能时。要了解 Route 53 ARC 功能如何与 IAM 和一般权限配合使用,请查看概述主题中的信息用于亚马逊 Route 53 应用程序恢复控制器的区域转移的 Identity and Access Management。

除了 IAM 概述主题中概述的权限外,以下内容还适用于 IAM 和权限的区域转移:

- 确保您拥有在 Route 53 ARC 中使用可用区转移的权限。有关更多信息,请参阅<u>分区移位控制台访问</u> 权限和区域移位操作访问权限。
- 您无需通过 IAM 添加额外的 Elastic Load Balancing 权限即可在 Route 53 ARC 中对账户中的托管负载均衡器资源进行可用区转移。
- 为 Elastic Load Balancing 提供完全访问权限的 AWS 托管策略包括使用区域转移的权限。如果您使用 AWS 托管策略获取 Elastic Load Balancing 访问权限,则无需在 IAM 中获得额外的区域转移权限即可启动负载均衡器的区域转移或在 Elastic Load Balancing 控制台中使用。有关更多信息,请参阅 Elastic Load Balancing 的AWS 托管策略。

Amazon Route 53 应用程序恢复控制器中区域转移的基于身份的策略示例

默认情况下,用户和角色没有创建或修改 Route 53 ARC 资源的权限。他们也无法使用 AWS Management Console、 AWS Command Line Interface (AWS CLI) 或 AWS API 执行任务。要授予用户对所需资源执行操作的权限,IAM 管理员可以创建 IAM 策略。管理员随后可以向角色添加 IAM 策略,用户可以代入角色。

要了解如何使用这些示例 JSON 策略文档创建基于 IAM 身份的策略,请参阅 IAM 用户指南中的 <u>创建 IAM policy</u>。

有关 Route 53 ARC 定义的操作和资源类型的详细信息,包括每种资源类型的 ARN 格式,请参阅《服务授权参考》中的 Amazon Route 53 应用程序恢复控制器的操作、资源和条件键。

主题

- 策略最佳实践
- 示例:区域移位控制台访问权限
- 示例:区域偏移 API 操作

策略最佳实践

基于身份的策略确定某个人是否可以创建、访问或删除您账户中的 Route 53 ARC 资源。这些操作可能会使 AWS 账户产生成本。创建或编辑基于身份的策略时,请遵循以下准则和建议:

- 开始使用 AWS 托管策略并转向最低权限权限 要开始向用户和工作负载授予权限,请使用为许多常见用例授予权限的AWS 托管策略。它们在你的版本中可用 AWS 账户。我们建议您通过定义针对您的用例的 AWS 客户托管策略来进一步减少权限。有关更多信息,请参阅《IAM 用户指南》中的AWS 托管策略或工作职能的AWS 托管策略。
- 应用最低权限 在使用 IAM 策略设置权限时,请仅授予执行任务所需的权限。为此,您可以定义 在特定条件下可以对特定资源执行的操作,也称为最低权限许可。有关使用 IAM 应用权限的更多信息,请参阅《IAM 用户指南》中的 IAM 中的策略和权限。
- 使用 IAM 策略中的条件进一步限制访问权限 您可以向策略添加条件来限制对操作和资源的访问。例如,您可以编写策略条件来指定必须使用 SSL 发送所有请求。如果服务操作是通过特定的方式使用的,则也可以使用条件来授予对服务操作的访问权限 AWS 服务,例如 AWS CloudFormation。有关更多信息,请参阅《IAM 用户指南》中的 IAM JSON 策略元素:条件。
- 使用 IAM Access Analyzer 验证您的 IAM 策略,以确保权限的安全性和功能性 IAM Access Analyzer 会验证新策略和现有策略,以确保策略符合 IAM 策略语言 (JSON) 和 IAM 最佳实践。IAM

 Access Analyzer 提供 100 多项策略检查和可操作的建议,以帮助您制定安全且功能性强的策略。有关更多信息,请参阅《IAM 用户指南》中的 IAM Acess Analyzer 策略验证。

需要多重身份验证 (MFA)-如果 AWS 账户您的场景需要 IAM 用户或根用户,请启用 MFA 以提高安全性。若要在调用 API 操作时需要 MFA,请将 MFA 条件添加到您的策略中。有关更多信息,请参阅《IAM 用户指南》中的 配置受 MFA 保护的 API 访问。

有关 IAM 中的最佳实操的更多信息,请参阅《IAM 用户指南》中的 IAM 中的安全最佳实操。

示例:区域移位控制台访问权限

要访问 Amazon Route 53 应用程序恢复控制器控制台,您必须具有一组最低的权限。这些权限必须允许您列出和查看有关您的 Route 53 ARC 资源的详细信息 AWS 账户。如果创建比必需的最低权限更为严格的基于身份的策略,对于附加了该策略的实体(用户或角色),控制台将无法按预期正常运行。

对于仅调用 AWS CLI 或 AWS API 的用户,您无需为其设置最低控制台权限。相反,只允许访问与其尝试执行的 API 操作相匹配的操作。

要向用户提供在中使用区域转移的完全访问权限 AWS Management Console,请向用户附加如下所示的策略:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                   "arc-zonal-shift:ListManagedResources",
                   "arc-zonal-shift:GetManagedResource",
                   "arc-zonal-shift:ListZonalShifts",
                   "arc-zonal-shift:StartZonalShift",
                   "arc-zonal-shift:UpdateZonalShift",
                   "arc-zonal-shift:CancelZonalShift"
             ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": "ec2:DescribeAvailabilityZones",
            "Resource": "*"
        }
    ]
```

}

示例:区域偏移 API 操作

区域移动 API 会暂时将流量从可用区域移开,以恢复应用程序。

为确保用户可以使用区域移动 API 操作,请附加与用户需要使用的 API 操作相对应的策略,例如:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                    "arc-zonal-shift:ListManagedResources",
                   "arc-zonal-shift:GetManagedResource",
                    "arc-zonal-shift:ListZonalShifts",
                   "arc-zonal-shift:StartZonalShift",
                   "arc-zonal-shift:UpdateZonalShift",
                    "arc-zonal-shift:CancelZonalShift"
             ],
            "Resource": "*"
        }
    ]
}
```

Amazon Route 53 应用程序恢复控制器中的可用区自动转移

使用 zonal autoshift,您可以授权 AWS 在活动期间代表您从可用区域转移应用程序的资源流量,以帮助缩短恢复时间。 AWS 当内部遥测数据显示存在可能影响客户的可用区域受损时,会启动自动换档。 AWS 启动自动切换时,您为区域自动切换配置的资源的应用程序流量开始从可用区转移出去。

请注意,Route 53 ARC 不会检查单个资源的运行状况。 AWS 当 AWS 遥测检测到存在可能影响客户的可用区域受损时,就会启动自动换档。在某些情况下,流量可能会转移到没有受到影响的资源上。

通过区域自动切换,您还可以代表您授权 AWS 将应用程序的资源流量从可用区转移出来,用于常规练习。可用区自动转移需要练习运行。Route 53 ARC 为练习运行启动的可用区转移可帮助您确保在自动转移期间将流量从可用区转移出去对您的应用程序是安全的。通过启动可用区转移,将资源的流量从可用区转移出去,练习运行能够定期测试您的应用程序能否在没有一个可用区的情况下正常运行。每周进行一次练习,并提供结果(例如SUCCEEDED或FAILED),以帮助您了解应用程序是否按预期运行。

可用区自动转移 37

M Important

在配置练习运行或启用区域自动切换之前,我们强烈建议您在部署应用程序资源的区域的所有 可用区中预先扩展应用程序资源容量。当自动转移或练习运行启动时,您不应依赖于按需扩 展。可用区自动转移(包括练习运行)独立工作,且不会等待自动扩缩操作完成。依赖 auto Scaling 而不是预缩放可能会导致应用程序需要更长的时间才能恢复。

如果您使用自动扩缩来处理定期的流量周期,则强烈建议您配置自动扩缩的最小容量,以便在 可用区丢失的情况下能够继续正常运行。

如果您计划启用区域自动移位或配置练习运行,请在预先扩展应用程序资源容量之后,测试您的应用程 序是否可以在没有一个可用区的情况下正常运行。要进行此测试,请启动可用区转移,将资源的流量从 可用区转移出去。

为了确保您的区域偏移测试有效,请务必验证您离开的区域的流量是否如预期的那样流失。应用程序负 载均衡器和网络负载均衡器都在 Amazon 中提供了每个可用区的指标 CloudWatch,您可以使用这些指 标来监控这一点。根据服务和客户端重复使用连接的时间长度,流量继续流向您已离开的可用区的持续 时间可能会比您预期的要长。要了解更多信息,请参阅限制客户端与您的终端保持连接的时间。

在您通过启动和评估区域转移来验证您的应用程序可以在流量转移到可用区域以外的情况下继续正常运 行之后,Route 53 ARC 执行的常规运行可以帮助您持续确认您有足够的容量进行自动换档。

除了在 Route 53 ARC 控制台中为负载均衡器资源启用区域自动切换外,您还可以选择在 Amazon EC2 控制台中为特定负载均衡器启用区域自动切换。要详细了解如何使用 Elastic Load Balancing 启用 区域自动切换,请参阅 Elastic Lo ad Balancing 用户指南中的区域偏移。

自动转移和练习运行可用区转移是暂时的。通过自动切换,当受影响的可用区恢复时, AWS 会停止将 资源流量从可用区转移出去。客户的应用程序流量会返回到区域中的所有可用区。在练习运行中,流量 会从单个资源的可用区中转移出去约 30 分钟,然后再转移回区域中的所有可用区。

您可以将 Amazon EventBridge 通知配置为提醒您有关自动换档和练习跑的信息。有关更多信息,请参 阅 在 Amazon 上使用区域自动换档 EventBridge。

可用区自动转移和练习运行的工作原理

Amazon Route 53 应用程序恢复控制器中的区域自动切换功能允许 AWS 在 AWS 确定存在可能影响可 用区客户的损害时,代表您将资源的流量从可用区转移出去。Zonal autoshift 专为在中的所有可用区中 预先扩展的资源而设计 AWS 区域,这样应用程序就可以在失去一个可用区域的情况下正常运行。

借助可用区自动转移,您需要配置练习运行,以便 Route 53 ARC 定期将资源的流量从一个可用区转移 出去。Route 53 ARC 大约每周为具有与其关联的练习运行配置的每个资源安排练习运行。每个资源的 练习运行都是独立安排的。

对于每次练习运行,Route 53 ARC 都会记录结果。如果练习运行因阻止条件而中断,则练习运行结果 不会标记为成功。有关练习运行结果的更多信息,请参阅练习运行结果。

您可以将 Amazon EventBridge 通知配置为向您发送有关自动换档和练习跑的信息。有关更多信息,请 参阅 在 Amazon 上使用区域自动换档 EventBridge。

主题

- 何时 AWS 启动和停止自动换档
- Route 53 ARC 何时安排、启动和结束练习运行
- 可用区转移、练习运行和自动转移的优先顺序
- 停止资源的活动自动转移或练习运行
- 流量是如何转移出去的
- 练习运行警报
- 阻止日期和阻止时段 (UTC)

何时 AWS 启动和停止自动换档

当您为资源启用区域自动切换时,即表示您授权在事件发生期间 AWS 将应用程序的资源流量从可用区转移出去,以帮助缩短恢复时间。

为实现这一目标,zonal autoshift 使用 AWS 遥测技术尽早检测到存在可能影响客户的可用区损害。当 AWS 启动自动转移时,传输到已配置资源的流量会立即开始从可能会影响客户的受损可用区转移。

Zonal autoshift 是一项专为已为中所有可用区预先扩展其应用程序资源的客户设计的功能。 AWS 区域当自动转移或练习运行启动时,您不应依赖于按需扩展。

AWS 当它确定可用区已恢复时,将结束自动切换。

Route 53 ARC 何时安排、启动和结束练习运行

Route 53 ARC 每周为资源安排一次练习运行,时长约为 30 分钟。Route 53 ARC 独立安排、启动和管理每个资源的练习运行。Route 53 ARC 不会批量处理同一账户中资源的练习运行。

当练习运行在预期的持续时间内不间断进行时,它的结果会标记为 SUCCESSFUL。还有其它几种可能的结果:FAILED、INTERRUPTED 和 PENDING。结果值和描述包含在练习运行结果部分。

在某些情况下,Route 53 ARC 会中断练习运行并将其结束。例如,如果在练习运行期间自动转移启动,则 Route 53 ARC 会中断练习运行并将其结束。再举一个例子,假设资源对练习运行有不良影响,并导致您指定的用于监控练习运行的警报进入 ALARM 状态。在这种情况下,Route 53 ARC 也会中断练习运行并将其结束。

此外,在某些情况下,Route 53 ARC 不会为资源启动计划练习运行。

为了应对面向资源的中断和被阻止的练习运行, Route 53 ARC 会执行以下操作:

- 如果资源的练习运行在进行期间中断,则 Route 53 ARC 会认为每周的练习运行已经结束,并会计划在下一周为该资源安排一次新的练习运行。在这种情况下,每周练习的结果为INTERRUPTED,而不是 FAILED。只有当监控练习运行的结果警报在练习运行期间进入 ALARM状态时,练习运行结果才会设置为 FAILED。
- 如果在计划启动资源的练习运行时存在阻止约束,则 Route 53 ARC 不会启动练习运行。Route 53 ARC 将继续定期监控,以确定是否仍存在一个或多个阻止约束。当没有任何阻止约束时,Route 53 ARC 会对资源启动练习运行。

以下是阻止 Route 53 ARC 启动或继续资源练习运行的阻止约束示例:

- 当有 AWS Fault Injection Service 实验进行时,Route 53 ARC 不会开始或继续练习。如果在 Route 53 ARC 计划开始练习跑时赛事处于 AWS FIS 活动状态,则 Route 53 ARC 不会开始练习 跑。Route 53 ARC 在整个练习跑中监控阻塞限制,包括 AWS FIS 赛事。如果 AWS FIS 活动在 练习跑处于活动状态时开始,Route 53 ARC 将结束练习跑,并且在资源下一次定期安排的练习 跑之前不会尝试开始另一场练习。
- 如果某个区域有当前 AWS 赛事,则 Route 53 ARC 不会在该地区开始资源练习,而是结束该地区的主动练习。

当练习运行在没有中断的情况下完成时,Route 53 ARC 会像往常一样安排一周后进行下一次练习运行。如果由于阻塞限制(例如您指定的 AWS FIS 实验或封锁时间窗口)而无法开始练习,则Route 53 ARC 会继续尝试开始练习,直到练习跑可以开始。

可用区转移、练习运行和自动转移的优先顺序

对于立即生效的资源,只能有一个流量转移,即,该资源只能有一个练习运行可用区转移、客户发起的可用区转移或自动转移。当有多个流量转移正在进行时,Route 53 ARC 会按照优先顺序来确定哪个流量转移对资源有效。

优先顺序的总体原则是,您作为客户开始的区域移位优先于自动换档,后者优先于练习跑。也就是 说,客户发起的可用区转移 > 自动转移 > 练习运行可用区转移。

下面的几个场景示例说明了不同转移的优先顺序:

- 如果存在活动的自动转移,并且您为启用了自动转移的资源启动了可用区转移,则您启动的可用 区转移将处于 APPLIED 状态。资源此时已从可用区转移所适用的可用区中转移出去。如果可用 区转移在 AWS 结束自动转移之前结束,那么自动转移将变为 APPLIED 转移。因此,资源 AWS 已从正在进行自动转移的可用区移开。
- 如果您为启用了自动移位的资源启动了有效的区域移动,并 AWS 启动了自动移位,则该资源存在自动移位。但是,可用区转移设置为 APPLIED,自动转移设置为 NOT APPLIED,直到可用区转移结束。然后,自动换档的状态将更新为,APPLIED并且自动换档会转移资源的流量,直到自动换档 AWS 结束。
- 如果某个资源有一个活动练习运行,并且您为该资源启动了可用区转移,从而转移了同一可用区的流量,则该练习运行将中断。如果您启动可用区转移,将流量从其它可用区转移出去,则练习运行将照常进行。
- 如果资源存在活动可用区转移,并且 Route 53 ARC 计划启动一个练习运行,则该练习运行将推 迟一个小时。然后 Route 53 ARC 会再次尝试启动练习运行。Route 53 ARC 会继续每小时检查 一次,直到可以启动练习运行为止。

当前对资源有效的流量转移已将应用的可用区转移状态设置为 APPLIED。任何时候只有一个转移设置为 APPLIED。其它正在进行的转移均设置为 ACTIVE。

停止资源的活动自动转移或练习运行

若要对资源停止正在进行的自动转移,请禁用该资源的可用区自动转移。

当您禁用可用区自动转移时,对资源的练习运行配置不会受到影响。该资源仍会按相同的计划进行定期练习运行。如果除了禁用自动转移之外您还想停止练习运行,则必须删除与该资源关联的练习运行配置。

删除练习运行配置后,将 AWS 停止执行每周将资源流量从可用区转移的练习运行。此外,由于可用区自动转移需要练习运行,因此当您使用 Route 53 ARC 控制台删除练习运行配置时,此操作还会禁用针对资源的可用区自动转移。但是,请注意,如果您使用可用区自动转移 API 来删除练习运行,则必须先禁用针对资源的可用区自动转移。

要停止活动的练习运行,请取消练习运行可用区转移。有关更多信息,请参阅 <u>取消练习运行可用区</u>转移。

流量是如何转移出去的

对于自动转移和练习运行可用区转移,使用与 Route 53 ARC 用于客户发起的可用区转移相同的机制将流量从可用区转移出去。为了将已关闭跨区域负载均衡的负载均衡器的流量从可用区转移出去,Route 53 ARC 将可用区的负载均衡器运行状况检查设置为不正常,从而使其运行状况检查失

败。运行状况检查不正常进而会导致 Amazon Route 53 从 DNS 中收回该资源的对应 IP 地址,因此流量会从该可用区重定向。现在,新连接将 AWS 区域 改为路由到中的其他可用区。

使用自动换档时,当可用区恢复并 AWS 决定结束自动换档时,Route 53 ARC 会撤消运行状况检查流程,请求恢复 Route 53 的运行状况检查。然后,将恢复原来的可用区 IP 地址,并且如果运行状况检查继续正常运行,可用区会再次包含到负载均衡器的路由范围中。

务必注意,自动转移并非基于监控负载均衡器或应用程序底层运行状况的运行状况检查。通过请求 将运行状况检查设置为不正常,Route 53 ARC 可以使用运行状况检查功能将流量从可用区移走, 然后在结束自动转移或可用区转移时将运行状况检查再次恢复为正常。

练习运行警报

在分区自动换档中,您可以为练习跑指定两个 CloudWatch 警报。第一个警报结果警报是必需的。您应该配置结果警报,以便在每次为期 30 分钟的练习运行期间,在将流量从可用区转移出去时监控应用程序的运行状况。

为了使练习生效,请指定一个警报作为结果警报,该 CloudWatch 警报用于监控资源或应用程序的指标,当您的应用程序因失去一个可用区而受到不利影响时,这些指标会以ALARM状态做出响应。有关更多信息,请参阅 配置区域自动移位时的最佳实践中的为练习运行指定的警报部分。

结果警报还提供了 Route 53 ARC 针对每次练习运行所报告的练习运行结果的信息。如果警报进入 ALARM 状态,则练习运行结束,练习运行结果返回为 FAILED。如果练习运行完成了 30 分钟的计划测试期,并且结果警报未进入 ALARM 状态,则结果将返回为 SUCCEEDED。<u>练习运行结果</u>部分提供了所有结果值的列表及其描述。

您也可以选择指定第二个警报,即阻止警报。阻止警报将在处于 ALARM 状态时阻止练习运行启动或继续。当此警报处于 ALARM 状态时,它会阻止练习运行流量转移启动,并停止任何正在进行的练习运行。

例如,在具有多个微服务的大型架构中,当一个微服务遇到问题时,您通常希望停止应用程序环境 中的所有其它更改,其中包括阻止练习运行。

阻止日期和阻止时段 (UTC)

您可以选择阻止特定日历日期或特定时段(即采用 UTC 时间的日期和时间)的练习运行。

例如,如果您计划于 2024 年 5 月 1 日进行应用程序更新,并且您不希望练习运行在此时转移流量,则可以将阻止日期设置为 2024-05-01。

或者,假设您每周三天运行业务报告摘要。对于这种情况,您可以将采用 UTC 时间的以下重复日期和时间设置为阻止时段,例如:MON-20:30-21:30 WED-20:30-21:30 FRI-20:30-21:30。

关于区域自动换档

区域自动切换是一种代表您 AWS 将应用程序资源流量从可用区转移出去的功能。 AWS 当内部遥测数据显示存在可能影响客户的可用区域受损时,会启动自动换档。内部遥测包含来自多个来源的指标,包括 AWS 网络、Amazon EC2 和 Elastic Load Balancing 服务。

您可以对关闭了跨可用区负载均衡的网络负载均衡器和应用程序负载均衡器启用可用区自动转移。

当您在一个区域的多个(通常是三个)可用区的负载均衡器上部署和运行 AWS 应用程序,并预先扩展以支持静态稳定性时, AWS 可以通过自动移位将流量转移开来快速恢复可用区中的客户应用程序。通过将资源流量转移到该区域的其他可用区, AWS 可以缩短由停电、可用区硬件或软件问题或其他损伤造成的潜在影响的持续时间和严重性。

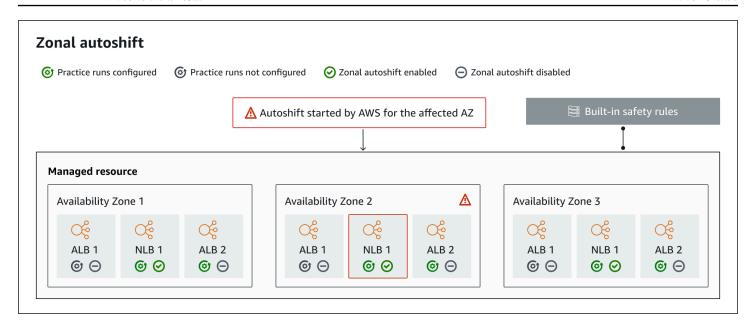
当 AWS 开始对负载平衡资源进行自动切换时,Route 53 ARC 会将负载均衡器资源的相应 IP 地址的 Amazon Route 53 运行状况检查设置为不健康,这样该资源的流量就不再定向到可用区。当 AWS 确定可用区已准备好让应用程序流量返回时,Route 53 ARC 会恢复 Route 53 的运行状况检查,并恢复原来的区域 IP 地址。

为资源启用区域自动移位时,还必须为该资源配置练习运行。 AWS 大约每周进行一次练习,持续 30 分钟,以帮助您确保有足够的容量来运行您的应用程序,而无需该区域的可用区。

与可用区转移一样,在某些特定情况下,可用区自动转移不会将流量从可用区转移出去。例如,如果可用区中的负载均衡器目标组没有任何实例,或者所有实例均运行不正常,则负载均衡器进入打开失败状态,您无法移出其中一个可用区。

要了解有关可用区自动转移的更多信息,请参阅 Amazon Route 53 应用程序恢复控制器中的可用区自动转移。

AWS 区域 区域自动换档的可用性


广告中目前提供区域自动换档。 AWS 区域

有关 Amazon Route 53 应用程序恢复控制器的区域支持和服务端点的详细信息,请参阅《Amazon Web Services 一般参考》中的 Amazon Route 53 应用程序恢复控制器端点和限额。

可用区自动转移组件

下图说明了自动切换将流量从可用区移开的示例。 AWS 当内部遥测数据显示存在可能影响客户的可用 区域受损时,会启动自动换档。

关于区域自动换档 43

以下是 Route 53 ARC 中可用区自动转移功能的组件。

可用区自动转移

可用区自动转移无需您执行任何操作即可将资源的流量转移出去。区域自动换档是 Route 53 ARC 中的一项功能,当内部遥测表明存在可能影响客户的可用区域受损时,就会 AWS 启动自动换档。请注意,在某些情况下,没有受到影响的资源可能会被转移出去。

练习运行

为资源启用区域自动移位时,还必须为该资源配置区域自动移位练习运行。 AWS 大约每周进行一次练习,持续大约 30 分钟。练习运行可确保您的应用程序可以在丢失一个可用区的情况下正常运行。在练习运行中,通过区域 AWS 转移将资源的流量从一个可用区转移出去,然后在练习运行结束时将流量转移回去。

练习运行配置

练习运行配置定义了封锁的日期和窗口(如果有),以及您在区域自动移位中为资源的练习运行指定的 CloudWatch警报。您可以随时编辑练习运行,添加或更改阻止日期或时段,或者更新练习运行的警报。

要启用可用区自动转移,您必须为资源准备好练习运行配置。您也可以删除练习运行。要删除资源的练习运行配置,必须禁用可用区自动转移。

可用区自动转移组件 44

练习运行警报

配置练习跑时,您可以根据资源和应用程序要求指定在中 CloudWatch创建的 CloudWatch 警报。如果您的应用程序受到练习运行的不利影响,则您指定的警报可以阻止练习运行启动,或可以停止正在进行的练习运行。

如果您指定的警报进入 ALARM 状态,Route 53 ARC 将结束练习运行的可用区转移,这样资源的流量就不会再从可用区转移出去。

您可以为练习运行指定两种类型的警报:一种是结果警报,用于在练习运行期间监控资源和应用程序的运行状况;另一种是阻止警报,您可以将其配置为防止练习运行启动或停止正在进行的练习运行。结果警报是必需的;阻止警报是可选的。

练习运行结果

Route 53 ARC 会报告每次练习运行的结果。以下是可能的练习运行结果:

- 待处理:练习运行的可用区转移处于活动状态(正在进行中)。目前还没有结果可以返回。
- 已成功:在练习运行期间,结果警报未进入 ALARM 状态,练习运行完成了整整 30 分钟的测试周期。
- 已中断:练习运行结束的原因并非结果警报进入 ALARM 状态。练习运行中断的原因可能有 多种。例如,由于为练习运行指定的阻止警报进入 ALARM 状态而结束的练习运行的结果为 INTERRUPTED。有关出现 INTERRUPTED 结果的原因的详细信息,请参阅练习运行结果。
- 已失败:在练习运行期间,结果警报进入了 ALARM 状态。

内置安全规则

Route 53 ARC 中内置的安全规则可防止一个资源一次发生多个流量转移。也就是说,只能针对资源执行一次客户发起的可用区转移、练习运行可用区转移或自动转移,才能主动将流量从可用区转移出去。例如,如果您对某个资源启动可用区转移,而该资源当前正在通过自动转移而转移出去,则优先进行可用区转移。有关更多信息,请参阅练习跑的结果。

资源标识符

要为其启用区域自动移位的资源的标识符,即该资源的亚马逊资源名称 (ARN)。

您只能为账户中位于 Route 53 ARC 支持的 AWS 服务中的资源启用区域自动切换。这些 AWS 服务中支持的资源由服务自动注册到 Route 53 ARC。 AWS

可用区自动转移组件 45

Note

您只能在关闭跨区域负载平衡的情况下为网络负载均衡器和应用程序负载均衡器配置区域自 动切换。

托管资源

AWS 服务会自动向 Route 53 ARC 注册资源,实现区域自动切换。已注册的资源是 Route 53 ARC 中的托管资源。

资源名称

Route 53 ARC 中托管资源的名称。

已应用状态

已应用状态指示资源的流量转移是否有效。配置可用区自动转移时,一个资源可以有多个活动的流 量转移,即练习运行可用区转移、客户发起的可用区转移或自动转移。但是,仅应用一个转移,也 就是说,即一次只有一个转移对资源有效。状态为 APPLIED 的转移可确定资源的应用程序流量已 转移出去的可用区,以及该流量转移何时结束。

分区自动换档的数据和控制平面

在规划故障转移和灾难恢复时,请考虑故障转移机制的弹性。我们建议您确保在故障转移期间所依赖的 机制具有高可用性,以便在灾难情况下可以根据需要使用它们。通常,应尽可能为机制使用数据平面函 数,以获得最大的可靠性和容错性。考虑到这一点,请务必了解服务的功能如何在控制面板和数据面板 之间划分,以及何时可以依赖服务的数据面板可预期的极高可靠性。

一般而言,控制面板允许您执行基本的管理功能,例如在服务中创建、更新和删除资源。数据面板提供 服务的核心功能。

有关数据平面、控制平面以及如何 AWS 构建服务以满足高可用性目标的更多信息,请参阅 Amazon. Builders Library 中的 "使用可用区的静态稳定性" 论文。

Amazon Route 53 应用程序恢复控制器中区域自动换档的定价

对于区域自动切换,当 AWS 确定存在可能对客户应用程序产生不利影响的潜在问题时,代表您将流量 从可用区域 AWS 转移出受支持资源。启用可用区自动转移不收取任何额外费用。

数据和控制平面 46 您只需为在 Amazon Route 53 应用程序恢复控制器中使用的内容付费。有关 Route 53 ARC 的详细定价信息和定价示例,请参阅亚马逊 Route 53 定价并向下滚动到亚马逊 Route 53 应用程序恢复控制器。

配置区域自动移位时的最佳实践

在 Amazon Route 53 应用程序恢复控制器中启用区域自动切换时,请注意以下最佳做法和注意事项。 区域自动换档包括两种类型的交通换档:自动换档和练习跑分区换档。

- 借 AWS 助自动切换,可在活动期间代表您转移可用区的应用程序资源流量,从而缩短恢复时间。
- 在练习跑中,Route 53 ARC 会代表你开始区域移动。区域转移将资源的流量从可用区域转移出来,然后按每周的节奏再次转移回来。练习运行可帮助您确保已为区域中的可用区纵向扩展了足够的容量,以便您的应用程序能够容忍丢失一个可用区。

对于自动换档和练习跑,需要记住几个最佳做法和注意事项。在启用可用区自动转移或为资源配置练习运行之前,请先阅读以下主题。

主题

- 限制客户端与您的终端保持连接的时间
- 预先扩展您的资源容量并测试流量的转移
- 注意资源类型和限制
- 为练习跑指定警报
- 评估练习跑的结果

限制客户端与您的终端保持连接的时间

当 Amazon Route 53 应用程序恢复控制器将流量从损坏中转移出去时,例如使用区域转移或区域自动切换,Route 53 ARC 用来转移应用程序流量的机制是 DNS 更新。DNS 更新会导致所有新连接都被定向到远离受损位置。但是,在客户端重新连接之前,具有已打开连接的客户端可能会继续向受损位置发出请求。为确保快速恢复,我们建议您限制客户端与您的终端保持连接的时间。

如果您使用 Application Load Balancer,则可以使用该keepalive选项来配置连接的持续时间。 我们建议您降低该keepalive值,使其与应用程序的恢复时间目标保持一致,例如 300 秒。在选 择keepalive时间时,请考虑此值是在更频繁地重新连接(这可能会影响延迟)和更快地将所有客 户端从受损的可用区或区域移出受损的可用区或区域之间进行权衡。

最佳实践 47

有关为 Application Load Balancer 设置keepalive选项的更多信息,请参阅《Application Load Balancer 用户指南》中的 HTTP 客户端保持连接时长。

预先扩展您的资源容量并测试流量的转移

当 AWS 将流量从一个可用区转移出来进行区域转移或自动切换时,重要的是剩余的可用区能够满足更高的资源请求速率。这种模式称为静态稳定性。有关更多信息,请参阅 Amazon Builders' Library 中的"使用可用区的静态稳定性"白皮书。

例如,如果您的应用程序需要 30 个实例来为其客户端提供服务,则应跨三个可用区预置 15 个实例,总共预置 45 个实例。通过这样做,当流量从一个可用区域 AWS 转移出去时(使用自动换档或在练习运行期间),仍然AWS 可以跨两个可用区为应用程序的客户端提供剩余的 30 个实例。

Route 53 ARC 中的区域自动切换功能可帮助您快速从可用区 AWS 的事件中恢复,前提是您的应用程序的资源已预先缩放,可以在失去一个可用区的情况下正常运行。在为资源启用可用区自动转移之前,请在 AWS 区域的所有已配置可用区中扩展您的资源容量。然后,对资源启动可用区转移,以测试当流量从可用区转移出去时,您的应用程序是否仍能正常运行。

使用可用区转移进行测试后,启用可用区自动转移并为应用程序资源配置练习运行。使用区域自动 转移进行定期练习运行可帮助您持续确保容量仍得到适当扩展。由于跨可用区有足够的容量,您的 应用程序可以在自动转移期间不间断地继续为客户端提供服务。

有关为资源启动可用区转移的更多信息,请参阅<u>Amazon Route 53 应用程序恢复控制器中的可用区</u> <u>转移</u>。

注意资源类型和限制

可用区自动转移支持将由可用区转移支持的所有资源的流量移出可用区。通常,支持已关闭跨区负载均衡的网络负载均衡器和应用程序负载均衡器。在一些特定的资源场景中,可用区自动转移不会将流量从可用区转移出来进行自动转移。

例如,如果可用区中的负载均衡器目标组没有任何实例,或者所有实例都运行状况不佳,则负载均衡器进入打开失败状态。如果在这种情况下为负载均衡器 AWS 启动自动切换,则自动切换不会更改负载均衡器使用的可用区,因为负载均衡器已经处于失效打开状态。这是预料之中的行为。 AWS 区域 如果所有可用区都无法打开(不正常),Autoshift 不会导致一个可用区运行状况不佳,也不会将流量转移到其他可用区。

第二种情况是,如果为作为加速器端点的 Application Load Balancer AWS 启动自动换档。 AWS Global Accelerator与可用区转移一样,Global Accelerator 中作为加速器端点的应用程序负载均衡器不支持自动转移。

最佳实践

要查看有关受支持资源的详细信息(包括所有需要注意的要求和例外情况),请参阅<u>可用区转移和</u>可用区自动转移支持的资源。

为练习跑指定警报

对于使用区域自动移位的练习跑,您至少要配置一个警报(结果警报)。或者,您也可以配置第二 个警报(屏蔽警报)。

在考虑为资源练习跑配置的 CloudWatch 警报时,请记住以下几点:

- 对于必需的结果警报,我们建议您将 CloudWatch 警报配置为在资源或应用程序的指标表明将流量从可用区转移出去会对性能产生不利影响时进入ALARM状态。例如,您可以确定资源的请求速率阈值,然后将警报配置为在超出该阈值时进入 ALARM 状态。您负责配置适当的警报,从而使AWS 结束练习运行并返回 FAILED 结果。
- 我们建议您遵循架构AWS 完善的框架,该框架建议您将关键绩效指标 (KPI) 作为警报来实现。 CloudWatch如果您这样做,则可以使用这些警报来创建复合警报以用作安全触发器,以防止在练 习运行可能导致应用程序未达到 KPI 要求的情况下启动练习运行。当警报不再处于 ALARM 状态 时,Route 53 ARC 将在下次为资源安排练习运行时启动练习运行。
- 对于练习运行阻止警报,如果您选择对其进行配置,则可以选择跟踪用于指示您不想启动练习运行的特定指标。
- 对于练习运行警报,您可以为每个警报指定亚马逊资源名称 (ARN),您必须先在 Amazon 中配置该名称。 CloudWatch您指定的 CloudWatch 警报可以是复合警报,这样您就可以为应用程序和资源添加多个指标和检查,从而触发警报进入ALARM状态。有关更多信息,请参阅 Amazon CloudWatch 用户指南中的合并警报。
- 确保您为练习跑指定的 CloudWatch 警报与您为其配置练习跑的资源位于同一区域。

评估练习跑的结果

Route 53 ARC 会报告每次练习运行的结果。练习跑后,评估结果,并确定是否需要采取行动。例如,您可能需要扩展容量或调整警报的配置。

以下是可能的练习运行结果:

- 已成功:在练习运行期间,结果警报未进入 ALARM 状态,练习运行完成了整整 30 分钟的测试周期。
- 已失败:在练习运行期间,结果警报进入了 ALARM 状态。
- 已中断:练习运行结束的原因并非结果警报进入 ALARM 状态。练习运行可能因各种原因而中断,包括以下几个原因:
 - 练习跑之所以结束,是因为在该地区 AWS 开始了自动换档 AWS 区域 或者该地区出现了警报情况。

最佳实践 49

- 练习运行之所以结束,是因为已删除资源的练习运行配置。
- 练习运行之所以结束,是因为已为可用区中的资源启动客户发起的可用区转移,而练习运行可用区转移已将流量从可用区中转移出去。
- 练习跑已结束,因为无法再访问为练习跑配置指定的 CloudWatch 警报。
- 练习运行之所以结束,是由于为练习运行指定的阻止警报进入 ALARM 状态。
- 练习运行因未知原因而结束。
- 待处理:练习运行处于活动状态(正在进行中)。目前还没有结果可以返回。

可用区自动转移 API 操作

下表列出了可用于可用区自动转移的 Route 53 ARC API 操作。有关使用区域自动移位 API 操作的示例 AWS CLI,请参阅。

有关如何在 AWS Command Line Interface中使用常见可用区自动转移 API 操作的示例,请参阅<u>使用</u> AWS CLI 带区域自动换档的示例。

操作	使用 Route 53 ARC 控制台	使用 Route 53 ARC API
创建练习运行配置	请参阅 <u>启用或禁用可用区自动</u> 转移。	见 <u>CreatePracticeRunC</u> <u>onfiguration</u>
删除练习运行配置	请参阅 配置、编辑或删除练习 运行配置。	见 <u>DeletePracticeRunC</u> <u>onfiguration</u>
列出自动转移	请参阅 <u>Amazon Route 53 应用</u> 程序恢复控制器中的可用区自 动转移。	请参阅 <u>ListAutoshifts</u>
列出要进行可用区自动转移的 资源	请参阅 <u>可用区转移和可用区自</u> 动转移支持的资源。	参见 <u>ListManaged资源</u>
获取要进行可用区自动转移的 资源	请参阅 <u>可用区转移和可用区自</u> 动转移支持的资源。	参见 <u>GetManaged资源</u>
编辑练习运行配置	请参阅 配置、编辑或删除练习 运行配置。	见 <u>UpdatePracticeRunC</u> <u>onfiguration</u>

API 操作 50

操作	使用 Route 53 ARC 控制台	使用 Route 53 ARC API
启用或禁用可用区自动转移	请参阅 <u>启用或禁用可用区自动</u> 转移。	见 <u>UpdateZonalAutoshi</u> ftConfiguration

使用 AWS CLI 带区域自动换档的示例

本节介绍使用区域自动移位的简单应用示例,使用使用 API 操作在 Amazon Route 53 应用程序恢复控制器中使用区域自动移位功能。 AWS Command Line Interface 这些示例旨在帮助您基本了解如何使用 CLI 使用区域自动移位。

区域自动换档是 Route 53 ARC 中的一项功能。使用 zonal autoshift,您可以授权 AWS 在活动期间代表您转移可用区域中支持的应用程序资源流量,以帮助缩短恢复时间。区域自动换档包括练习跑,它还可以将流量从可用区转移出去,以帮助持续验证自动换档对您的应用程序是否安全。

可用区自动转移目前支持关闭了跨可用区负载均衡的网络负载均衡器和应用程序负载均衡器。

有关更多信息,请参阅 可用区转移和可用区自动转移支持的资源。

本节提供了以下示例,以阐明如何开始使用和处理可用区自动转移:

- 为资源创建练习运行配置。
- 对资源启用和禁用自动转移。
- 通过取消由正在进行的练习运行启动的可用区转移来结束该练习运行。
- 通过对资源禁用可用区自动转移特征来结束正在进行的自动转移。
- 编辑资源的练习运行配置,以更改指定的警报或阻止日期或时段。
- 为资源删除练习运行配置。

有关使用的更多信息 AWS CLI,请参阅《AWS CLI 命令参考》。有关可用区自动转移 API 操作的列表和指向更多信息的链接,请参阅可用区自动转移 API 操作。

创建练习运行配置

在能够为资源启用可用区自动转移之前,必须为该资源创建练习运行配置,以便为所需的练习运行选择选项。您可以通过使用 create-practice-run-configuration 命令,借助 CLI 为资源创建练习运行配置。

在为资源创建练习运行配置时,请注意以下几点:

- 此时,唯一受支持的警报类型为 CLOUDWATCH。
- 您必须使用与您的资源部署相同的 AWS 区域 警报。
- 必须指定结果警报。可以选择指定阻止警报。
- 可选择指定阻止日期或阻止时段。

您可以通过使用 create-practice-run-configuration 命令,借助 CLI 创建练习运行配置。

例如,要为资源创建练习运行配置,可使用如下命令:

```
{
   "arn": "arn:aws:elasticloadbalancing:us-west-2:111122223333:ExampleALB123456890",
   "name": "zonal-shift-elb"
   "zonalAutoshiftStatus": "DISABLED",
   "practiceRunConfiguration": {
       "blockingAlarms": [
               "type": "CLOUDWATCH",
               "alarmIdentifier": "arn:aws:cloudwatch:us-west-2:111122223333:alarm:us-
west-2-BlockWhenALARM"
           }
       "outcomeAlarms": [
           {
               "type": "CLOUDWATCH",
               "alarmIdentifier": "arn:aws:cloudwatch:us-west-2:111122223333:alarm:us-
west-2-MyAppHealthAlarm"
       ],
```

```
"blockedWindows": [
        "Mon:10:00-Mon:10:30"
],
        "blockedDates": [
            "2023-12-01"
]
```

启用或禁用自动转移

您可以通过使用 CLI 更新可用区自动转移状态来对资源启用或禁用自动转移。要更改可用区自动转移状态,请使用 update-zonal-autoshift-configuration 命令。

例如,要对资源启用自动转移,请使用如下命令:

取消正在进行的自动转移

要对资源取消正在进行的自动转移,请禁用可用区自动转移特征。这与您通常用于禁用可用区自动转移的命令相同,因此,当您禁用可用区自动转移来取消正在进行的自动转移时,资源也不会受到后续自动转移的影响。您可以随时更新可用区自动转移,以再次启用它。

请注意,您可以对资源禁用可用区自动转移,而无需删除资源的练习运行配置。

要使用 CLI 取消自动转移,请使用 update-zonal-autoshift-configuration 命令禁用可用区自动转移。例如,要对资源结束自动转移,请使用如下命令:

--zonal-autoshift-status="DISABLED"

```
{
    "resourceIdentifier": "arn:aws:elasticloadbalancing:us-
west-2:111122223333:ExampleALB123456890",
    "zonalAutoshiftStatus": "DISABLED"
}
```

取消正在进行的练习运行

您可以使用 CLI 来取消正在进行的练习运行,方法为:取消练习运行为资源启动的可用区转移。要取消练习运行,请使用 cancel-zonal-shift 命令。

例如,要对资源取消练习运行,请使用如下命令:

```
aws arc-zonal-shift cancel-zonal-shift \
    --zonal-shift-id="="arn:aws:testservice::111122223333:ExampleALB123456890"

{
        "zonalShiftId": "2222222-3333-444-1111",
        "resourceIdentifier": "arn:aws:testservice::111122223333:ExampleALB123456890",
        "awayFrom": "usw2-az1",
        "expiryTime": 2024-11-15T10:35:42+00:00,
        "startTime": 2024-11-15T09:35:42+00:00,
        "status": "CANCELED",
        "comment": "Practice Run Started"
}
```

编辑练习运行配置

您可以使用 CLI 编辑资源的练习运行配置,以更新不同的配置选项,例如,当 Route 53 ARC 无法启动练习运行时,更改练习运行的警报或更新阻止日期或阻止时段。要编辑练习运行配置,请使用update-practice-run-configuration 命令。

在为资源编辑练习运行配置时,请注意以下几点:

- 此时,唯一受支持的警报类型为 CLOUDWATCH。
- 您必须使用与您的资源部署相同的 AWS 区域 警报。
- 必须指定结果警报。可以选择指定阻止警报。
- 可选择指定阻止日期或阻止时段。

• 您指定的阻止日期或阻止时段将替换任何现有值。

例如,要编辑资源的练习运行配置以指定新的阻止日期,请使用如下命令:

```
{
   "arn": "arn:aws:elasticloadbalancing:us-west-2:111122223333:ExampleALB123456890",
   "name": "zonal-shift-elb"
   "zonalAutoshiftStatus": "DISABLED",
   "practiceRunConfiguration": {
       "blockingAlarms": [
               "type": "CLOUDWATCH",
               "alarmIdentifier": "arn:aws:cloudwatch:us-west-2:111122223333:alarm:us-
west-2-BlockWhenALARM"
       "outcomeAlarms": [
           {
               "type": "CLOUDWATCH",
               "alarmIdentifier": "arn:aws:cloudwatch:us-west-2:111122223333:alarm:us-
west-2-MyAppHealthAlarm"
       ],
       "blockedWindows": [
           "Mon:10:00-Mon:10:30"
       ],
       "blockedDates": [
           "2024-03-01"
       ]
}
```

删除练习运行配置

您可以删除资源的练习运行配置,但必须先对该资源禁用可用区自动转移。资源需要具有练习运行配置,才能启用可用区自动转移。定期练习运行有助于您确保应用程序可以在没有一个可用区的情况下正常运行。

要使用 CLI 删除练习运行配置,请先使用 update-zonal-autoshift 命令禁用可用区自动转移(如果需要)。然后,可使用 delete-practice-run-configuration 命令删除练习运行配置。

首先,使用如下命令对资源禁用可用区自动转移:

然后,使用如下命令删除练习运行配置:

启用和使用分区自动换档

本节提供了在 Amazon Route 53 应用程序恢复控制器中使用区域自动换档的程序,包括启用和禁用区域自动切换、配置练习跑以及取消正在进行的练习运行。

启用或禁用可用区自动转移

本节中的步骤说明如何在 Amazon Route 53 应用程序恢复控制器控制台上启用或禁用可用区自动转移。要以编程方式使用可用区转移,请参阅可用区转移和可用区自动转移 API 参考指南。

启用区域自动切换后,您授权 AWS 在活动期间代表您转移可用区的应用程序资源流量,以帮助缩短恢复时间。

启用和使用分区自动换档 56

启用或禁用可用区自动转移

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 在多可用区下,选择可用区自动转移。
- 3. 在资源可用区自动转移配置下,选择资源。
- 4. 在操作菜单中,选择启用可用区自动转移或禁用可用区自动转移,然后按照步骤完成更新。

如果资源没有练习运行配置,则启用可用区自动转移不可用。要配置练习运行配置并启用可用区自动转移,请选择配置可用区自动转移。

配置、编辑或删除练习运行配置

本节中的步骤说明了如何在 Amazon Route 53 应用程序恢复控制器控制台上编辑或删除练习运行配置。要以编程方式使用可用区转移(包括对练习运行配置进行更改),请参阅<u>可用区转移和可用区自动</u>转移 API 参考指南。

如果您在控制台中删除练习运行配置,则会禁用可用区自动转移。在可以通过 API 操作删除练习运行 配置之前,必须禁用可用区自动转移。您可以在不启用可用区自动转移的情况下配置练习运行。但是, 要为资源启用可用区自动转移,您需要为该资源配置练习运行。

配置练习运行

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 在多可用区下,选择可用区自动转移。
- 3. 选择配置可用区自动转移。
- 4. 选择要为可用区自动转移配置的资源。
- 5. 如果您不想 AWS 在发生事件时为资源启动自动移位,请选择禁用区域自动移位。 AWS 您可以选择继续使用向导来配置练习运行配置,而不启用自动转移。
- 6. 为资源选择练习运行选项。对于警报,您可以执行以下操作:
 - (必需)指定结果警报以监控该资源的练习运行。
 - (可选)为该资源的练习运行指定阻止警报。

有关更多信息,请参阅 配置区域自动移位时的最佳实践中的为练习运行指定的警报部分。

启用和使用分区自动换档 57

- 7. 可选择指定阻止日期和阻止时段。选择阻止 Route 53 ARC 为此资源启动练习运行的日期或时段 (日期和时间)。所有日期和时间均采用 UTC 时间。
- 8. 选中相应复选框,确认您已阅读确认说明。
- 9. 选择创建。

编辑练习运行配置

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 在多可用区下,选择可用区自动转移。
- 3. 在资源可用区自动转移配置下,选择资源。
- 4. 在操作菜单中,选择编辑练习运行配置。
- 5. 对练习运行配置进行更改,以执行以下一项或多项操作:
 - 对于警报,您可以执行以下操作:
 - 对于阻止警报,您可以添加警报、删除警报或指定其它阻止警报。
 - 对于监控练习跑的结果警报,您可以指定不同的 CloudWatch 警报来使用。结果警报是必需的,因此您无法删除结果警报。
 - 对于阻止日期和阻止时段,您可以添加新的日期或时间,也可以删除或更新现有的日期或时间。
 所有日期和时间均采用 UTC 时间。
- 6. 选择保存。

删除练习运行配置

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 在多可用区下,选择可用区自动转移。
- 3. 在资源可用区自动转移配置下,选择资源。
- 4. 在操作菜单中,选择删除练习运行配置。
- 5. 在确认模态对话框中,键入 Delete,然后选择删除。

请注意,在控制台中删除练习运行配置也会禁用资源的可用区自动转移。可用区自动转移需要为资 源配置练习运行。

启用和使用分区自动换档 58

取消练习运行可用区转移

本节中的步骤说明了如何在 Amazon Route 53 应用程序恢复控制器控制台上取消可用区转移。要以编程方式使用可用区转移和可用区自动转移,请参阅可用区转移和可用区自动转移 API 参考指南。

您可以取消自己启动的区域偏移。您也可以取消为区域自动移位练习跑的资源而 AWS 开始的区域移动。

取消练习运行可用区转移

- 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 在多可用区下,选择可用区转移。
- 3. 选择要取消的可用区转移,然后选择取消可用区转移。
- 4. 在确认模态对话框中,选择确认。

在 Amazon Route 53 应用程序恢复控制器中记录和监控区域自动换档

您可以使用 AWS CloudTrail 和 Amazon EventBridge 来监控 Amazon Route 53 应用程序恢复控制器中的区域自动移动,以分析模式并帮助解决问题。

主题

- 使用记录区域自动移位 API 调用 AWS CloudTrail
- 在 Amazon 上使用区域自动换档 EventBridge

使用记录区域自动移位 API 调用 AWS CloudTrail

适用于 Amazon Route 53 的区域自动切换应用程序恢复控制器与 AWS CloudTrail一项服务集成,该服务提供用户、角色或 AWS 服务在 Route 53 ARC 中采取的操作的记录。 CloudTrail 将所有用于区域偏移的 API 调用捕获为事件。捕获的呼叫包括来自 Route 53 ARC 控制台的调用以及对用于区域转移的 Route 53 ARC API 操作的代码调用。

如果您创建跟踪,则可以将 CloudTrail 事件持续传输到 Amazon S3 存储桶,包括用于区域转移的事件。如果您未配置跟踪,您仍然可以在 CloudTrail 控制台的 "事件历史记录" 中查看最新的事件。

使用收集的信息 CloudTrail,您可以确定向 Route 53 ARC 发出的区域转移请求、发出请求的 IP 地址、谁提出了请求、何时发出请求以及其他详细信息。

要了解更多信息 CloudTrail,请参阅《AWS CloudTrail 用户指南》。

区域自动换档信息在 CloudTrail

CloudTrail 在您创建账户 AWS 账户 时已在您的账户上启用。当活动发生在 Route 53 ARC 中进行区域自动移位时,该活动将与其他 AWS 服务 CloudTrail 事件一起记录在事件历史记录中。您可以在中查看、搜索和下载最近发生的事件 AWS 账户。有关更多信息,请参阅使用 CloudTrail 事件历史记录。

要持续记录您的事件 AWS 账户,包括 Route 53 ARC 中区域自动换档的事件,请创建一条跟踪。跟踪允许 CloudTrail 将日志文件传输到 Amazon S3 存储桶。预设情况下,在控制台中创建跟踪记录时,此跟踪记录应用于所有 AWS 区域。跟踪记录 AWS 分区中所有区域的事件,并将日志文件传送到您指定的 Amazon S3 存储桶。此外,您可以配置其他 AWS 服务,以进一步分析和处理 CloudTrail 日志中收集的事件数据。有关更多信息,请参阅下列内容:

- 创建跟踪记录概述
- CloudTrail 支持的服务和集成
- 配置 Amazon SNS 通知 CloudTrail
- 接收来自多个地区的 CloudTrail 日志文件和接收来自多个账户的 CloudTrail 日志文件

所有 Route 53 ARC 操作都由 Amazon Route 53 应用程序恢复控制器的路由控制 API 参考指南记录 CloudTrail 并记录在案。例如,调用StartZonalShift和ListManagedResources操作会在CloudTrail 日志文件中生成条目。

每个事件或日记账条目都包含有关生成请求的人员信息。身份信息有助于您确定以下内容:

- 请求是使用根证书还是 AWS Identity and Access Management (IAM) 用户凭证发出。
- 请求是使用角色还是联合用户的临时安全凭证发出的。
- 请求是否由其他 AWS 服务发出。

有关更多信息,请参阅CloudTrail 用户身份元素。

在事件历史记录中查看 Route 53 ARC 事件

CloudTrail 允许您在事件历史记录中查看最近的事件。有关更多信息,请参阅《AWS CloudTrail 用户 指南》中的 "使用 CloudTrail 事件历史记录"。

了解区域自动移位日志文件条目

跟踪是一种配置,允许将事件作为日志文件传输到您指定的 Amazon S3 存储桶。 CloudTrail 日志文件包含一个或多个日志条目。事件代表来自任何来源的单个请求,包括有关请求的操作、操作的日期和时间、请求参数等的信息。 CloudTrail 日志文件不是公共 API 调用的有序堆栈跟踪,因此它们不会按任何特定的顺序出现。

以下示例显示了一个 CloudTrail 日志条目,该条目演示了区域自动移位的ListManagedResources操作。

```
{
      "eventVersion": "1.08",
      "userIdentity": {
        "type": "AssumedRole",
        "principalId": "A1B2C3D4E5F6G7EXAMPLE",
        "arn": "arn:aws:iam::111122223333:role/admin",
        "accountId": "111122223333",
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
        "sessionContext": {
          "sessionIssuer": {
            "type": "Role",
            "principalId": "AROA33L3W36EXAMPLE",
            "arn": "arn:aws:iam::111122223333:role/admin",
            "accountId": "111122223333",
            "userName": "EXAMPLENAME"
          },
          "webIdFederationData": {},
          "attributes": {
            "creationDate": "2022-11-14T16:01:51Z",
            "mfaAuthenticated": "false"
          }
        }
      },
      "eventTime": "2022-11-14T16:14:41Z",
      "eventSource": "arc-zonal-shift.amazonaws.com",
      "eventName": "ListManagedResources",
      "awsRegion": "us-west-2",
      "sourceIPAddress": "192.0.2.50",
      "userAgent": "Boto3/1.17.101 Python/3.8.10 Linux/4.14.231-180.360.amzn2.x86_64
 exec-env/AWS_Lambda_python3.8 Botocore/1.20.102",
      "requestParameters": null,
      "responseElements": null,
      "requestID": "VGXG4ZUE7UZTVCMTJGIAF_EXAMPLE",
```

```
"eventID": "4b5c42df-1174-46c8-be99-d67_EXAMPLE",
    "readOnly": true,
    "eventType": "AwsApiCall",
    "managementEvent": true,
    "recipientAccountId": "111122223333"
    "eventCategory": "Management"
    }
}
```

在 Amazon 上使用区域自动换档 EventBridge

使用 Amazon EventBridge,您可以设置事件驱动的规则,以监控您的区域自动转移资源并启动使用其他服务的目标操作。 AWS 例如,您可以设置发送电子邮件通知的规则,方法是在区域自动移位练习开始时向 Amazon SNS 主题发送信号。

您可以在 Amazon 中创建规则 EventBridge 来处理区域自动移动。区域自动移位事件的事件指定了练习跑自动换档的状态信息,例如,练习跑正在进行时。

要捕获您感兴趣的特定区域自动移位事件,请定义 EventBridge 可用于检测事件的特定事件模式。事件模式与它们匹配的事件具有相同的结构。模式引用了您要匹配的字段,并提供您所查找的值。

尽最大努力发出事件。 EventBridge 在正常运营情况下,它们几乎实时地从 Route 53 ARC 运送到。但是,可能会出现延迟或阻止事件交付的情况。

有关 EventBridge 规则如何处理事件模式的信息,请参阅<u>中的事件和事件模式 EventBridge</u>。

使用以下命令监控区域自动移位资源 EventBridge

使用 EventBridge,您可以创建规则,定义在 Route 53 ARC 为其资源发出事件时要采取的操作。例如,您可以创建一条规则,在区域自动移位练习开始时发送电子邮件。

要在控制台中键入或复制并粘贴事件模式,请选择该选项以在 EventBridge 控制台中使用 Enter my ow n 选项。<u>为了帮助您确定可能对您有用的事件模式,本主题包括区域自动移位事件匹配模式和区域自动</u>移位事件的示例,供您使用。

要为资源事件创建规则

- 1. 打开亚马逊 EventBridge 控制台,网址为 https://console.aws.amazon.com/events/。
- 2. 选择您 AWS 区域 要在其中创建规则的区域,即您有兴趣观看其赛事的区域。
- 3. 选择 Create rule (创建规则)。
- 4. 输入规则的 Name (名称) 和"Description (描述)" (可选)。

- 5. 对于事件总线,保留默认值,即默认。
- 6. 选择下一步。
- 7. 对于构建事件模式步骤,对于事件源,保留默认值,即 AWS 事件。
- 8. 在示例事件下,选择输入我自己的。
- 9. 对于示例事件,键入或复制并粘贴事件模式。

区域自动移位事件模式示例

事件模式与它们匹配的事件具有相同的结构。模式引用了您要匹配的字段,并提供您所查找的值。

您可以将此部分中的事件模式复制并粘贴 EventBridge 到中,以创建可用于监控区域自动移位操作和资源的规则。

在为可用区自动转移事件创建事件模式时,可以为 detail-type 指定以下任一选项:

- Autoshift In Progress
- Autoshift Completed
- Practice Run Started
- Practice Run Succeeded
- Practice Run Interrupted
- Practice Run Failed

当练习运行中断时,可参阅 additional Failure Info 字段,以详细了解导致中断的原因。

• 从已开始练习跑的区域自动切换中选择所有赛事。。

```
{
    "source": [
        "aws.arc-zonal-shift"
],
    "detail-type": [
        "Practice Run Started"
]
}
```

从区域自动移位中选择练习跑失败的所有赛事。。

```
{
```

区域自动移位事件示例

以下是区域自动移位操作的示例事件:

```
{
    "version": "0",
    "id": "05d4d2d5-9c76-bfea-72d2-d4614802adb4",
    "detail-type": "Practice Run Interrupted",
    "source": "aws.arc-zonal-shift",
    "account": "111122223333",
    "time": "2023-11-16T23:38:14Z",
    "region": "us-east-1",
    "resources": [
        "TEST-EXAMPLE-2023-11-16-23-28-11-5"
    ],
    "detail": {
        "version": "0.0.1",
        "data": {
            "additionalFailureInfo": "Practice run interrupted. The blocking alarm
 entered ALARM state."
        },
        "metadata": {
            "awayFrom": "use1-az2"
        }
    }
}
```

指定要用作目标的 CloudWatch 日志组

创建 EventBridge 规则时,必须指定将与规则匹配的事件发送到的目标。有关可用目标的列表 EventBridge,请参阅 EventBridge 控制台中的可用目标。您可以添加到 EventBridge 规则的目标之一是 Amazon CloudWatch 日志组。本节介绍将 CloudWatch 日志组添加为目标的要求,并提供了在创建规则时添加日志组的过程。

要将 CloudWatch 日志组添加为目标,可以执行以下操作之一:

- 创建新的日志组
- 选择现有的日志组

如果您在创建规则时使用控制台指定了新的日志组,则 EventBridge 会自动为您创建该日志组。确保用作 EventBridge 规则目标的日志组以开头/aws/events。如果要选择现有的日志组,请注意,只有以开头的日志组才/aws/events会作为选项出现在下拉菜单中。有关更多信息,请参阅 Amazon CloudWatch 用户指南中的创建新日志组。

如果您使用控制台之外的 CloudWatch 操作创建或使用 CloudWatch 日志组作为目标,请确保正确设置权限。如果您使用控制台向 EventBridge 规则添加日志组,则该日志组的基于资源的策略会自动更新。但是,如果您使用 AWS Command Line Interface 或 S AWS DK 来指定日志组,则必须更新该日志组的基于资源的策略。以下示例策略说明了您必须在基于资源的策略中为日志组定义的权限:

```
{
  "Statement": [
    {
      "Action": [
        "logs:CreateLogStream",
        "logs:PutLogEvents"
      "Effect": "Allow",
      "Principal": {
        "Service": [
          "events.amazonaws.com",
          "delivery.logs.amazonaws.com"
        ]
      "Resource": "arn:aws:logs:region:account:log-group:/aws/events/*:*",
      "Sid": "TrustEventsToStoreLogEvent"
    }
  ],
  "Version": "2012-10-17"
}
```

您无法使用控制台为日志组配置基于资源的策略。要向基于资源的策略添加所需的权限,请使用CloudWatch <u>PutResourcePolicy</u>API 操作。然后,您可以使用 <u>describe-resource-policies</u>CLI 命令检查您的策略是否正确应用。

为资源事件创建规则并指定 CloudWatch 日志组目标

- 1. 打开亚马逊 EventBridge 控制台,网址为 https://console.aws.amazon.com/events/。
- 2. 选择 AWS 区域 要在其中创建规则的。
- 3. 选择 "创建规则",然后输入有关该规则的任何信息,例如事件模式或计划详细信息。 有关为 Route 53 ARC 创建 EventBridge 规则的更多信息,请参阅本主题前面的部分。
- 4. 在"选择目标"页面上,选择CloudWatch作为您的目标。
- 5. 从下拉菜单中选择一个 CloudWatch 日志组。

用于区域自动换档的 Identity and Access Management

AWS Identity and Access Management (IAM) AWS 服务 可帮助管理员安全地控制对 AWS 资源的访问权限。IAM 管理员控制可以通过身份验证(登录)和授权(具有权限)使用 Route 53 ARC 资源的人员。您可以使用 IAM AWS 服务 ,无需支付额外费用。

内容

- Amazon Route 53 应用程序恢复控制器中的区域自动切换如何与 IAM 配合使用
- 基于身份的区域自动换档策略示例
- 在 Route 53 ARC 中使用服务关联角色进行分区自动换档
- AWS Amazon Route 53 应用程序恢复控制器中区域自动切换的托管策略

Amazon Route 53 应用程序恢复控制器中的区域自动切换如何与 IAM 配合使用

在使用 IAM 在 Amazon Route 53 应用程序恢复控制器中管理对区域自动移位的访问权限之前,请先了解哪些可用于区域自动移位的 IAM 功能。

您可以在 Amazon Route 53 应用程序恢复控制器中使用区域自动移位的 IAM 功能

IAM 功能	区域自动换档支持
基于身份的策略	是
基于资源的策略	否
策略操作	是

IAM 功能	区域自动换档支持
<u>策略资源</u>	是
策略条件键	是
ACL	否
ABAC(策略中的标签)	部分
<u>临时凭证</u>	是
主体权限	是
服务角色	否
服务相关角色	是

要全面了解 AWS 服务如何与大多数 IAM 功能配合使用,请参阅 IAM 用户指南中的与 IAM 配合使用的 AWS 服务。

Route 53 ARC 基于身份的策略

支持基于身份的策略	是
-----------	---

基于身份的策略是可附加到身份(如 IAM 用户、用户组或角色)的 JSON 权限策略文档。这些策略控制用户和角色可在何种条件下对哪些资源执行哪些操作。要了解如何创建基于身份的策略,请参阅 IAM 用户指南中的创建 IAM 策略。

通过使用 IAM 基于身份的策略,您可以指定允许或拒绝的操作和资源以及允许或拒绝操作的条件。您无法在基于身份的策略中指定主体,因为它适用于其附加的用户或角色。要了解可在 JSON 策略中使用的所有元素,请参阅《IAM 用户指南》中的 IAM JSON 策略元素引用。

要查看 Route 53 ARC 基于身份的策略的示例,请参阅Amazon Route 53 应用程序恢复控制器中基于身份的策略示例。

Route 53 ARC 内基于资源的策略

支持基于资源的策略

否

基于资源的策略是附加到资源的 JSON 策略文档。基于资源的策略的示例包括 IAM 角色信任策略和 Simple Storage Service(Amazon S3)存储桶策略。在支持基于资源的策略的服务中,服务管理员可以使用它们来控制对特定资源的访问。

Route 53 ARC 策略操作

支持策略操作

是

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体 可以对什么资源 执行操作,以及在什么 条件 下执行。

JSON 策略的 Action 元素描述可用于在策略中允许或拒绝访问的操作。策略操作通常与关联的 AWS API 操作同名。有一些例外情况,例如没有匹配 API 操作的仅限权限 操作。还有一些操作需要在策略中执行多个操作。这些附加操作称为相关操作。

在策略中包含操作以授予执行关联操作的权限。

要查看区域自动移位的 Route 53 ARC 操作列表,请参阅《服务授权参考》中的 Amazon Route 53 区域移位定义的操作。

Route 53 ARC 中用于区域自动移位的策略操作在操作前使用以下前缀:

```
arc-zonal-shift
```

要在单个语句中指定多项操作,请使用逗号将它们隔开。例如,以下内容:

```
"Action": [
    "arc-zonal-shift:action1",
    "arc-zonal-shift:action2"
    ]
```

您也可以使用通配符(*)指定多个操作。例如,要指定以单词 Describe 开头的所有操作,包括以下操作:

"Action": "arc-zonal-shift:Describe*"

要查看 Route 53 ARC 基于身份的区域自动移位策略示例,请参阅。<u>基于身份的区域自动换档策略示例</u>
Route 53 ARC 中区域自动换档的政策资源

支持策略资源

是

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体 可以对什么资源 执行操作,以及在什么条件 下执行。

Resource JSON 策略元素指定要向其应用操作的一个或多个对象。语句必须包含 Resource 或 NotResource 元素。作为最佳实践,请使用其 <u>Amazon 资源名称 (ARN)</u>指定资源。对于支持特定资源类型(称为资源级权限)的操作,您可以执行此操作。

对于不支持资源级权限的操作(如列出操作),请使用通配符 (*) 指示语句应用于所有资源。

"Resource": "*"

要查看资源类型及其 ARN 的列表,以及您可以使用每种资源的 ARN 指定的操作,请参阅《服务授权参考》中的以下主题:

• Amazon Route 53 定义的操作——区域移动

要查看可与条件键配合使用的操作和资源,请参阅《服务授权参考》中的以下主题:

• 由 Amazon Route 53 定义的条件键——区域移动

要查看 Route 53 ARC 基于身份的区域自动移位策略示例,请参阅。<u>基于身份的区域自动换档策略示例</u>
Route 53 ARC 中区域自动换档的策略条件密钥

支持特定于服务的策略条件键

是

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体可以对什么资源执行操作,以及在什么条件下执行。

在 Condition 元素(或 Condition 块)中,可以指定语句生效的条件。Condition 元素是可选的。您可以创建使用条件运算符(例如,等于或小于)的条件表达式,以使策略中的条件与请求中的值相匹配。

如果您在一个语句中指定多个 Condition 元素,或在单个 Condition 元素中指定多个键,则 AWS 使用逻辑 AND 运算评估它们。如果您为单个条件键指定多个值,则使用逻辑0R运算来 AWS 评估条件。在授予语句的权限之前必须满足所有的条件。

在指定条件时,您也可以使用占位符变量。例如,只有在使用 IAM 用户名标记 IAM 用户时,您才能为 其授予访问资源的权限。有关更多信息,请参阅 IAM 用户指南中的 IAM 策略元素:变量和标签。

AWS 支持全局条件密钥和特定于服务的条件密钥。要查看所有 AWS 全局条件键,请参阅 IAM 用户指南中的AWS 全局条件上下文密钥。

要查看区域自动移位的 Route 53 ARC 条件键列表,请参阅《服务授权参考》中的以下主题:

• Amazon Route 53 可用区转移的条件键

要查看可与条件键配合使用的操作和资源,请参阅《服务授权参考》中的以下主题:

Amazon Route 53 可用区转移定义的操作

要查看 Route 53 ARC 基于身份的区域自动移位策略示例,请参阅。基于身份的区域自动换档策略示例 Route 53 ARC 中的访问控制列表 (ACL)

支持 ACL 否

访问控制列表(ACL)控制哪些主体(账户成员、用户或角色)有权访问资源。ACL 与基于资源的策略类似,尽管它们不使用 JSON 策略文档格式。

Route 53 ARC 中基于属性的访问权限控制 (ABAC)

支持 ABAC(策略中的标签) 部分

基于属性的访问权限控制(ABAC)是一种授权策略,该策略基于属性来定义权限。在中 AWS,这些属性称为标签。您可以向 IAM 实体(用户或角色)和许多 AWS 资源附加标签。标记实体和资源是

ABAC 的第一步。然后设计 ABAC 策略,以在主体的标签与他们尝试访问的资源标签匹配时允许操作。

ABAC 在快速增长的环境中非常有用,并在策略管理变得繁琐的情况下可以提供帮助。

要基于标签控制访问,您需要使用 aws:ResourceTag/key-name、aws:RequestTag/key-name或 aws:TagKeys 条件键在策略的条件元素中提供标签信息。

如果某个服务对于每种资源类型都支持所有这三个条件键,则对于该服务,该值为 Yes(是)。如果某个服务仅对于部分资源类型支持所有这三个条件键,则该值为 Partial(部分)。

有关 ABAC 的更多信息,请参阅《IAM 用户指南》中的<u>什么是 ABAC?</u>。要查看设置 ABAC 步骤的教程,请参阅《IAM 用户指南》中的使用基于属性的访问权限控制(ABAC)。

Route 53 ARC 中的区域自动换档包括对 ABAC 的以下部分支持:

对于在 Route 53 ARC 中注册的托管资源,区域自动移位支持 ABAC 以进行区域移动。有关网络负载均衡器和应用程序负载均衡器托管资源的 ABAC 的更多信息,请参阅《Elastic Load Balancing 用户指南》之 Elastic Load Balancing 中的 ABAC。

在 Route 53 ARC 中使用临时凭证

支持临时凭证

是

当你使用临时证书登录时,有些 AWS 服务 不起作用。有关更多信息,包括哪些 AWS 服务 适用于临时证书,请参阅 IAM 用户指南中的AWS 服务 与 IA M 配合使用的信息。

如果您使用除用户名和密码之外的任何方法登录,则 AWS Management Console 使用的是临时证书。例如,当您 AWS 使用公司的单点登录 (SSO) 链接进行访问时,该过程会自动创建临时证书。当您以用户身份登录控制台,然后切换角色时,您还会自动创建临时凭证。有关切换角色的更多信息,请参阅《IAM 用户指南》中的 切换到角色(控制台)。

您可以使用 AWS CLI 或 AWS API 手动创建临时证书。然后,您可以使用这些临时证书进行访问 AWS。 AWS 建议您动态生成临时证书,而不是使用长期访问密钥。有关更多信息,请参阅 IAM 中的临时安全凭证。

Route 53 ARC 的跨服务主体权限

支持转发访问会话 (FAS)

是

当您使用 IAM 实体(用户或角色)在中执行操作时 AWS,您被视为委托人。策略向主体授予权限。使用某些服务时,您可能会执行一个操作,此操作然后在不同服务中触发另一个操作。在这种情况下,您必须具有执行这两个操作的权限。

要查看某项操作是否需要策略中的其他相关操作,请参阅《服务授权参考》中的以下主题:

Amazon Route 53 可用区转移

Route 53 ARC 服务角色

支持服务角色

否

服务角色是由一项服务担任、代表您执行操作的 <u>IAM 角色</u>。IAM 管理员可以在 IAM 中创建、修改和删除服务角色。有关更多信息,请参阅《IAM 用户指南》中的创建向 AWS 服务委派权限的角色。

Route 53 ARC 服务相关角色

支持服务相关角色

분

服务相关角色是一种链接到的服务角色。 AWS 服务服务可以代入代表您执行操作的角色。服务相关 角色出现在您的中 AWS 账户 ,并且归服务所有。IAM 管理员可以查看但不能编辑服务相关角色的权 限。

有关创建或管理 Route 53 ARC 服务相关角色的详细信息,请参阅在 Route 53 ARC 中使用服务关联角色进行分区自动换档。

有关创建或管理服务相关角色的详细信息,请参阅<u>能够与 IAM 搭配使用的AWS 服务</u>。在表中查找服务相关角色列中包含 Yes 的表。选择是链接以查看该服务的服务相关角色文档。

基于身份的区域自动换档策略示例

默认情况下,用户和角色没有创建或修改 Route 53 ARC 资源的权限。他们也无法使用 AWS Management Console、 AWS Command Line Interface (AWS CLI) 或 AWS API 执行任务。要授予用户对所需资源执行操作的权限,IAM 管理员可以创建 IAM 策略。管理员随后可以向角色添加 IAM 策略,用户可以代入角色。

要了解如何使用这些示例 JSON 策略文档创建基于 IAM 身份的策略,请参阅 IAM 用户指南中的 创建 IAM policy。

有关 Route 53 ARC 定义的操作和资源类型的详细信息,包括每种资源类型的 ARN 格式,请参阅《服务授权参考》中的 Amazon Route 53 应用程序恢复控制器的操作、资源和条件键。

主题

• 策略最佳实践

• 示例:区域自动切换控制台访问权限

• 示例:Route 53 ARC API 操作

策略最佳实践

基于身份的策略确定某个人是否可以创建、访问或删除您账户中的 Route 53 ARC 资源。这些操作可能会使 AWS 账户产生成本。创建或编辑基于身份的策略时,请遵循以下准则和建议:

- 开始使用 AWS 托管策略并转向最低权限权限 要开始向用户和工作负载授予权限,请使用为许多常见用例授予权限的AWS 托管策略。它们在你的版本中可用 AWS 账户。我们建议您通过定义针对您的用例的 AWS 客户托管策略来进一步减少权限。有关更多信息,请参阅《IAM 用户指南》中的AWS 托管策略或工作职能的AWS 托管策略。
- 应用最低权限 在使用 IAM 策略设置权限时,请仅授予执行任务所需的权限。为此,您可以定义 在特定条件下可以对特定资源执行的操作,也称为最低权限许可。有关使用 IAM 应用权限的更多信息,请参阅《IAM 用户指南》中的 IAM 中的策略和权限。
- 使用 IAM 策略中的条件进一步限制访问权限 您可以向策略添加条件来限制对操作和资源的访问。例如,您可以编写策略条件来指定必须使用 SSL 发送所有请求。如果服务操作是通过特定的方式使用的,则也可以使用条件来授予对服务操作的访问权限 AWS 服务,例如 AWS CloudFormation。有关更多信息,请参阅《IAM 用户指南》中的 IAM JSON 策略元素:条件。
- 使用 IAM Access Analyzer 验证您的 IAM 策略,以确保权限的安全性和功能性 IAM Access Analyzer 会验证新策略和现有策略,以确保策略符合 IAM 策略语言 (JSON) 和 IAM 最佳实践。IAM Access Analyzer 提供 100 多项策略检查和可操作的建议,以帮助您制定安全且功能性强的策略。有 关更多信息,请参阅《IAM 用户指南》中的 IAM Access Analyzer 策略验证。
- 需要多重身份验证 (MFA)-如果 AWS 账户您的场景需要 IAM 用户或根用户,请启用 MFA 以提高安全性。若要在调用 API 操作时需要 MFA,请将 MFA 条件添加到您的策略中。有关更多信息,请参阅《IAM 用户指南》中的 配置受 MFA 保护的 API 访问。

有关 IAM 中的最佳实操的更多信息,请参阅《IAM 用户指南》中的 IAM 中的安全最佳实操。

示例:区域自动切换控制台访问权限

要访问 Amazon Route 53 应用程序恢复控制器控制台,您必须具有一组最低的权限。这些权限必须允许您列出和查看有关您的 Route 53 ARC 资源的详细信息 AWS 账户。如果创建比必需的最低权限更为严格的基于身份的策略,对于附加了该策略的实体(用户或角色),控制台将无法按预期正常运行。

对于仅调用 AWS CLI 或 AWS API 的用户,您无需为其设置最低控制台权限。相反,只允许访问与其尝试执行的 API 操作相匹配的操作。

要执行某些任务,用户必须有权在 Route 53 ARC 中创建与 Route 53 ARC 中的区域自动移位关联的服务相关角色。要了解更多信息,请参阅在 Route 53 ARC 中使用服务关联角色进行分区自动换档。

要向用户提供在中使用区域自动移位的完全访问权限 AWS Management Console,请向用户附加类似以下内容的策略:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                   "arc-zonal-shift:ListManagedResources",
                   "arc-zonal-shift:GetManagedResource",
                   "arc-zonal-shift:ListZonalShifts",
                   "arc-zonal-shift:StartZonalShift",
                   "arc-zonal-shift:UpdateZonalShift",
                   "arc-zonal-shift:CancelZonalShift",
                   "arc-zonal-shift:CreatePracticeRunConfiguration",
                   "arc-zonal-shift:DeletePracticeRunConfiguration",
                   "arc-zonal-shift:ListAutoshifts",
                   "arc-zonal-shift:UpdatePracticeRunConfiguration",
                   "arc-zonal-shift:UpdateZonalAutoshiftConfiguration"
             ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": "ec2:DescribeAvailabilityZones",
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": "cloudwatch:DescribeAlarms",
```

```
"Resource": "*"
}
]
]
```

示例: Route 53 ARC API 操作

您可以使用策略来确保用户可以使用区域自动切换的 Route 53 ARC API 操作来配置区域自动切换,从而代表您将应用程序资源流量从可用区 AWS 转移到中健康的可用区,从而帮助缩短事件期间恢复的时间。 AWS 区域要提供这些权限,请附加与用户需要使用的 API 操作相对应的策略,如下所述。

要执行某些任务,用户必须拥有与 Route 53 ARC 关联的服务相关角色的权限。创建服务相关角色所需的权限包含在以下示例策略中。要了解更多信息,请参阅在 Route 53 ARC 中使用服务关联角色进行分区自动换档。

要使用区域自动移位的 API 操作,请向用户附加如下策略:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                   "arc-zonal-shift:ListManagedResources",
                   "arc-zonal-shift:GetManagedResource",
                   "arc-zonal-shift:ListZonalShifts",
                   "arc-zonal-shift:StartZonalShift",
                   "arc-zonal-shift:UpdateZonalShift",
                   "arc-zonal-shift:CancelZonalShift",
                   "arc-zonal-shift:CreatePracticeRunConfiguration",
                   "arc-zonal-shift:DeletePracticeRunConfiguration",
                   "arc-zonal-shift:ListAutoshifts",
                   "arc-zonal-shift:UpdatePracticeRunConfiguration",
                   "arc-zonal-shift:UpdateZonalAutoshiftConfiguration"
             ],
            "Resource": "*"
        },
        {
            "Effect" : "Allow",
            "Action" : [
                    "cloudwatch:DescribeAlarms",
                    "health:DescribeEvents"
            ],
```

在 Route 53 ARC 中使用服务关联角色进行分区自动换档

Amazon Route 53 应用程序恢复控制器中的区域自动切换使用 AWS Identity and Access Management (IAM) 服务相关角色。服务相关角色是一种独特类型的 IAM 角色,它与一种服务(在本例中为 Route 53 ARC)直接相关。服务相关角色由 Route 53 ARC 预定义,包括该服务出于特定目的代表您调用其他 AWS 服务所需的所有权限。

服务相关角色可让您更轻松地设置 Route 53 ARC,因为您不必手动添加必要的权限。Route 53 ARC 定义了服务相关角色的权限,除非另有定义,否则只有 Route 53 ARC 可以担任其角色。定义的权限包括信任策略和权限策略,而且权限策略不能附加到任何其它 IAM 实体。

只有在首先删除服务相关角色的相关资源后,才能删除该角色。这可以保护您的 Route 53 ARC 区域自动移位资源,因为您不能无意中移除访问这些资源的权限。

有关支持服务相关角色的其他服务的信息,请参阅<u>可与 IAM 搭配使用的AWS 服务</u>,并查找服务相关角 色列中为是的服务。选择是和链接,查看该服务的服务相关角色文档。

的服务相关角色权限 AWSServiceRoleForZonalAutoshiftPracticeRun

Route 53 ARC 使用名为的服务相关角色AWSServiceRoleForZonalAutoshiftPracticeRun来执行以下操作:

- 监控客户提供的 Amazon CloudWatch 警报和客户 AWS Health Dashboard 事件以进行练习
- 管理练习运行(练习可用区转移)

本节介绍适用于该服务相关角色的权限,以及有关创建、编辑和删除该角色的信息。

的服务相关角色权限 AWSServiceRoleForZonalAutoshiftPracticeRun

此服务相关角色使用托管策略 AWSZonal Autoshift Practice Run SLR Policy。

AWSServiceRoleForZonalAutoshiftPracticeRun服务相关角色信任以下服务来代入该角色:

• practice-run.arc-zonal-shift.amazonaws.com

要查看此策略的权限,请参阅《AWS 托管策略参考》<u>AWSZonalAutoshiftPracticeRunSLRPolicy</u>中的。

您必须配置权限,允许 IAM 实体(如用户、组或角色)创建、编辑或删除服务相关角色。有关更多信息,请参阅《IAM 用户指南》中的服务相关角色权限。

为 Route 53 ARC 创建AWSServiceRoleForZonalAutoshiftPracticeRun服务相关角色

您无需手动创建AWSServiceRoleForZonalAutoshiftPracticeRun服务相关角色。当你在 AWS Management Console、或 AWS SDK 中创建第一个练习运行配置时 AWS CLI,Route 53 ARC 会为你创建服务相关角色。

如果您删除该服务相关角色,然后需要再次创建,您可以使用相同流程在账户中重新创建此角色。当您 创建第一个练习运行配置时,Route 53 ARC 会再次为您创建该服务相关角色。

编辑 Route 53 ARC 的AWSServiceRoleForZonalAutoshiftPracticeRun服务相关角色

Route 53 ARC 不允许您编辑AWSServiceRoleForZonalAutoshiftPracticeRun服务相关角色。创建该服务相关角色后,将无法更改角色名称,因为可能有其它实体引用该角色。不过,您可以使用 IAM 编辑角色的说明。有关更多信息,请参阅《IAM 用户指南》中的编辑服务相关角色。

删除 Route 53 ARC 的AWSServiceRoleForZonalAutoshiftPracticeRun服务相关角色

如果不再需要使用某个需要服务相关角色的功能或服务,我们建议您删除该角色。这样就没有未被主动 监控或维护的未使用实体。但是,您必须先清除服务相关角色的资源,然后才能手动删除它。

禁用自动切换后,您可以删除AWSServiceRoleForZonalAutoshiftPracticeRun与服务相关的角色。有关自动转移功能的更多信息,请参阅 Amazon Route 53 应用程序恢复控制器中的可用区转移。

Note

如果在您试图删除资源时 Route 53 ARC 服务正在使用该角色,则服务角色删除操作可能会失败。如果发生这种情况,请等待几分钟,然后重新尝试删除该角色。

使用 IAM 手动删除服务相关角色

使用 IAM 控制台 AWS CLI、或 AWS API 删除 AWSServiceRoleForZonalAutoshiftPracticeRun服务相关角色。有关更多信息,请参阅《IAM 用户指南》中的删除服务相关角色。

区域自动换档的 Route 53 ARC 服务相关角色的更新

有关 Route 53 ARC 服务相关角色的 AWS 托管策略的更新,请参阅 Route 53 ARC 的AWS 托管策略更新表。您也可以在 Route 53 ARC 文档历史记录页面上订阅自动 RSS 提醒。

AWS Amazon Route 53 应用程序恢复控制器中区域自动切换的托管策略

AWS 托管策略是由创建和管理的独立策略 AWS。 AWS 托管策略旨在为许多常见用例提供权限,以便您可以开始为用户、组和角色分配权限。

请记住, AWS 托管策略可能不会为您的特定用例授予最低权限权限,因为它们可供所有 AWS 客户使用。我们建议通过定义特定于您的使用场景的客户管理型策略来进一步减少权限。

您无法更改 AWS 托管策略中定义的权限。如果 AWS 更新 AWS 托管策略中定义的权限,则更新会影响该策略所关联的所有委托人身份(用户、组和角色)。 AWS 最有可能在启动新的 API 或现有服务可以使用新 AWS 服务 的 API 操作时更新 AWS 托管策略。

有关更多信息,请参阅《IAM 用户指南》中的 AWS 托管式策略。

AWS 托管策略: AWSZonalAutoshiftPracticeRunSLRPolicy

您不能将 AWSZonalAutoshiftPracticeRunSLRPolicy 附加到自己的 IAM 实体。此策略附加到服务相关角色,该角色允许 Amazon Route 53 应用程序恢复控制器对区域自动移位执行以下操作:

- 监控客户提供的 Amazon CloudWatch 警报和客户 AWS Health Dashboard 事件以进行练习
- 管理练习运行(练习可用区转移)

有关更多信息,请参阅 在 Route 53 ARC 中使用服务关联角色进行分区自动换档。

区域自动换档 AWS 托管策略更新

有关自 Route 53 ARC 中区域自动换档的 AWS 托管策略自该服务开始跟踪这些更改以来更新的详细信息,请参阅。Amazon Route 53 应用程序恢复控制器 AWS 托管策略的更新要自动获取此页面的变动提醒,请在 Route 53 ARC 文档历史记录页面上订阅 RSS 源。

在 Amazon Route 53 应用程序恢复控制器中使用路由控制器恢复多区域应用程序

本节介绍如何使用 Amazon Route 53 应用程序恢复控制器中的路由控制功能来最大限度地减少中断,并帮助您在多个 AWS 应用程序中部署时为用户提供连续性 AWS 区域。

您还可以了解准备情况检查,这是 Route 53 ARC 中的一项功能,可用于深入了解您的应用程序和资源 是否为恢复做好了准备。

本节中的主题描述了路由控制和就绪检查功能、如何设置它们以及如何使用它们。

主题

- Amazon Route 53 应用程序恢复控制器中的路由控制
- Amazon Route 53 应用程序恢复控制器中的就绪检查

Amazon Route 53 应用程序恢复控制器中的路由控制

要将流量故障转移到多个应用程序副本 AWS 区域,您可以使用 Amazon Route 53 应用程序恢复控制器中的路由控制,这些控制器与 Amazon Route 53 中的特定类型的运行状况检查集成。路由控制是简单的开/关开关,使您可以将客户端流量从一个区域副本切换到另一个区域副本。流量重新路由通过使用 Amazon Route 53 DNS 记录设置的路由控制运行状况检查来完成。例如,DNS 故障转移记录,与每个区域中应用程序副本前面的域名相关联。

本节介绍路由控制的工作原理、如何设置路由控制组件以及如何使用它们重新路由流量以进行故障转移。

Route 53 ARC 中的路由控制组件是:集群、控制面板、路由控制和路由控制运行状况检查。所有路由控制都组合到控制面板上。您可以把它们组合到 Route 53 ARC 为集群创建的默认控制面板上,也可以创建自己的自定义控制面板。您必须先创建集群,然后才能创建控制面板或路由控制。Route 53 ARC中的每个集群都是一个数据面板,包含五个 AWS 区域中的端点。

创建路由控制和路由控制运行状况检查后,您可以为路由控制创建安全规则,以帮助防止意外的恢复自动化副作用。您可以使用或 API 操作(推荐)或使用,更新路由控制状态以单独 AWS CLI 或批量重新路由流量。 AWS Management Console

本节介绍路由控制的工作原理,以及如何创建和使用它们为应用程序重新路由流量。

路由控制 79

M Important

要了解如何在灾难情况下应用程序的失效转移计划中准备使用 Route 53 ARC 重新路由流量. 请参阅Route 53 ARC 中路由控制的最佳实践。

关干路由控制

路由控制通过使用 Amazon Route 53 中的运行状况检查来重定向流量,这些检查配置了与恢复组中单 元格的顶级资源(例如 Elastic Load Balancing 负载均衡器)关联的 DNS 记录。例如,您可以将流量 从一个单元格重定向到另一个单元格,方法是将一个路由控制状态更新为 Off(以停止流向一个单元 格的流量),并将另一个路由控制状态更新为 On(以启动流向另一个单元格的流量)。更改流量流向 的这个过程就是进行与路由控制关联的 Route 53 运行状况检查,该过程发生在 Route 53 ARC 根据相 应的路由控制状态更新它以将其设置为正常或不正常之后。

路由控制支持在任何具有 DNS 端点的 AWS 服务之间进行故障转移。您可以更新路由控制状态,以便 在灾难恢复情况下、检测到应用程序延迟衰退或其它问题时对流量进行灾难恢复。

您还可以为路由控制配置安全规则,以确保使用路由控制重新路由流量不会影响可用性。有关更多信 息,请参阅 为路径控制创建安全规则 。

请务必注意,路由控制本身并不是监控端点底层运行状况的运行状况检查。例如,与 Route 53 运行状 况检查不同,路由控制不会监控响应时间或 TCP 连接时间。路由控制是一个控制运行状况检查的简单 开关机构。通常,您会更改其状态以重定向流量,而这种状态更改会将流量转移到整个应用程序堆栈的 特定端点,或者阻止路由到整个应用程序堆栈。例如,在一个简单的场景中,当您将路由控制状态从 On 更改为 Off 时,它会更新 Route 53 运行状况检查,该检查已与 DNS 故障转移记录相关联,以将 流量移出端点。

如何使用路由控制

要更新路由控制状态以便重新路由流量,必须连接到 Route 53 ARC 中的一个集群终端节点。如果您尝 试连接的端点不可用,请尝试使用其他集群端点更改状态。在更改路由控制状态的过程中,应准备好轮 流尝试每个端点,因为集群端点会在可用和不可用状态之间循环,以便定期维护和更新。

创建路由控制时,您可以配置 DNS 记录,将路由控制运行状况检查与每个应用程序副本前面的 Route 53 DNS 名称相关联。例如,要控制两个负载均衡器(两个区域中各有一个)之间的流量失效转移,您 可以创建两个路由控制运行状况检查,并将它们与两个 DNS 记录相关联,例如失效转移路由策略中的 别名记录,其中包含各自负载均衡器的域名。

关于路由控制 80 您还可以使用 Route 53 ARC 路由控制以及 Route 53 运行状况检查和 DNS 记录集(使用加权路由策略中的 DNS 记录)设置更复杂的流量失效转移方案。要查看详细示例,请参阅以下 AWS 博客文章中有关用户流量故障转移的部分:使用 Amazon Route 53 应用程序恢复控制器构建高弹性应用程序,第2 部分:多区域堆栈

当您为 AWS 区域 正在使用的路由控制启动故障转移时,由于流量涉及的步骤,您可能不会看到流量立即流出该区域。该地区现有的、正在进行的连接也可能需要很短的时间才能完成,具体取决于客户端行为和连接重复使用情况。根据您的 DNS 设置和其他因素,现有连接可以在几分钟内完成,或者可能需要更长的时间。有关更多信息,请参阅确保交通转移快速完成。

如何使用路由控制

与使用传统运行状况检查重新路由流量相比, Route 53 ARC 中的路由控制具有多种优势。例如:

- 路由控制为您提供了一种对整个应用程序堆栈进行失效转移的方法。这与基于资源级运行状况检查对 堆栈个体组件进行的失效转移(正如 Amazon EC2 实例的做法)形成鲜明对比。
- 路由控制为您提供了一个安全、简单的手动覆盖机制,您可以用来转移流量以进行维护工作,或者在内部监控器未检测到问题时从故障中恢复。
- 您可以将路由控制与安全规则结合使用,以防止基于运行状况检查的全自动化机制可能产生的常见副作用,例如失效转移到尚未做好失效转移准备的备用基础设施。

以下是将路由控制纳入故障转移策略的示例,以提高中应用程序的弹性和可用性 AWS。

您可以 AWS 通过跨区域运行多个(通常是三个)冗余副本来支持高可用性 AWS 应用程序。之后,您可以使用 Amazon Route 53 路由控制将流量路由到适当的副本。

例如,您可以将一个应用程序副本设置为活动状态并提供应用程序流量,而另一个则设置为备用副本。 当活动副本出现故障时,您可以将用户流量重新路由到备用副本,以恢复应用程序的可用性。您应该根 据来自监控和运行状况检查系统的信息来决定是从副本转移还是故障转移到副本。

如果您想更快地恢复,可以选择另一个架构选项,即主动-主动实现。使用这种方法,您的副本可以同时处于活动状态。这意味着,只要将流量重新路由到另一个活动副本,就可以将用户从受损的应用程序副本中移开,从而从故障中恢复。

AWS 用于路由控制的区域可用性

有关 Amazon Route 53 应用程序恢复控制器的区域支持和服务端点的详细信息,请参阅《Amazon Web Services 一般参考》中的 Amazon Route 53 应用程序恢复控制器端点和限额。

AWS 区域 81

Note

Amazon Route 53 应用程序恢复控制器中的路由控制是一项全球功能。但是,您必须在 Route 53 ARC 区域 AWS CLI 命令中指定美国西部(俄勒冈--region us-west-2)区域(指定参 数)。也就是说,当您创建诸如群集、控制面板或路由控件之类的资源时。

Route 53 ARC 路由控制是一个开关机构,用于更改 Route 53 ARC 运行状况检查的状态,然后检查可 以与重定向流量的 DNS 记录相关联,例如从主部署副本重定向到备用部署副本。

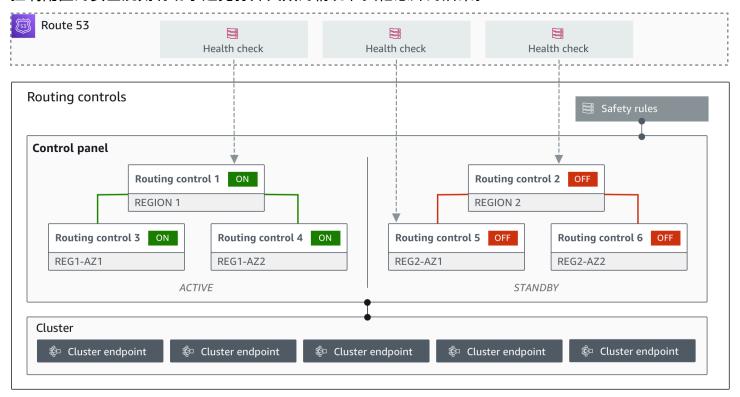
如果应用程序出现故障或延迟问题,您可以更新路由控制状态以转移流量,例如将流量从主副本转移 到备用副本。通过使用高度可靠的 Route 53 ARC 数据面板 API 操作进行路由控制查询和路由控制状 态更新,您可以依靠 Route 53 ARC 在灾难恢复场景中进行失效转移。有关更多信息,请参阅 使用 Route 53 ARC API 获取和更新路由控制状态(推荐)。

Route 53 ARC 在集群中维护路由控制状态,集群是五个冗余区域端点的集合。Route 53 ARC 在集群 (位于 Amazon EC2 队列中)传播路由控制状态的变化,以获得跨五个区域的法定人数。 AWS 传播 后,当您使用 API 和高度可靠的数据面板查询 Route 53 ARC 以获取路由控制状态时,它会返回共识 视图。

您可以与五个集群端点中的任何一个进行交互,以更新路由控制状态,例如从 0ff 更新为 0n。然 后.Route 53 ARC 将更新传播到集群的五个区域。

所有五个集群端点平均在 5 秒内实现数据一致性,最多不超过 15 秒。

Route 53 ARC 通过数据面板让您极其可靠地手动对应用程序进行跨单元格的失效转移。Route 53 ARC 确保您始终可以访问五个集群端点中的至少三个端点,以执行路由控制状态的更改。请注意,每 个 Route 53 ARC 集群都是单租户的,以确保您不会受到"嘈杂邻居"的影响,这种影响可能会降低访问 速度。


更改路由控制状态时,需要遵循以下三个极不可能失效的标准:

- 五个端点中至少有三个可用并参与仲裁。
- 您具备有效的 IAM 凭证,并且可以在工作的区域集群端点上进行身份验证。
- Route 53 数据面板运行正常(此数据面板旨在满足 100% 可用性 SLA)。

AWS 区域

路由控制组件

下图说明了支持 Route 53 ARC 中的路由控制功能的组件示例。此处显示的路由控制(组合到一个控制面板)允许您管理两个区域中每个区域的两个可用区的流量。更新路由控制状态时,Route 53 ARC 会更改 Amazon Route 53 中的运行状况检查,该检查会将 DNS 流量重定向到不同的单元格。您为路由控制配置的安全规则有助于避免打开失败的情况和其他意外的后果。

以下是 Route 53 ARC 中路由控制功能的组件。

集群

集群是一组由五个冗余区域端点组成的集合,您可以在这些端点上执行 API 调用,以更新或获取路由控制状态。集群包括默认控制面板,您可以在一个集群上托管多个控制面板和路由控制。

路由控制

路由控制是一个简单的开关机构,托管在集群上,用于控制进出单元格的客户端流量的路由。在创建路由控制时,可以在 Route 53 中添加 Route 53 ARC 运行状况检查。这样当您在 Route 53 ARC 中更新路由控制状态时,就能重新路由流量(使用运行状况检查,配置有应用程序的 DNS 记录)。

组件 83

路由控制运行状况检查

路由控制与 Route 53 中的运行状况检查相集成。运行状况检查与每个应用程序副本前面的 DNS 记录相关联,例如失效转移记录。当您更改路由控制状态时,Route 53 ARC 会更新相应的运行状况检查,这些检查将重定向流量,例如失效转移到备用副本。

控制面板

控制面板将一组相关的路由控制聚合在一起。您可以将多个路由控制与一个控制面板相关联,然后为控制面板创建安全规则,以确保进行的流量重定向更新是安全的。例如,您可以为每个可用区中的每个负载均衡器配置一个路由控制,然后将它们组合到同一个控制面板中。然后,您可以添加安全规则("断言规则"),确保在任何时候至少有一个可用区(由路由控制表示)处于活动状态,以避免出现意外的"打开失败"情况。

默认控制面板

创建集群时,Route 53 ARC 会创建一个默认的控制面板。默认情况下,您在集群上创建的所有路由控制都将添加到默认控制面板中。您也可以创建自己的控制面板来组合相关的路由控制。

安全规则

安全规则是您在路由控制中添加的规则,用于确保恢复操作不会意外影响应用程序的可用性。例如,您可以创建一个安全规则,该规则创建一个路由控制作为整体的"开关",以便您可以启用或禁用一组其他路由控制。

端点(集群端点)

Route 53 ARC 中的每个集群都有五个区域端点,可用于设置和检索路由控制状态。在访问端点的过程中,应假设 Route 53 ARC 定期启动和关闭端点以进行维护,因此您应该连续尝试每个端点,直到连接到一个端点。您可以访问端点以获取路由控制的当前状态(开或关),并通过更改路由控制状态来触发应用程序的失效转移。

用干路由控制的数据和控制平面

在规划故障转移和灾难恢复时,请考虑故障转移机制的弹性。我们建议您确保在故障转移期间所依赖的机制具有高可用性,以便在灾难情况下可以根据需要使用它们。通常,应尽可能为机制使用数据平面函数,以获得最大的可靠性和容错性。考虑到这一点,请务必了解服务的功能如何在控制面板和数据面板之间划分,以及何时可以依赖服务的数据面板可预期的极高可靠性。

与大多数 AWS 服务一样,控制平面和数据平面支持路由控制功能。虽然这两者都是为了可靠而构建的,但控制平面针对数据一致性进行了优化,而数据平面则针对可用性进行了优化。数据面板专为弹性而设计,因此即使在中断事件期间,当控制面板可能不可用时,它也能保持可用性。

数据和控制平面 84

一般而言,控制面板允许您执行基本的管理功能,例如在服务中创建、更新和删除资源。数据面板提供服务的核心功能。因此,我们建议您在可用性很重要的情况下使用数据面板操作,例如,在中断期间需要将流量重新路由到备用副本时。

对于路由控制,控制平面和数据平面按以下方式划分:

- 用于路由控制的控制平面 API 是恢复控制配置 API,在美国西部(俄勒冈)区域 (us-west-2) 中支持。您可以使用这些 API 操作或创建或删除集群、控制面板和路由控件,以帮助为可能需要为应用程序重新路由流量时发生的灾难恢复事件做好准备。 AWS Management Console 路由控制配置控制面板不是高度可用的。
- 路由控制数据平面是一个横跨五个地理 AWS 隔离区域的专用集群。每个客户都使用路由控制控制面板创建一个或多个集群。该集群托管控制面板和路由控制。然后,当您想要为应用程序重新路由流量时,可使用路由控制(恢复集群)API 获取、列出和更新路由控制状态。路由控制数据面板是高度可用的。

由于路由控制数据平面高度可用,因此我们建议您计划在 AWS Command Line Interface 要进行故障 切换以从事件中恢复时,使用进行 API 调用以处理路由控制状态。有关使用路由控制准备和完成恢复 操作时的关键注意事项的更多信息,请参阅Route 53 ARC 中路由控制的最佳实践。

有关数据平面、控制平面以及如何 AWS 构建服务以满足高可用性目标的更多信息,请参阅 Amazon Builders Library 中的 "使用可用区的静态稳定性" 论文。

在 Amazon Route 53 应用程序恢复控制器中为路由控制添加标签

标签是您用来识别和组织 AWS 资源的单词或短语(元数据)。您可以向每个资源添加多个标签,并且每个标签都包含您定义的一个键和一个值。例如,键可能是环境,值可能是生产。您可以根据添加的标签搜索和筛选您的资源。

你可以在 Route 53 ARC 的路由控制中标记以下资源:

- 集群
- 控制面板
- 安全规则

Route 53 ARC 中的标记只能通过 API 使用,例如,通过使用 AWS CLI。

以下是使用在路由控制中进行标记的示例。 AWS CLI

 aws route53-recovery-control-config --region us-west-2 create-cluster -- cluster-name example1-cluster --tags Region=PDX,Stage=Prod

aws route53-recovery-control-config --region us-west-2 create-control-panel --control-panel-name example1-control-panel --cluster-arn arn:aws:route53-recovery-control::111122223333:cluster/5678abcd-abcd-5678-abcd-5678abcdefgh --tags Region=PDX,Stage=Prod

有关更多信息,请参阅 <u>TagResource</u>Amazon Route 53 应用程序恢复控制器的恢复控制配置 API 参考指南。

Route 53 ARC 中路线控制的定价

对于 Amazon Route 53 应用程序恢复控制器,您只需为在该服务中配置使用的功能付费。对于 Route 53 ARC 中的路由控制,您需要为创建的每个集群支付每小时费用。每个集群可以托管多个路由控制,您可以使用这些控制来触发应用程序失效转移。

为了帮助管理成本和提高效率,您可以为集群设置跨账户共享,将一个集群与多个 AWS 账户共享。有 关更多信息,请参阅 跨账户支持 Route 53 ARC 中的集群。

有关 Route 53 ARC 的详细定价信息和定价示例,请参阅 <u>Amazon Route 53 应用程序恢复控制器定</u>价,然后向下滚动到亚马逊 Route 53 应用程序恢复控制器。

开始使用 Amazon Route 53 应用程序恢复控制器中的多区域恢复

要在 Amazon Route 53 应用程序恢复控制器中使用路由控制对应用程序进行故障切换,您的 AWS 应用程序必须是多个应用程序 AWS 区域。首先,请确保您的应用程序设置在每个区域的孤立副本中,这样您就可以在活动期间从一个区域故障转移到另一个区域。然后,您可以创建路由控件来重新路由应用程序流量,使其从主应用程序故障转移到辅助应用程序,从而保持用户的连续性。

Note

如果您的应用程序被可用区隔开,请考虑使用区域转移或区域自动切换进行故障转移恢复。无需进行任何设置即可使用区域切换或区域自动切换来可靠地从可用区损坏中恢复应用程序。有关更多信息,请参阅 使用区域移位和区域自动移位恢复 Amazon Route 53 应用程序恢复控制器中的应用程序。

定价 86

为了使您可以使用 Route 53 ARC 路由控制在事件期间恢复应用程序,我们建议您至少设置两个相互复制的应用程序。每个副本或单元格代表一个 AWS 区域。将应用程序资源设置为与区域保持一致后,请执行以下步骤,确保您的应用程序已设置为成功恢复。

提示:为了帮助简化设置,我们提供 AWS CloudFormation 了 HashiCorp Terraform 模板,用于创建具有相互独立失败的冗余副本的应用程序。要了解更多信息并下载模板,请参阅设置示例应用程序。

要准备使用路由控制,请执行以下操作,确保您的应用程序设置为具有弹性;

- 1. 构建应用程序堆栈(网络和计算层)的独立副本,这些副本是每个区域中彼此的副本,以便在发生事件时可以将流量从一个区域故障转移到另一个区域。确保您的应用程序代码中没有任何会导致一个副本失败影响另一个副本的跨区域依赖关系。要在两者之间成功进行故障转移 AWS 区域,您的堆栈边界应位于一个区域内。
- 2. 在各个副本中复制应用程序所需的所有状态数据。您可以使用 AWS 数据库服务来帮助复制数据。

开始使用流量故障转移的路由控制

Amazon Route 53 应用程序恢复控制器中的路由控制使您可以触发故障转移,让流量在单独 AWS 区域运行的冗余应用程序副本或副本之间进行故障转移。故障转移是使用 Amazon Route 53 数据平面通过 DNS 执行的。

在每个区域设置副本后(如下一节所述),您可以将每个副本与路由控制相关联。首先,将路由控制与 每个区域中副本的顶级域名相关联。然后,向路由控制添加路由控制运行状况检查,使其可以开启和关 闭流量。这使您能够控制应用程序副本之间的流量路由。

您可以在中更新路由控制状态 AWS Management Console 以故障转移流量,但我们建议您改用 Route 53 ARC 操作、API 或 AWS CLI,来更改这些状态。API 操作不依赖于控制台,因此它们更具弹性。

例如,要在区域之间进行故障转移,从 us-west-1 到 us-east-1,您可以update-routing-control-state使用 API 操作将状态设置为和到。us-west-1 0ff us-east-1 0n

在创建路由控制组件来为应用程序设置故障转移之前,请确保您的应用程序孤立到区域副本中,以便您可以从一个副本故障转移到另一个副本。要了解更多信息并开始孤立新应用程序或创建示例堆栈,请参阅下一节。

设置示例应用程序

为了帮助您了解路由控制的工作原理,我们提供了一个名为的示例应用程序TicTacToe。该示例使用AWS CloudFormation 模板来简化流程,并使用带有示例应用程序的可下载模板 AWS CloudFormation和 HashiCorp Terraform模板,以便您可以自己快速探索设置和使用 Route 53 ARC。

多区域恢复入门 87

部署示例应用程序后,您可以使用模板创建 Route 53 ARC 组件,然后探索使用路由控制来管理流向该应用程序的流量。您可以根据自己的应用场景和应用程序调整模板和流程。

- AWS CloudFormation:要开始使用示例应用程序和 AWS CloudFormation模板,请参阅此 <u>Amazon S3 存储桶</u>上的自述文件说明。您可以通过阅读 AWS CloudFormation 用户指南中的<u>AWS</u> CloudFormation概念来了解有关使用 AWS CloudFormation模板的更多信息。
- HashiCorp Terraform: 要开始使用示例应用程序和 Terraform 模板,请参阅此 Amazon S3 存储桶上的自述文件说明。您可以通过阅读文档来了解有关使用 Terraform 模板的更多信息。 HashiCorp

Route 53 ARC 中路由控制的最佳实践

对于在 Amazon Route 53 应用程序恢复控制器中进行路由控制的恢复和故障转移准备,我们推荐以下最佳实践。

主题

- 确保专门构建、使用寿命长的 AWS 凭证安全且始终可访问
- 为故障转移中涉及的 DNS 记录选择较低的 TTL 值
- 限制客户端与您的终端保持连接的时间
- 为您的五个区域集群终端节点和路由控制 ARN 添加书签或硬编码
- 随机选择一个终端节点来更新您的路由控制状态
- 使用极其可靠的数据平面 API 来列出和更新路由控制状态,而不是使用控制台

确保专门构建、使用寿命长的 AWS 凭证安全且始终可访问

在灾难恢复 (DR) 场景中,通过使用一种简单的方法来访问 AWS 和执行恢复任务,将系统依赖性降至最低。专为 DR 任务创建 <u>IAM 长效凭证</u>,并将凭证安全地保存在本地物理保险箱或虚拟保管库中,以便在需要时进行访问。借助 IAM,您可以集中管理安全证书,例如访问密钥和 AWS 资源访问权限。对于非 DR 任务,我们建议您继续使用 AWS 单点登录等 AWS 服务进行联合访问。

要使用恢复集群数据面板 API 在 Route 53 ARC 中执行失效转移任务,您可以将 Route 53 ARC IAM policy 附加到您的用户。要了解更多信息,请参阅Amazon Route 53 应用程序恢复控制器中基于身份的策略示例。

为故障转移中涉及的 DNS 记录选择较低的 TTL 值

对于在失效转移机制中可能需要更改的 DNS 记录,尤其是经过运行状况检查的记录,使用较低的 TTL 值是合适的做法。在这种情况下,通常选择将 TTL 设置为 60 秒或 120 秒。

最佳实践 88

DNS TTL(生存时间)设置会告诉 DNS 解析器在一条记录缓存多长时间后再请求新记录。选择 TTL 时,要在延迟和可靠性与应变能力之间进行权衡。如果记录的 TTL 较短,DNS 解析器将更快 地注意到记录的更新,因为 TTL 指定了它们必须更频繁地查询。

有关更多信息,请参阅 <u>Amazon Route 53 DNS 最佳实践</u>中的为 DNS 记录选择 TTL 值。 限制客户端与您的终端保持连接的时间

当您使用路由控制从一个路由控制切换 AWS 区域 到另一个时,Amazon Route 53 应用程序恢复控制器用于移动应用程序流量的机制是 DNS 更新。此更新会导致所有新连接都被定向到远离受损位置。

但是,在客户端重新连接之前,具有已打开连接的客户端可能会继续向受损位置发出请求。为确保 快速恢复,我们建议您限制客户端与您的终端保持连接的时间。

如果您使用 Application Load Balancer,则可以使用该keepalive选项来配置连接的持续时间。有 关更多信息,请参阅《Application Load Balancer 用户指南》中的 HTTP 客户端保持连接时长。

默认情况下,应用程序负载均衡器将 HTTP 客户端 keepalive 持续时间值设置为 3600 秒或 1 小时。我们建议您降低该值,使其与应用程序的恢复时间目标保持一致,例如 300 秒。选择 HTTP 客户端 keepalive 持续时间时,请考虑此值是在更频繁地重新连接(这可能会影响延迟)和更快地将所有客户端从受损的可用区或区域移出受损的可用区或区域之间进行权衡。

为您的五个区域集群终端节点和路由控制 ARN 添加书签或硬编码

我们建议您将 Route 53 ARC 区域集群端点的本地副本保存在书签中,或者保存到用于重试端点的自动化代码中。在发生故障事件期间,您可能无法访问某些 API 操作,包括未托管在极其可靠的数据面板集群上的 Route 53 ARC API 操作。您可以使用 <u>DescribeCluster</u>API 操作列出 Route 53 ARC 集群的终端节点。

随机选择一个终端节点来更新您的路由控制状态

我们建议您在需要失效转移时,使用五个区域集群端点中的一个随机端点更新(和检索)路由控制状态。如果该端点失效,请逐个重试其他的区域端点。有关在 AWS SDK 中使用代码示例的信息,包括试用集群终端节点的示例,请参阅使用 AWS SDK 的应用程序恢复控制器的代码示例。

使用极其可靠的数据平面 API 来列出和更新路由控制状态,而不是使用控制台

使用 Route 53 ARC 数据平面 API,通过 "控制" 操作查看您的路由<u>ListRouting控制</u>和状态,并更新路由控制状态以重定向流量,以便通过<u>UpdateRoutingControlState</u>操作进行故障转移。您可以使用使用其中一个 AWS SDK 编写的 AWS CLI <u>(如这些示例所示)</u>或代码。Route 53 ARC 数据面板中的 API 可以极其可靠地对流量进行失效转移。我们建议使用 API,而不是在 AWS Management Console中更改路由控制状态。

最佳实践

连接到 Route 53 ARC 的区域集群端点之一,以使用数据面板 API。如果端点不可用,请尝试连接到另一个集群端点。

如果安全规则阻止路由控制状态更新,则可以绕过该规则进行更新并对流量进行失效转移。有关更多信息,请参阅 覆盖安全规则以重新路由流量。

使用 Route 53 ARC 测试失效转移

使用 Route 53 ARC 路由控制定期测试失效转移,以便在主应用程序堆栈失效时转移到辅助应用程序堆栈。务必要确保您添加的 Route 53 ARC 结构与堆栈中的正确资源保持一致,并且一切都按预期运行。您应该在为您的环境设置好 Route 53 ARC 之后进行该测试,并持续定期进行测试,以便在发生故障之前准备好失效转移环境,这样就能快速启动并运行辅助系统以避免用户停机。

路由控制 API 操作

本部分包含一些表格,其中列出了可用于在 Amazon Route 53 应用程序恢复控制器中设置和使用路由控制的 API 操作,以及相关文档的链接。

有关如何使用常见的路由控制配置 API 操作的示例 AWS Command Line Interface,请参阅 使用Route 53 ARC 路由控制 API 操作的示例 AWS CLI。

下表列出了可用于路由控制配置的 Route 53 ARC API 操作以及相关文档的链接。

操作	使用 Route 53 ARC 控制台	使用 Route 53 ARC API
创建集群	请参阅 在 Route 53 ARC 中创 建路由控制组件。	请参阅 <u>CreateCluster</u>
描述集群	请参阅 在 Route 53 ARC 中创 建路由控制组件。	请参阅 <u>DescribeCluster</u>
删除集群	请参阅 在 Route 53 ARC 中创 建路由控制组件。	请参阅 <u>DeleteCluster</u>
列出账户的集群	请参阅 在 Route 53 ARC 中创 建路由控制组件。	请参阅 <u>ListClusters</u>
创建路由控制	请参阅 <u>在 Route 53 ARC 中创</u> 建路由控制组件。	参见 " <u>CreateRouting控制</u> "

操作	使用 Route 53 ARC 控制台	使用 Route 53 ARC API
描述路由控制	请参阅 <u>在 Route 53 ARC 中创</u> 建路由控制组件。	参见 " <u>DescribeRouting控制</u> "
更新路由控制	请参阅 在 Route 53 ARC 中创 建路由控制组件。	参见 " <u>UpdateRouting控制</u> "
删除路由控制	请参阅 在 Route 53 ARC 中创 建路由控制组件。	参见 " <u>DeleteRouting控制</u> "
列出路由控制	请参阅 在 Route 53 ARC 中创 建路由控制组件。	参见 <u>ListRouting控件</u>
创建控制面板	请参阅 在 Route 53 ARC 中创 建路由控制组件。	参见 <u>CreateControl面板</u>
描述控制面板	请参阅 在 Route 53 ARC 中创 建路由控制组件。	参见 <u>DescribeControl面板</u>
更新控制面板	请参阅 在 Route 53 ARC 中创 建路由控制组件。	参见 <u>UpdateControl面板</u>
删除控制面板	请参阅 在 Route 53 ARC 中创 建路由控制组件。	参见 <u>DeleteControl面板</u>
列出控制面板	请参阅 在 Route 53 ARC 中创 建路由控制组件。	参见 <u>ListControl面板</u>
创建安全规则	请参阅 <u>为路径控制创建安全规</u> 则_。	参见 <u>CreateSafety规则</u>
描述安全规则	请参阅 为路径控制创建安全规则。	参见 <u>DescribeSafety规则</u>
更新安全规则	请参阅 <u>为路径控制创建安全规</u> 则_。	参见 <u>UpdateSafety规则</u>
删除安全规则	请参阅 为路径控制创建安全规则。	参见 <u>DeleteSafety规则</u>

操作	使用 Route 53 ARC 控制台	使用 Route 53 ARC API
列出安全规则	请参阅 <u>为路径控制创建安全规</u> <u>则</u> 。	参见 <u>ListSafety规则</u>
列出关联的 Route 53 运行状况 检查	请参阅 在 Route 53 ARC 中创 建路由控制运行状况检查。	参见 53 号 <u>ListAssociated公路</u> <u>HealthChecks</u>
列出用于群集共享的 AWS RAM 资源策略	请参阅 <u>跨账户支持 Route 53</u> ARC 中的集群。	参见 <u>GetResource政策</u>

下表列出了可用于通过路由控制数据平面管理流量故障转移的常用 Route 53 ARC API 操作以及相关文档的链接。

操作	使用 Route 53 ARC 控制台	使用 Route 53 ARC API
获取路由控制状态	请参阅 <u>获取和更新中的路由</u> 控制状态 AWS Management Console。	请参阅 <u>GetRoutingControlS</u> tate
列出路由控制	不适用	参见 <u>ListRouting控件</u>
更新路由控制状态	请参阅 <u>获取和更新中的路由</u> 控制状态 AWS Management Console。	请参阅 <u>UpdateRoutingContr</u> <u>olState</u>
更新多个路由控制状态	请参阅 <u>获取和更新中的路由</u> 控制状态 AWS Management Console。	请参阅 <u>UpdateRoutingContr</u> <u>olStates</u>

将此服务与 AWS SDK 配合使用

AWS 软件开发套件 (SDK) 可用于许多流行的编程语言。每个软件开发工具包都提供 API、代码示例和 文档,使开发人员能够更轻松地以其首选语言构建应用程序。

SDK 文档	代码示例
AWS SDK for C++	AWS SDK for C++ 代码示例
AWS CLI	AWS CLI 代码示例
AWS SDK for Go	AWS SDK for Go 代码示例
AWS SDK for Java	AWS SDK for Java 代码示例
AWS SDK for JavaScript	AWS SDK for JavaScript 代码示例
AWS SDK for Kotlin	AWS SDK for Kotlin 代码示例
AWS SDK for .NET	AWS SDK for .NET 代码示例
AWS SDK for PHP	AWS SDK for PHP 代码示例
AWS Tools for PowerShell	PowerShell 代码示例工具
AWS SDK for Python (Boto3)	AWS SDK for Python (Boto3) 代码示例
AWS SDK for Ruby	AWS SDK for Ruby 代码示例
AWS SDK for Rust	AWS SDK for Rust 代码示例
适用于 SAP ABAP 的 AWS SDK	适用于 SAP ABAP 的 AWS SDK 代码示例
AWS SDK for Swift	AWS SDK for Swift 代码示例

有关特定于此服务的示例,请参阅使用 AWS SDK 的应用程序恢复控制器的代码示例。

⑥ 示例可用性

找不到所需的内容? 通过使用此页面底部的提供反馈链接请求代码示例。

使用 Route 53 ARC 路由控制 API 操作的示例 AWS CLI

本节介绍使用路由控制的简单应用示例,使用使用 API 操作与 Amazon Route 53 应用程序恢复控制器中的路由控制功能配合使用。 AWS Command Line Interface 这些示例旨在帮助您基本了解如何使用CLI 进行路由控制。

借助 Amazon Route 53 应用程序恢复控制器中的路由控制,您可以在独立 AWS 区域 区域或可用区中运行的冗余应用程序副本或副本之间触发流量故障转移。

您可以将路由控制组织成在集群上配置的名为控制面板的组。Route 53 ARC 集群是一组全球部署的区域端点。集群端点提供了一个高度可用的 API,可用于设置和检索路由控制状态。有关路由控制功能组件的更多信息,请参阅路由控制组件。

Note

Route 53 ARC 是一项全球服务,支持多个端点 AWS 区域。但是,您必须在大多数 Route 53 ARC CLI 命令中指定美国西部(俄勒冈)区域,即指定参数--region us-west-2。例如,在创建恢复组、控制面板和群集时使用region参数。

创建集群时,Route 53 ARC 会为您提供一组区域端点。要获取或更新路由控制状态,您必须在 CLI 命令中指定区域终端节点(AWS 区域 和终端节点 URL)。

有关使用的更多信息 AWS CLI,请参阅《 AWS CLI 命令参考》。有关路由控制 API 操作的列表,请参阅 路由控制 API 操作和 路由控制 API 操作。

首先,我们将使用路由控制创建管理故障转移所需的组件,首先是创建集群。

设置路由控制组件

第一步是创建集群。Route 53 ARC 集群由五个终端节点组成,五个不同的终端节点各占一个 AWS 区域。Route 53 ARC 基础设施支持这些端点协同工作,从而保证故障转移操作的高可用性和顺序一致性。

- 1. 创建集群
- 1a. 创建集群。

aws route53-recovery-control-config --region us-west-2 create-cluster --cluster-name NewCluster

```
{
    "Cluster": {
        "ClusterArn": "arn:aws:route53-recovery-control::111122223333:cluster/5678abcd-
abcd-5678-abcd-5678abcdefgh",
        "Name": "NewCluster",
        "Status": "PENDING"
    }
}
```

首次创建 Route 53 ARC 资源时,在集群创建过程中其状态为 PENDING。您可以通过调用 describe-cluster 查看其进度。

1b. 描述集群。

```
aws route53-recovery-control-config --region us-west-2 \
    describe-cluster --cluster-arn arn:aws:route53-recovery-
control::111122223333:cluster/5678abcd-abcd-5678-abcd-5678abcdefgh
```

```
{
    "Cluster":{
        "ClusterArn": "arn:aws:route53-recovery-control::111122223333:cluster/5678abcd-
abcd-5678-abcd-5678abcdefgh",
        "ClusterEndpoints":[
            {"Endpoint": "https://host-aaaaaa.us-east-1.example.com", "Region":"us-
east-1"},
            {"Endpoint": "https://host-bbbbbb.ap-southeast-2.example.com",
 "Region": "ap-southeast-2"},
            {"Endpoint": "https://host-ccccc.eu-west-1.example.com", "Region": "eu-
west-1"},
            {"Endpoint": "https://host-dddddd.us-west-2.example.com", "Region":"us-
west-2"},
            {"Endpoint": "https://host-eeeeee.ap-northeast-1.example.com",
 "Region":"ap-northeast-1"}
        "Name": "NewCluster",
        "Status": "DEPLOYED"
    }
}
```

当状态为"已部署"时,Route 53 ARC 已成功创建集群,其中包含一组可与您交互的端点。您可以通过 调用 list-clusters 列出所有集群。

1c. 列出您的集群。

```
aws route53-recovery-control-config --region us-west-2 list-clusters
```

```
{
    "Clusters": [
        {
            "ClusterArn": "arn:aws:route53-recovery-
control::111122223333:cluster/1234abcd-abcd-1234-abcd-1234abcdefgh",
            "ClusterEndpoints":[
                {"Endpoint": "https://host-aaaaaa.us-east-1.example.com", "Region":"us-
east-1"},
                {"Endpoint": "https://host-bbbbbb.ap-southeast-2.example.com",
 "Region": "ap-southeast-2"},
                {"Endpoint": "https://host-ccccc.eu-west-1.example.com", "Region": "eu-
west-1"},
                {"Endpoint": "https://host-dddddd.us-west-2.example.com", "Region":"us-
west-2"},
                {"Endpoint": "https://host-eeeeee.ap-northeast-1.example.com",
 "Region": "ap-northeast-1"}
            "Name": "AnotherCluster",
            "Status": "DEPLOYED"
        },
            "ClusterArn": "arn:aws:route53-recovery-
control::111122223333:cluster/5678abcd-abcd-5678-abcd-5678abcdefgh",
            "ClusterEndpoints": [
                {"Endpoint": "https://host-ffffff.us-east-1.example.com", "Region":"us-
east-1"},
                {"Endpoint": "https://host-gggggg.ap-southeast-2.example.com",
 "Region": "ap-southeast-2"},
                {"Endpoint": "https://host-hhhhhh.eu-west-1.example.com", "Region":"eu-
west-1"},
                {"Endpoint": "https://host-iiiiii.us-west-2.example.com", "Region":"us-
west-2"},
                {"Endpoint": "https://host-jjjjjj.ap-northeast-1.example.com",
 "Region": "ap-northeast-1"}
            ],
            "Name": "NewCluster",
            "Status": "DEPLOYED"
        }
    ]
```

}

2. 创建控制面板

控制面板是用于组织 Route 53 ARC 路由控制的逻辑分组。当您创建集群时,Route 53 ARC 会自动为您提供一个名为 DefaultControlPanel 的控制面板。您可以立即使用该控制面板。

一个控制面板只能存在于一个集群中。如果要将控制面板移到另一个集群,则必须将其删除,然后在第二个集群中创建它。您可以通过调用 list-control-panels 查看账户中的所有控制面板。要仅查看特定集群中的控制面板,请添加 --cluster-arn 字段。

2a. 列出控制面板。

```
aws route53-recovery-control-config --region us-west-2 \
list-control-panels --cluster-arn arn:aws:route53-recovery-
control::111122223333:cluster/eba23304-1a51-4674-ae32-b4cf06070bdd
```

也可以选择通过调用 create-control-panel 创建自己的控制面板。

2b. 创建控制面板。

首次创建 Route 53 ARC 资源时,它在创建过程中状态为 PENDING。您可以通过调用 describe-control-panel 查看进度。

2c. 描述控制面板。

3. 创建路由控制

现在您已设置集群并查看控制面板,接着可以开始创建路由控制。创建路由控制时,您必须至少指定路由控制所在集群的 Amazon 资源名称 (ARN)。您也可以为路由控制指定控制面板的 ARN。您还需要指定控制面板所在的集群。

如果您未指定控制面板,路由控制将添加到自动创建的控制面板 DefaultControlPanel。

通过调用 create-routing-control 创建路由控制。

3a. 创建路由控制。

路由控制的创建模式与其他 Route 53 ARC 资源相同,因此您可以通过调用描述操作来跟踪它们的进度。

3b. 描述路由控制。

}

}

}

您可以通过调用 list-routing-controls 列出控制面板中的路由控制。控制面板 ARN 为必填项。

3c. 列出路由控制。

```
{
   "RoutingControls": [
           "ControlPanelArn": "arn:aws:route53-recovery-
"Name": "Rc1",
           "RoutingControlArn": "arn:aws:route53-recovery-
control::111122223333:controlpanel/0123456bbbbbbb0123456bbbbbb0123456/routingcontrol/
abcdefg1234567",
           "Status": "DEPLOYED"
       },
           "ControlPanelArn": "arn:aws:route53-recovery-
control::111122223333:controlpanel/0123456bbbbbbb0123456bbbbbb0123456",
           "Name": "Rc2",
           "RoutingControlArn": "arn:aws:route53-recovery-
control::111122223333:controlpanel/0123456bbbbbbb0123456bbbbbb0123456/routingcontrol/
hijklmnop987654321",
           "Status": "DEPLOYED"
       }
   ]
}
```

在使用路由控制状态的以下示例中,我们假设您有本节中列出的两个路由控制(Rc1 和 Rc2)。在本例中,每个路由控制代表部署了应用程序的一个可用区。

4. 创建安全规则

同时使用多个路由控制时,您可能会决定在启用和禁用它们时采取一些保障措施,以避免意想不到的后果,例如关闭两个路由控制和停止所有流量。要创建这些安全措施,您需要创建路由控制安全规则。

安全规则有两种类型:断言规则和门控规则。如需了解有关安全规则的详情,请参阅<u>为路径控制创建安</u>全规则 。

以下调用提供了创建断言规则的示例,该规则可确保在任何给定时间至少将两个路由控制之一设置为 On。要创建规则,请运行使用 assertion-rule 参数的 create-safety-rule。

有关断言规则 API 操作的详细信息,请参阅 <u>AssertionRule</u>Amazon Route 53 应用程序恢复控制器的路由控制 API 参考指南。

4a. 创建断言规则。

```
{
    "Rule": {
        "ASSERTION": {
            "Arn": "arn:aws:route53-recovery-control::88888888888:controlpanel/
zzz123yyy456xxx789zzz123yyy456xxx/safetyrule/333333444444",
            "AssertedControls": [
                "arn:aws:route53-recovery-control::88888888888:controlpanel/
zzz123yyy456xxx789zzz123yyy456xxx/routingcontrol/def123def123def"
                "arn:aws:route53-recovery-control::88888888888:controlpanel/
zzz123yyy456xxx789zzz123yyy456xxx/routingcontrol/ghi456ghi456ghi"],
            "ControlPanelArn": "arn:aws:route53-recovery-
control::88888888888:controlpanel/zzz123yyy456xxx789zzz123yyy456xxx",
            "Name": "TestAssertionRule",
            "RuleConfig": {
                "Inverted": false,
                "Threshold": 1,
                "Type": "ATLEAST"
            },
            "Status": "PENDING",
```

```
"WaitPeriodMs": 5000
}
}
```

以下调用提供了创建门控规则的示例,该规则为控制面板中的一组目标路由控制提供了整体的"开启/关闭"或"门控"开关。这样便可以禁止更新目标路由控制,例如,自动化机制无法进行未授权更新。在本例中,门控开关是通过 GatingControls 参数指定的路由控制,受到控制或"门控"的两个路由控制通过TargetControls 参数指定。

Note

在创建门控规则之前,必须创建门控路由控制(不包括 DNS 故障转移记录)和目标路由控制(需配置有 DNS 故障转移记录)。

要创建规则,请运行使用 gating-rule 参数的 create-safety-rule。

有关断言规则 API 操作的详细信息,请参阅 <u>GatingRule</u>Amazon Route 53 应用程序恢复控制器的路由控制 API 参考指南。

4b. 创建门控规则。

```
{
    "Rule": {
```

```
"GATING": {
            "Arn": "arn:aws:route53-recovery-control::888888888888:controlpanel/
zzz123yyy456xxx789zzz123yyy456xxx/safetyrule/444444444444",
            "GatingControls": [
                "arn:aws:route53-recovery-control::88888888888:controlpanel/
zzz123yyy456xxx789zzz123yyy456xxx/routingcontrol/def123def123def"
            ],
            "TargetControls": [
                "arn:aws:route53-recovery-control::888888888888:controlpanel/
zzz123yyy456xxx789zzz123yyy456xxx/routingcontrol/ghi456ghi456ghi"
                "arn:aws:route53-recovery-control::88888888888:controlpanel/
zzz123yyy456xxx789zzz123yyy456xxx/routingcontrol/lmn789lmn789lmn"
            ],
            "ControlPanelArn": "arn:aws:route53-recovery-
control::8888888888:controlpanel/zzz123yyy456xxx789zzz123yyy456xxx",
            "Name": "TestGatingRule",
            "RuleConfig": {
                "Inverted": false,
                "Threshold": 0,
                "Type": "OR"
            },
            "Status": "PENDING",
            "WaitPeriodMs": 5000
        }
    }
}
```

与其他路由控制资源一样,您可以在安全规则传播到数据平面后对其进行描述、列出或删除。

设置一个或多个安全规则后,您可以继续与集群交互,以设置或检索路由控制的状态。如果某项 set-routing-control-state 操作违反了您创建的规则,您将收到类似下方的异常:

第一个标识符是控制面板 ARN 与路由控制 ARN 的连接体。第二个标识符是控制面板 ARN 与安全规则 ARN 的连接体。

5. 创建运行状况检查

要使用路由控制对流量进行故障转移,您可以在 Amazon Route 53 中创建运行状况检查,然后将运行状况检查与您的 DNS 记录关联起来。为了故障转移流量,Route 53 ARC 路由控制会将运行状况检查

设置为失败,这样 Route 53 就会重新路由流量。(运行状况检查对应用程序的运行状况无效;它只是用作重新路由流量的方法。)

举个例子,假设您有两个单元(区域或可用区)。您可以将一个单元配置为应用程序的主单元,将另一个配置为辅助单元,以便进行故障切换。

要为失效转移设置运行状况检查,您可以执行以下操作,例如:

- 1. 使用 Route 53 ARC CLI 为每个单元格创建路由控制。
- 2. 使用 Route 53 CLI 在 Route 53 中为每个路由控制创建 Route 53 ARC 运行状况检查。
- 3. 使用 Route 53 CLI 在 Route 53 中创建两个失效转移 DNS 记录,并将运行状况检查与每个记录关联 起来。

5a. 为每个单元格创建路由控制。

5b. 为每个路由控制创建运行状况检查。

Note

使用 Amazon Route 53 CLI 创建 Route 53 ARC 运行状况检查。

```
"Location": "https://route53.amazonaws.com/2015-01-01/healthcheck/11111aaaa-bbbb-
cccc-dddd-ffffff22222",
    "HealthCheck": {
        "Id": "xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx",
        "CallerReference": "RoutingControlCell1",
        "HealthCheckConfig": {
            "Type": "RECOVERY_CONTROL",
            "Inverted": false,
            "Disabled": false,
            "RoutingControlArn": "arn:aws:route53-recovery-
control::111122223333:controlpanel/0123456bbbbbbb0123456bbbbbb0123456/routingcontrol/
abcdefg1234567"
        },
        "HealthCheckVersion": 1
    }
}
```

```
{
    "Location": "https://route53.amazonaws.com/2015-01-01/healthcheck/11111aaaa-bbbb-
cccc-dddd-ffffff22222",
    "HealthCheck": {
        "Id": "xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxx",
        "CallerReference": "RoutingControlCell2",
        "HealthCheckConfig": {
            "Type": "RECOVERY_CONTROL",
            "Inverted": false,
            "Disabled": false,
            "RoutingControlArn": "arn:aws:route53-recovery-
control::111122223333:controlpanel/0123456bbbbbbb0123456bbbbbb0123456/routingcontrol/
abcdefg1234567"
        },
        "HealthCheckVersion": 1
    }
}
```

5c. 创建两个失效转移 DNS 记录,并将运行状况检查与每个记录关联起来。

使用 Route 53 CLI 在 Route 53 中创建失效转移 DNS 记录。要创建记录,请按照《Amazon Route 53 AWS CLI 命令参考》中的 change-r <u>esource-record-set</u> s 命令进行操作。在记录中,指定每个单元格的 DNS 值以及 Route 53 为运行状况检查创建的相应 HealthCheckID 值(请参阅 6b)。

对干主单元格:

对于辅助单元格:

现在,要从主单元格失效转移到辅助单元格,可以按照步骤 4b 中的 CLI 示例将 RoutingControlCell1 的状态更新为 OFF,将 RoutingControlCell2 的状态更新为 ON。

使用 CLI 操作的示例 10G

使用列出并更新路由控制和状态 AWS CLI

创建 Amazon Route 53 应用程序恢复控制器资源(例如集群、路由控制和控制面板)后,您可以与集 群交互以列出和更新故障转移的路由控制状态。

对于您创建的每个集群,Route 53 ARC 都会为您提供一组集群端点,五个 AWS 区域中各有一组。在 调用集群以检索或将路由控制状态设置为或时,必须指定其中一个区域终端节点(AWS 区域 和终端 节点 URL)0ff。0n当您使用 AWS CLI、获取或更新路由控制状态时,除了区域终端节点外,还必须 指定区域终端节点--region的终端节点,如本节中的示例所示。

您可以使用任何区域集群端点。我们建议您的系统在区域终端节点之间轮换,并做好使用每个可用终端 节点重试的准备。有关说明按顺序尝试集群端点的代码示例,请参阅使用 AWS SDK 的应用程序恢复 控制器的操作。

有关使用的更多信息 AWS CLI,请参阅《 AWS CLI 命令参考》。有关路由控制 API 操作的列表以及 指向更多信息的链接,请参阅 路由控制 API 操作。

Important

尽管您可以在 Amazon Route 53 控制台上更新路由控制状态,但我们建议您使用 AWS CLI 或 AWS SDK 更新路由控制状态。Route 53 ARC 通过 Route 53 ARC 路由控制数据面板提供极 高的可靠性,以重新路由流量和跨单元格失效转移。有关使用 Route 53 ARC 进行失效转移的 更多建议,请参阅Route 53 ARC 中路由控制的最佳实践。

创建路由控制时,状态设置为 0ff。这意味着流量不会路由到该路由控制的目标单元格。您可以通过 运行 get-routing-control-state 命令验证路由控制的状态。

要确定将要指定的区域和端点,请运行 describe-clusters 命令以查看 ClusterEndpoints。 每个 ClusterEndpoint 都包括一个区域和相应的端点,可用于获取或更新路由控制状 态。DescribeCluster是一项恢复控制配置 API 操作。我们建议您将 Route 53 ARC 区域集群端点的本 地副本保存在书签中,或者硬编码到用于重试端点的自动化代码中。

1. 列出路由控制

您可以使用高度可靠的 Route 53 ARC 数据面板端点查看路由控制和路由控制状态。

1. 列出特定控制面板的路由控制。如果不指定控制面板,list-routing-controls 会返回集群中的 所有路由控制。

aws route53-recovery-cluster list-routing-controls --control-panel-arn \

```
{
   "RoutingControls": [{
       "ControlPanelArn": "arn:aws:route53-recovery-
control::111122223333:controlpanel/0123456bbbbbbb0123456bbbbbb0123456",
       "ControlPanelName": "ExampleControlPanel",
       "RoutingControlArn": "arn:aws:route53-recovery-
abcdefg1234567",
       "RoutingControlName": "RCOne",
       "RoutingControlState": "On"
   },
       "ControlPanelArn": "arn:aws:route53-recovery-
control::023759465626:controlpanel/0123456bbbbbbb0123456bbbbbb0123456",
       "ControlPanelName": "ExampleControlPanel",
       "RoutingControlArn": "arn:aws:route53-recovery-
control::023759465626:controlpanel/0123456bbbbbbb0123456bbbbbb0123456/routingcontrol/
zzzzxxxxyyyy123456",
       "RoutingControlName": "RCTwo",
       "RoutingControlState": "Off"
   }
]
```

2. 获取路由控制

2. 获取路由控制状态。

 $\verb|control|::111122223333:control| panel/0123456bbbbbbb0123456bbbbbb0123456/routingcontrol/abcdefg1234567", \\$

{"RoutingControlArn": "arn:aws:route53-recovery-

```
"RoutingControlName": "RCOne",
    "RoutingControlState": "On"
}
```

2. 更新路由控制

{}

要将流量路由到路由控制所控制的目标端点,请将路由控制状态更新为 0n。通过运行 update-routing-control-state 命令更新路由控制状态。(请求成功时,响应为空。)

2a. 更新路由控制状态。

{}

您可以通过一个 API 调用同时更新多个路由控制:update-routing-control-states。(请求成功时,响应为空。)

2b. 一次更新多个路由控制状态(批量更新)。

使用 Route 53 ARC 中的路由控制组件

主题

- 在 Route 53 ARC 中创建路由控制组件
- 在 Route 53 ARC 中查看和更新路由控制状态
- 为路径控制创建安全规则
- 跨账户支持 Route 53 ARC 中的集群

在 Route 53 ARC 中创建路由控制组件

本节介绍如何创建集群、路由控制、运行状况检查和控制面板,以便在 Amazon Route 53 应用程序恢复控制器中使用路由控制。

首先创建一个集群,以托管您的路由控制和用于给路由控制分组的控制面板。然后创建路由控制和运行状况检查,这样就可以重新路由流量,从一个单元格失效转移到另一个单元格,使流量流向别处,例如您的备份副本。

请注意,您创建的每个集群均按小时收费。通常,您只需要一个集群来托管路由控制和控制面板,以管理应用程序的恢复控制。此外,您可以使用设置资源共享 AWS Resource Access Manager,以便一个群集可以托管路由控制和多个群集拥有的其他 Route 53 ARC 资源 AWS 账户。要了解有关 Route 53 ARC 中的资源共享的信息,<u>跨账户支持 Route 53 ARC 中的集群</u>. 有关定价信息,请参阅 <u>Amazon Route 53 应用程序恢复控制器定价,然后向下滚动至 Amazon Route 53</u>。

要使用路由控制对流量进行失效转移,您需要创建路由控制运行状况检查,并将其与应用程序中资源的 Amazon Route 53 DNS 记录相关联。举个例子,假设您有两个单元格,一个配置为应用程序的主单元格,另一个配置为辅助单元格(失效转移的目的地)。

要为失效转移设置运行状况检查,请执行以下操作:

- 1. 为每个单元格创建路由控制。
- 2. 为每个路由控制创建运行状况检查。
- 3. 创建两个 DNS 记录(例如两个 DNS 故障转移记录),并将运行状况检查与每个记录关联起来。

当您创建的安全规则是门控规则时,也可能需要创建路由控制。在这种情况下,不要将运行状况检查和 DNS 记录与路由控制相关联,因为您要把它用作门控路由控制。有关更多信息,请参阅 为路径控制创建安全规则。

这些部分中包含在 Route 53 ARC 控制台上创建路由控制组件的步骤。要了解如何在 Route 53 ARC 中 使用恢复控制配置 API 操作,请参阅 路由控制 API 操作。

在 Route 53 ARC 中创建集群

您必须在 Route 53 ARC 中创建一个集群来托管路由控制和控制面板。

集群是一组冗余的区域端点,您可以在这些端点上执行 API 调用,以更新或获取一个或多个路由控制 的状态。一个集群可以托管许多路由控制。

Important

请注意,您创建的每个集群均按小时收费。一个集群可以托管许多路由控制和控制面板,通常 足够用来管理应用程序的恢复控制。

创建集群

- 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/ dashboard.
- 2. 选择 Clusters (集群)。
- 选择创建,然后输入集群的名称。 3.
- 4. 选择创建集群。

在 Route 53 ARC 中创建路由控制

为流量路由的每个目标单元格创建路由控制。例如,当您的应用程序的资源孤立以实现可恢复性时,每 个应用程序可能都有一个单元,每个区域的每个 AWS 区域可用区都有嵌套单元格。在这种情况下,要 为每个单元格和每个嵌套单元格创建一个路由控制。

创建路由控制时,请记住路由控制名称在每个控制面板中必须是唯一的。

创建用于重新路由流量的路由控制后,您可以将每个路由控制与运行状况检查相关联,这样您就可以根 据与每个检查关联的 DNS 记录将流量路由到单元格。如果您要设置门控规则作为安全规则并创建门控 路由控制,则不要向路由控制中添加运行状况检查。

创建路由控制的步骤

打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/ dashboard.

- 2. 选择"路由控制"。
- 3. 在路由控制页面上,选择创建,然后选择路由控制。
- 4. 输入路由控制的名称,选择要添加控制的目标集群,然后选择把它添加到现有的控制面板,包括使用默认控制面板。或者创建新的控制面板。
- 5. 如果您选择创建新的控制面板,请选择要在上面创建控制面板的集群,然后输入面板的名称。
- 6. 选择创建路由控制。
- 7. 按照步骤命名和创建路由控制。

在 Route 53 ARC 中创建路由控制运行状况检查

请将路由控制运行状况检查与要用于重新路由流量的每个路由控制关联起来。然后,为每个运行状况检查配置 Amazon Route 53 DNS 记录(例如失效转移 DNS 记录)。然后,您只需更新关联的路由控制的状态,将其设置为 0n 或 0ff,即可在 Amazon Route 53 应用程序恢复控制器中重新路由流量。

Note

您无法编辑现有的路由控制运行状况检查,将其与其他路由控制相关联。

创建路由控制运行状况检查的步骤

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 选择"路由控制"。
- 3. 在路由控制页面上,选择一个路由控制。
- 4. 在路由控制详细信息页面上,选择创建运行状况检查。
- 5. 输入运行状况检查的名称,然后选择创建。

接下来,创建 Route 53 DNS 记录,并将您的路由控制运行状况检查与每个记录相关联。例如,假设您希望使用两个 DNS 失效转移记录来与路由控制运行状况检查相关联。要让 Route 53 ARC 通过使用路由控制正确地对流量进行失效转移,首先要在 Route 53 中创建两个失效转移记录:主失效转移记录和辅助失效转移记录。有关配置 DNS 故障转移记录的更多信息,请参阅运行状况检查概念。

创建主失效转移记录时,其值应如下所示:

Name: myapp.yourdomain.com

Type: CNAME

Set Identifier: Primary

Failover: Primary

TTL: 0

Resource Records:

Value: cell1.yourdomain.com

Health Check ID: xxxxxx-xxxx-xxxx-xxxxxxxxxxxx

辅助失效转移记录值应如下所示:

Name: myapp.yourdomain.com

Type: CNAME

Set Identifier: Secondary

Failover: Secondary

TTL: 0

Resource Records:

Value: cell2.yourdomain.com

Health Check ID: xxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxx

现在,假设您要重新路由流量,因为出现了故障。为此,您需要更新关联的路由控制状态,将主路由控制状态更改为 OFF,将辅助路由控制状态更改为 ON。执行此操作时,关联的运行状况检查会阻止流量流向主副本,而是将其路由到辅助副本。有关使用路由控制对流量进行失效转移的更多信息,请参阅使用 Route 53 ARC API 获取和更新路由控制状态(推荐)。

要查看使用 Route 53 ARC API 操作创建路由控制和相关运行状况检查的 AWS CLI 命令示例,请参阅使用 Route 53 ARC 路由控制 API 操作的示例 AWS CLI。

在 Route 53 ARC 中创建控制面板

Amazon Route 53 应用程序恢复控制器中的控制面板可以将相关的路由控制聚合起来。控制面板可以包含代表应用程序中的微服务、整个应用程序或一组应用程序的路由控制,具体取决于失效转移的范围。将路径控制组合到控制面板中的一个好处是,您可以配合使用安全规则和控制面板,帮助保护流量路由的变化。

创建集群时,Route 53 ARC 会创建一个默认的控制面板。您可以使用默认控制面板放置路由控制,也可以创建一个或多个控制面板,对路由控制进行分组。请注意,控制面板名称仅支持 ASCII 字符。

本节包含在 Route 53 ARC 控制台上创建控制面板的步骤。有关在 Route 53 ARC 中使用恢复控制配置 API 操作的信息,请参阅 路由控制 API 操作。

创建控制面板的步骤

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 选择"路由控制"。
- 3. 在路由控制页面上,选择创建,然后选择控制面板。
- 4. 请选择要在上面创建控制面板的集群,然后输入面板的名称。
- 5. 选择创建控制面板。

在 Route 53 ARC 中查看和更新路由控制状态

本节介绍如何在 Amazon Route 53 应用程序恢复控制器中查看和更新路由控制。路由控制是简单的开关机构,管理流向恢复组中的单元格的流量。单元通常是可用区 AWS 区域,有时是包含您的资源的可用区。当路由控制状态为 0n 时,流量会流向由受该路由控制所控的单元格。

您可以将路由控制组合到控制面板中,后者是失效转移逻辑分组。例如,当您在控制台上打开控制面板时,您可以同时查看一个分组的所有路由控制,从而看清流量流向何处。

您可以在 Route 53 ARC 控制台上或使用 Route 53 ARC API 更新路由控制状态。我们建议您使用 API 更新路由控制状态。首先,Route 53 ARC 在数据面板中提供极其可靠的 API 来执行这些操作。当您更改路由控制状态时,这一点很重要,因为路由状态的更改会通过重新路由应用程序流量进行跨单元格的失效转移。此外,使用 API 时,如果您尝试连接的集群端点不可用,可以根据需要尝试轮流连接到不同的集群端点。

您可以更新一个路由控制状态,也可以同时更新多个路由控制状态。例如,您可能想要将一个路由控制状态设置为 0ff,以阻止流量流向一个单元格,比如应用程序延迟增加的可用区。同时,您可能想要将另一个路由控制状态设置为 0n,以启动流向另一个单元格或可用区的流量。在这种情况下,您可以同时更新两个路由控制状态,以使流量可以持续流动。

主题

- 使用 Route 53 ARC API 获取和更新路由控制状态(推荐)
- 获取和更新中的路由控制状态 AWS Management Console

使用 Route 53 ARC API 获取和更新路由控制状态(推荐)

我们建议您使用 Amazon Route 53 应用程序恢复控制器 API 操作来获取或更新路由控制状态,方法是使用 AWS CLI 命令或使用您为在其中一个软件开发工具包中使用 Route 53 ARC API 操作而 AWS 开

发的代码。建议使用 CLI 或代码中的 API 操作(而不是使用 AWS Management Console)来处理路由控制状态。

由于路由控制存储在高度可用的集群中,所以 Route 53 ARC 通过使用 API 更新路由控制状态,可以极其可靠地进行跨单元格 (AWS 区域) 失效转移。Route 53 ARC 确保您始终可以访问五个区域集群端点中的至少三个端点,以进行路由控制状态更改。要使用 API 获取或更改路由控制状态,您需要连接到其中一个区域集群端点。如果该端点不可用,可尝试连接到另一个集群端点。

您可以在 Route 53 控制台中查看集群的区域集群终端节点列表,也可以使用 API 操作查 看<u>DescribeCluster</u>。在获取和更改路由控制状态的过程中,应根据需要轮流尝试每个端点,因为集群 端点会在可用和不可用状态之间循环,以便定期维护和更新。

我们提供了有关使用 Route 53 ARC API 操作获取和更新路由控制状态以及使用区域集群端点的详细信息和代码示例。有关更多信息,请参阅下列内容:

- 有关说明如何轮换区域集群端点以获取和设置路由控制状态的代码示例,请参阅使用 AWS SDK 的 应用程序恢复控制器的操作。
- 有关使用获取和更新路由控制状态的信息,请参阅 使用列出并更新路由控制和状态 AWS CLI。 AWS CLI

获取和更新中的路由控制状态 AWS Management Console

您可以在 AWS Management Console中获取和更新路由控制状态。但请注意,您不能在控制台中选择不同的区域集群端点。也就是说,不像使用 Amazon Route 53 应用程序恢复控制器 API 那样,在控制台中没有选择和轮换集群端点的过程。此外,控制台的可用性不高,而 Route 53 ARC 数据面板提供了极高的可靠性。出于这些原因,我们建议您在生产运营中使用 Route 53 ARC API 获取和更新路由控制状态。

有关使用 Route 53 ARC 进行失效转移的更多建议,请参阅Route 53 ARC 中路由控制的最佳实践。

要在控制台中查看和更新路由控制,请按照以下过程中的步骤操作。

获取路由控制状态的步骤

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 选择"路由控制"。
- 3. 从列表中选择控制面板并查看路由控制。

更新一个或多个路由控制状态的步骤

- 1. 打开 Amazon Route 53 控制台,网址为 https://console.aws.amazon.com/route53/home。
- 2. 在应用程序恢复控制器下,选择路由控制。
- 3. 选择操作,然后选择更改流量路由。
- 4. 根据您想让应用程序的流量流向或停止流向何处,将一个或多个路由控制的状态更新为 0ff 或 0n。
- 5. 在文本框中输入 confirm。
- 6. 选择更新流量路由。

为路径控制创建安全规则

当你同时使用多个路由控制时,你可能会决定要采取安全措施来避免意想不到的后果。例如,您可能希望防止无意中关闭应用程序的所有路由控制,因为这样会导致出现打开失败情况。也许为了防止自动化机制重新路由流量,您也可能想实现一个主开关机构来禁用一组路由控制。要在 Route 53 ARC 中建立这样的路径控制保障措施,您需要创建安全规则。

您可以使用路由控制、规则和您指定的其他选项的组合来配置路由控制的安全规则。每个安全规则都与一个控制面板相关联,但一个控制面板可以有多个安全规则。创建安全规则时,请记住在每个控制面板中安全规则名称必须是唯一的。

主题

- 安全规则的类型
- 在控制台上创建安全规则
- 在控制台上编辑或删除安全规则
- 覆盖安全规则以重新路由流量

安全规则的类型

安全规则有两种类型,即断言规则和门控规则,您可以使用它们以不同的方式保护失效转移。

断言规则

使用断言规则时,如果您更改一个或一组路由控制状态,Route 53 ARC 会强制满足您在配置规则时设置的标准,否则路由控制状态不会更改。

使用路由控制组件 11向

预防打开失败就是适合使用这种规则的一个例子。在打开失败的情况中,您会阻止流量流向一个单元格,但没有让流量开始流向另一个单元格。为了避免这种情况,断言规则确保在任何给定时间控制面板的一组路由控制中至少有一个路由控制是 0n 状态。这样可以确保流量流向应用程序的至少一个区域或可用区。

要查看创建断言规则以强制执行此标准的 AWS CLI 命令示例,请参阅中的 使用 Route 53 ARC 路由控制 API 操作的示例 AWS CLI创建安全规则。

有关断言规则 API 操作属性的详细信息,请参阅 <u>AssertionRule</u>Amazon Route 53 应用程序恢复控制器的路由控制 API 参考指南。

门控规则

使用门控规则时,您可以对一组路由控制实施整体的开关,以根据您在规则中指定的一组标准来判断这些路由控制状态是否可以更改。最简单的标准是,指定为开关的单个路由控制设置为 ON 还是 OFF。

要实现这一点,您需要创建门控路由控制作为整体开关,并创建目标路由控制,以控制流量流向不同的区域或可用区。然后,要防止手动或自动更新您为门控规则配置的目标路由控制的状态,您需要将门控路由控制状态设置为 Off。要允许更新,请将其设置为 On。

要查看用于创建实现此类整体开关的门控规则的示例 AWS CLI 命令,请参阅中的创建安全规则 使用 Route 53 ARC 路由控制 API 操作的示例 AWS CLI。

有关门控规则 API 操作属性的详细信息,请参阅 <u>GatingRule</u>Amazon Route 53 应用程序恢复控制器的路由控制 API 参考指南。

在控制台上创建安全规则

本节中的步骤说明了如何在 Route 53 ARC 控制台中创建安全规则。无论您创建断言规则还是门控规则,步骤都是相似的。差异已在程序中注明。

要了解如何在 Amazon Route 53 应用程序恢复控制器中使用恢复和路由控制 API 操作,请参阅 <u>路由控制 API 操作</u>。

创建安全规则的步骤

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 选择"路由控制"。

- 3. 在路由控制页面上,选择一个控制面板。
- 4. 在控制面板详细信息页面上,选择操作,然后选择添加安全规则。
- 5. 选择要添加的规则类型:断言规则或门控规则。
- 6. 选择一个名称,然后(可选)更改等待时间。
- 7. 指定安全规则的配置选项。
 - 对于断言规则,请指定断言的路由控制。
 - 对于门控规则,请指定门控路由控制和目标路由控制。

对于两种规则,通过选择类型和阈值以及规则是否反转来指定规则配置。

Note

要了解有关指定断言规则的更多信息,请参阅 Amazon Route 53 应用程序恢复控制器的路由控制 API 参考指南中提供的 Assertion Rule 操作信息。要了解有关指定门控规则的更多信息,请参阅 Amazon Route 53 应用程序恢复控制器的路由控制 API 参考指南中为该Gating Rule 操作提供的信息。

8. 选择创建。

在控制台上编辑或删除安全规则

本节中的步骤说明了如何在 Route 53 ARC 控制台中编辑或删除安全规则。您只能对安全规则进行有限的编辑,以更改名称或更新等待时间。要进行其他更改,请删除并重新创建安全规则。

要了解如何在 Amazon Route 53 应用程序恢复控制器中使用 API 操作,请参阅 路由控制 API 操作。

删除安全规则的步骤

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 选择"路由控制"。
- 3. 在路由控制页面上,选择一个控制面板。
- 4. 在控制面板详细信息页面上,选择安全规则,然后选择删除或编辑。

覆盖安全规则以重新路由流量

在某些情况下,您可能想绕过通过配置的安全规则强制执行的路由控制保护措施。例如,您可能想要快速失效转移以进行灾难恢复,而一个或多个安全规则可能会意外阻止您更新路由控制状态以重新路由流量。在这种"打碎玻璃"的情况下,您可以覆盖一个或多个安全规则来更改路由控制状态并对应用程序进行失效转移。

使用带safety-rules-to-override参数的或update-routing-control-states AWS CLI 命令更新路由控制状态(或多个路由控制状态)时,可以绕过安全规则。update-routing-control-state为该参数指定您要覆盖的安全规则的 Amazon 资源名称 (ARN),或者指定以逗号分隔的 ARN 列表来覆盖两个或多个安全规则。

当安全规则阻止路由控制状态更新时,错误消息将包含阻止更新的规则的 ARN。您可以记下 ARN,然后在路由控制状态 CLI 命令的安全规则覆盖参数中指定它。

Note

由于您正在更新的路由控制可能设有多个安全规则,因此您可能在运行 CLI 命令更新路由控制 状态时只覆盖一个安全规则,而收到另一个安全规则阻止更新的错误。继续向更新命令中要覆 盖的规则列表添加安全规则 ARN(以逗号分隔),直到更新命令成功完成。

要详细了解如何将该SafetyRulesToOverride属性与 API 和软件开发工具包配合使用,请参阅UpdateRoutingControlState。

以下是覆盖安全规则以更新路由控制状态的两个 CLI 命令示例。

覆盖一个安全规则

覆盖两个安全规则

跨账户支持 Route 53 ARC 中的集群

Amazon Route 53 应用程序恢复控制器与集成 AWS Resource Access Manager 以实现资源 共享。 AWS RAM 是一项使您能够与其他人共享资源 AWS 账户 或通过共享资源的服务 AWS Organizations。对于 Route 53 ARC,您可以共享集群资源。

使用 AWS RAM,您可以通过创建资源共享来共享您拥有的资源。资源共享指定要共享的资源以及共享资源的参与者。参与者可以包括:

- 特定于所有者组织 AWS 账户 内部或外部 AWS Organizations
- 其组织内部的组织单位 AWS Organizations
- 它的整个组织都在 AWS Organizations

有关的更多信息 AWS RAM,请参阅《AWS RAM 用户指南》。

通过使用 AWS Resource Access Manager 在 Route 53 ARC 中跨账户共享群集资源,您可以使用一个集群来托管由多个不同账户拥有的控制面板和路由控件 AWS 账户。当您选择共享集群时,您指定的其他 AWS 账户 人可以使用该集群来托管自己的控制面板和路由控件,从而可以对不同团队之间的路由功能进行更多的控制和灵活性。

AWS RAM 是一项可帮助 AWS 客户安全地共享资源的服务 AWS 账户。借 AWS RAM助,您可以使用 IAM 角色和用户在 AWS Organizations组织或组织单位 (OU) 内共享资源。 AWS RAM 是一种集中和 受控的群集共享方式。

通过共享集群,可以减少组织所需的集群总数。集群共享后,您可以将运行集群的总成本分摊给不同的团队,从而以更低的成本更大限度地发挥 Route 53 ARC 的优势。(创建托管在集群中的资源不会给拥有者或参与者增加成本。) 跨账户共享集群还可以简化将多个应用程序加载到 Route 53 ARC 的过程,尤其是在大量应用程序分布在多个账户和运营团队中的情况下。

要开始在 Route 53 ARC 中进行跨账户共享,请在 AWS RAM中创建资源共享。资源共享指定有权共享您的账户所拥有的集群的参与者。然后,参与者可以在集群中创建资源,例如控制面板和路由控件,方法是使用 AWS Management Console AWS Command Line Interface 或 AWS 软件开发工具包运行Route 53 ARC API 操作。

本主题说明如何共享您拥有的资源以及如何使用共享给您的资源。

内容

- 共享集群的先决条件
- 共享集群
- 取消共享集群
- 识别共享集群
- 共享集群的责任和权限
- 成本计费
- 配额

共享集群的先决条件

- 要共享集群,您必须在自己的集群中拥有该集群 AWS 账户。这意味着资源必须分配或预调配到您的 账户。您无法共享已共享给您的集群。
- 要与您的组织或 AWS Organizations内的组织单位共享集群,您必须允许与 AWS Organizations共享。有关更多信息,请参阅《AWS RAM 用户指南》中的允许与 AWS Organizations共享。

共享集群

当您共享自己拥有的集群时,您指定共享该集群的参与者可以在集群中创建和托管自己的 Route 53 ARC 资源。

要共享集群,您必须将它添加到资源共享中。资源共享是一项 AWS RAM 资源,可让您跨 AWS 账户共享资源。资源共享将指定要共享的资源以及共享资源的参与者。要共享集群,您可以创建新的资源共享或将资源添加到现有资源共享。要创建新的资源共享,您可以使用AWS RAM 控制台,也可以对 AWS Command Line Interface 或 AWS 软件开发工具包使用 AWS RAM API 操作。

如果您是组织中的一员, AWS Organizations 并且启用了组织内部共享,则组织中的参与者将自动获得访问共享群集的权限。否则,参与者会收到加入资源共享的邀请,并在接受邀请后获得对共享集群的访问权限。

您可以使用 AWS RAM 控制台共享您拥有的集群,也可以使用 AWS RAM API 操作与 AWS CLI 或软件开发工具包共享。

使用 AWS RAM 控制台共享您拥有的集群

请参阅《AWS RAM 用户指南》中的创建资源共享。

要共享您拥有的集群,请使用 AWS CLI

使用 create-resource-share 命令。

取消共享集群

取消共享集群时,以下规则适用于参与者和拥有者:

- 现有参与者资源将继续留存在已取消共享的集群中。
- 参与者可以继续在已取消共享的集群中更新路由控制状态,以管理应用程序失效转移的路由。
- 参与者不能再在已取消共享的集群中创建新资源。
- 如果参与者在已取消共享的集群中仍有资源,则拥有者无法删除共享集群。

要取消共享您拥有的共享集群,必须从资源共享中将其删除。为此,您可以使用 AWS RAM 控制台或将 AWS RAM API 操作与 AWS CLI 或软件开发工具包一起使用。

使用控制台取消共享您拥有的共享集群 AWS RAM

请参阅《AWS RAM 用户指南》中的更新资源共享。

要取消共享您拥有的共享集群,请使用 AWS CLI

使用 disassociate-resource-share 命令。

识别共享集群

拥有者和参与者可以通过查看 AWS RAM中的信息来识别共享集群。他们还可以通过使用 Route 53 ARC 控制台和 AWS CLI获取有关共享资源的信息。

一般而言,要详细了解您已共享或已与您共享的资源,请参阅 AWS Resource Access Manager 用户 指南中的信息:

- 作为拥有者,您可以使用 AWS RAM查看与他人共享的所有资源。有关更多信息,请参阅中的查看 共享资源 AWS RAM。
- 作为参与者,您可以使用查看与您共享的所有资源 AWS RAM。有关更多信息,请参阅中的查看共享资源 AWS RAM。

作为所有者,您可以通过查看中的信息 AWS Management Console 或使用 with Route 53 ARC API 操作来确定是否共享集群。 AWS Command Line Interface

使用控制台确定您拥有的集群是否已共享的步骤

在 AWS Management Console集群的详细信息页面上,查看集群共享状态。

要确定您拥有的集群是否已共享,请使用 AWS CLI

使用 get-resource-policy 命令。如果集群有资源策略,则该命令将返回有关该策略的信息。

作为参与者,当集群共享给您时,您通常必须接受共享。此外,集群的拥有者字段包含集群拥有者的帐户。

共享集群的责任和权限

所有者的权限

当您与其他人共享您拥有的集群时 AWS 账户,允许使用该集群的参与者可以在集群中创建控制面板、 路由控件和其他资源。

作为集群的拥有者,您负责创建、管理和删除集群。您不能修改或删除参与者创建的资源,例如路由控制和安全规则。例如,您不能更新参与者创建的路由控制,以更改路由控制状态。

但是,您可以查看参与者在您拥有的集群中创建的路由控制的详细信息。例如,您可以使用 AWS Command Line Interface 或 AWS 软件开发工具包调用 R <u>oute 53 ARC 路由控制 API 操作</u>来查看路由控制状态。

如果您需要修改参与者创建的资源,他们可以在 IAM 中设置一个拥有资源访问权限的角色,并将您的账户添加到该角色中。

参与者的权限

一般而言,参与者可以创建和使用他们在共享的集群中创建的控制面板、路由控制、安全规则和运行状况检查。只有他们在共享集群中拥有资源,才能查看、修改或删除这些集群资源。例如,参与者可以为自己创建的控制面板创建和删除安全规则。

以下限制适用于参与者:

- 参与者无法查看、修改或删除由使用共享集群的其他账户创建的控制面板。
- 参与者无法查看、创建或修改其他账户在共享集群中创建的资源的路由控制,包括路由控制状态。
- 参与者无法创建、修改或查看其他账户在共享集群中创建的安全规则。
- 参与者无法在共享集群的默认控制面板中添加资源,因为它属于集群拥有者。

如前所述,参与者无法在共享集群的默认控制面板中创建路由控制,因为集群拥有者拥有默认控制面板。但是,集群拥有者可以创建跨账户 IAM 角色,以提供访问集群默认控制面板的权限。然后,拥有者可以向参与者授予权限以担任该角色,这样参与者就可以访问默认控制面板,按照拥有者通过角色权限指定的方式使用该面板。

成本计费

Route 53 ARC 中集群的拥有者需要支付与该集群相关的成本。对于集群拥有者或参与者来说,创建托管在集群中的资源不会产生任何额外成本。

有关详细的定价信息和示例,请参阅 <u>Amazon Route 53 应用程序恢复控制器定价</u>,然后向下滚动到 Amazon Route 53 应用程序恢复控制器。

配额

在共享集群中创建的所有资源(包括有权访问共享集群的所有参与者创建的资源)都计入该群集和其他 资源(例如路由控制)的有效限额。如果共享群集资源的账户的配额高于群集所有者的配额,则群集所 有者的配额优先于共享的账户的配额。

要更好地理解其工作原理,请参阅以下示例。为了说明配额如何与资源共享一起使用,在这些示例中, 假设集群所有者是所有者,而与之共享集群的账户是参与者。

控制面板配额

所有者对每个集群的控制面板总数实行配额。

例如,假设 Owner 每个集群的控制面板数量配额为 50,并且集群中有 13 个控制面板。现在,假设参与者的配额设置为 150。在这种情况下,参与者只能在共享集群中创建最多 37 个控制面板 (即 50-13)。

此外,如果共享集群的其他账户也创建了控制面板,则这些控制面板也都计入集群总配额(50 个控制面板)。

路由控制配额

路由控制有多个配额:每个控制面板的配额、每个集群的配额以及每个安全规则的配额。所有这些 配额均优先考虑所有者的配额。

例如,假设 Owner 每个集群的路由控制数量配额为 300,并且集群中已经有 300 个路由控件。现在,假设参与者已将此配额设置为 500。在这种情况下,参与者无法在共享集群中创建任何新的路由控件。

安全规则配额

根据控制面板配额,所有者的安全规则强制执行配额。

例如,假设所有者每个控制面板的安全规则数量配额为 20,参与者将此配额设置为 80。在这种情况下,由于所有者的下限优先,因此参与者只能在共享集群的控制面板中创建最多 20 条安全规则。

有关路由控制配额的列表,请参阅路由控制配额。

在 Amazon Route 53 应用程序恢复控制器中记录和监控路由控制

您可以使用 AWS CloudTrail 在 Amazon Route 53 应用程序恢复控制器中监控路由控制,以分析模式 并帮助解决问题。

主题

• 使用记录 Route 53 ARC API 调用 AWS CloudTrail

使用记录 Route 53 ARC API 调用 AWS CloudTrail

Amazon Route 53 应用程序恢复控制器与 AWS CloudTrail一项服务集成,该服务提供用户、角色或 AWS 服务在 Route 53 ARC 中采取的操作的记录。 CloudTrail 将 Route 53 ARC 的所有 API 调用捕获为事件。捕获的调用包含来自 Route 53 ARC 控制台的调用和对 Route 53 ARC API 操作的代码调用。

如果您创建了跟踪,则可以允许将 CloudTrail 事件持续传输到 Amazon S3 存储桶,包括 Route 53 ARC 的事件。如果您未配置跟踪,您仍然可以在 CloudTrail 控制台的 "事件历史记录" 中查看最新的事件。

使用收集的信息 CloudTrail,您可以确定向 Route 53 ARC 发出的请求、发出请求的 IP 地址、谁发出了请求、何时发出请求以及其他详细信息。

日记账记录和监控 125

要了解更多信息 CloudTrail,请参阅AWS CloudTrail 用户指南。

Route 53 ARC 信息在 CloudTrail

CloudTrail 在您创建账户 AWS 账户 时已在您的账户上启用。当 Route 53 ARC 中发生活动时,该活动与其他 AWS 服务 CloudTrail 事件一起记录在事件历史记录中。您可以在中查看、搜索和下载最近发生的事件 AWS 账户。有关更多信息,请参阅使用 CloudTrail 事件历史记录。

要持续记录您的事件 AWS 账户,包括 Route 53 ARC 的事件,请创建一条跟踪。跟踪允许 CloudTrail 将日志文件传输到 Amazon S3 存储桶。预设情况下,在控制台中创建跟踪记录时,此跟踪记录应用于所有 AWS 区域。跟踪记录 AWS 分区中所有区域的事件,并将日志文件传送到您指定的 Amazon S3 存储桶。此外,您可以配置其他 AWS 服务,以进一步分析和处理 CloudTrail 日志中收集的事件数据。有关更多信息,请参阅下列内容:

- 创建跟踪记录概述
- CloudTrail 支持的服务和集成
- 配置 Amazon SNS 通知 CloudTrail
- 接收来自多个地区的 CloudTrail 日志文件和接收来自多个账户的 CloudTrail 日志文件

所有 Route 53 ARC 操作都由 CloudTrail 亚马逊 Route 53 应用程序恢复控制器的恢复准备 API 参考指南、亚马逊 Route 53 应用程序恢复控制器的恢复控制配置 API 参考指南和亚马逊 Route 53 应用程序恢复控制器的路由控制 API 参考指南和亚马逊 Route 53 应用程序恢复控制器的路由控制 API 参考指南中记录并记录在案。例如,调用UpdateRoutingControlState和CreateRecoveryGroup操作会在 CloudTrail 日志文件中生成条目。CreateCluster

每个事件或日记账条目都包含有关生成请求的人员信息。身份信息有助于您确定以下内容:

- 请求是使用根证书还是 AWS Identity and Access Management (IAM) 用户凭证发出。
- 请求是使用角色还是联合用户的临时安全凭证发出的。
- 请求是否由其他 AWS 服务发出。

有关更多信息,请参阅CloudTrail 用户身份元素。

在事件历史记录中查看 Route 53 ARC 事件

CloudTrail 允许您在事件历史记录中查看最近的事件。要查看 Route 53 ARC API 请求事件,您必须在控制台顶部的"区域"选择器中选择美国西部(俄勒冈州)。有关更多信息,请参阅《AWS CloudTrail 用户指南》中的"使用 CloudTrail 事件历史记录"。

日记账记录和监控 126

了解 Route 53 ARC 日志文件条目

跟踪是一种配置,允许将事件作为日志文件传输到您指定的 Amazon S3 存储桶。 CloudTrail 日志文件包含一个或多个日志条目。事件代表来自任何来源的单个请求,包括有关请求的操作、操作的日期和时间、请求参数等的信息。 CloudTrail 日志文件不是公共 API 调用的有序堆栈跟踪,因此它们不会按任何特定顺序出现。

以下示例显示了一个 CloudTrail 日志条目,该条目演示了配置路由控制的CreateCluster操作。

```
"eventVersion": "1.08",
 "userIdentity": {
   "type": "IAMUser",
   "principalId": "A1B2C3D4E5F6G7EXAMPLE",
   "arn": "arn:aws:iam::111122223333:user/smithj",
   "accountId": "111122223333",
   "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
   "sessionContext": {
        "sessionIssuer": {
            "type": "Role",
            "principalId": "A1B2C3D4E5F6G7EXAMPLE",
            "arn": "arn:aws:iam::111122223333:role/smithj",
            "accountId": "111122223333",
            "userName": "smithj"
        },
        "webIdFederationData": {},
        "attributes": {
            "mfaAuthenticated": "false",
            "creationDate": "2021-06-30T04:44:41Z"
        }
    }
},
"eventTime": "2021-06-30T04:45:46Z",
"eventSource": "route53-recovery-control-config.amazonaws.com",
"eventName": "CreateCluster",
"awsRegion": "us-west-2",
"sourceIPAddress": "192.0.2.50",
"userAgent": "aws-cli/2.0.0 Python/3.8.2 Darwin/19.6.0 botocore/2.0.0dev7",
"requestParameters": {
    "ClientToken": "12345abcdef-1234-5678-abcd-12345abcdef",
    "ClusterName": "XYZCluster"
"responseElements": {
```

```
"Cluster": {
          "Arn": "arn:aws:route53-recovery-control::012345678901:cluster/abc123456-
aa11-bb22-cc33-abc123456",
          "ClusterArn": "arn:aws:route53-recovery-control::012345678901:cluster/
abc123456-aa11-bb22-cc33-abc123456",
          "Name": "XYZCluster",
          "Status": "PENDING"
      }
  },
  "requestID": "6090509a-5a97-4be6-8e6a-7d73example",
  "eventID": "9cab44ef-0777-41e6-838f-f249example",
  "readOnly": false,
  "eventType": "AwsApiCall",
  "managementEvent": true,
  "eventCategory": "Management",
  "recipientAccountId": "111122223333"
}
```

以下示例显示了一个演示路由控制UpdateRoutingControlState操作的 CloudTrail 日志条目。

```
{
  "eventVersion": "1.08",
   "userIdentity": {
     "type": "AssumedRole",
     "principalId": "A1B2C3D4E5F6G7EXAMPLE",
     "arn": "arn:aws:sts::111122223333:assumed-role/admin/smithj",
     "accountId": "111122223333",
     "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
     "sessionContext": {
          "sessionIssuer": {
              "type": "Role",
              "principalId": "A1B2C3D4E5F6G7EXAMPLE",
              "arn": "arn:aws:iam::111122223333:role/admin",
              "accountId": "111122223333",
              "userName": "admin"
          },
          "webIdFederationData": {},
          "attributes": {
              "mfaAuthenticated": "false",
              "creationDate": "2021-06-30T04:44:41Z"
          }
      }
  },
```

日记账记录和监控 128

```
"eventTime": "2021-06-30T04:45:46Z",
  "eventSource": "route53-recovery-control-config.amazonaws.com",
  "eventName": "UpdateRoutingControl",
  "awsRegion": "us-west-2",
  "sourceIPAddress": "192.0.2.50",
  "userAgent": "aws-cli/2.0.0 Python/3.8.2 Darwin/19.6.0 botocore/2.0.0dev7",
  "requestParameters": {
      "RoutingControlName": "XYZRoutingControl3",
      "RoutingControlArn": "arn:aws:route53-recovery-
control::012345678:controlpanel/0123456bbbbbbb0123456bbbbbb0123456/routingcontrol/
abcdefg1234567"
  },
  "responseElements": {
      "RoutingControl": {
          "ControlPanelArn": "arn:aws:route53-recovery-
control::012345678:controlpanel/0123456bbbbbbb0123456bbbbbb0123456",
          "Name": "XYZRoutingControl3",
          "Status": "DEPLOYED",
          "RoutingControlArn": "arn:aws:route53-recovery-
control::012345678:controlpanel/0123456bbbbbbb0123456bbbbbb0123456/routingcontrol/
abcdefq1234567"
      }
  },
  "requestID": "6090509a-5a97-4be6-8e6a-7d73example",
  "eventID": "9cab44ef-0777-41e6-838f-f249example",
  "readOnly": false,
  "eventType": "AwsApiCall",
  "managementEvent": true,
  "eventCategory": "Management",
  "recipientAccountId": "111122223333"
}
```

用于路由控制的 Identity and Access Management

AWS Identity and Access Management (IAM) AWS 服务 可帮助管理员安全地控制对 AWS 资源的访问权限。IAM 管理员控制可以通过身份验证(登录)和授权(具有权限)使用 Route 53 ARC 资源的人员。您可以使用 IAM AWS 服务 ,无需支付额外费用。

内容

- Amazon Route 53 应用程序恢复控制器中的路由控制如何与 IAM 配合使用
- Amazon Route 53 应用程序恢复控制器中用于路由控制的基于身份的策略示例
- AWS Amazon Route 53 应用程序恢复控制器中的路由控制托管策略

Amazon Route 53 应用程序恢复控制器中的路由控制如何与 IAM 配合使用

在使用 IAM 在 Amazon Route 53 应用程序恢复控制器中管理对路由控制的访问权限之前,请先了解哪些可用于路由控制的 IAM 功能。

您可以在 Amazon Route 53 应用程序恢复控制器中使用路由控制的 IAM 功能

IAM 功能	路由控制支持
基于身份的策略	是
基于资源的策略	否
策略操作	是
<u>策略资源</u>	是
策略条件键	是
ACL	否
ABAC(策略中的标签)	部分
临时凭证	是
主体权限	是
服务角色	否
服务相关角色	否

要全面了解 AWS 服务如何与大多数 IAM 功能配合使用,请参阅 IAM 用户指南中的与 IAM 配合使用的AWS 服务。

Route 53 ARC 基于身份的策略

支持基于身份的策略	是
-----------	---

基于身份的策略是可附加到身份(如 IAM 用户、用户组或角色)的 JSON 权限策略文档。这些策略控制用户和角色可在何种条件下对哪些资源执行哪些操作。要了解如何创建基于身份的策略,请参阅 IAM 用户指南中的创建 IAM 策略。

通过使用 IAM 基于身份的策略,您可以指定允许或拒绝的操作和资源以及允许或拒绝操作的条件。您 无法在基于身份的策略中指定主体,因为它适用于其附加的用户或角色。要了解可在 JSON 策略中使 用的所有元素,请参阅《IAM 用户指南》中的 IAM JSON 策略元素引用。

要查看 Route 53 ARC 基于身份的路由控制策略示例,请参阅。Amazon Route 53 应用程序恢复控制器中用于路由控制的基于身份的策略示例

路由控制中基于资源的策略

支持基于资源的策略

否

基于资源的策略是附加到资源的 JSON 策略文档。基于资源的策略的示例包括 IAM 角色信任策略和 Simple Storage Service(Amazon S3)存储桶策略。在支持基于资源的策略的服务中,服务管理员可以使用它们来控制对特定资源的访问。

路由控制的策略操作

支持策略操作

是

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体 可以对什么资源 执行操作,以及在什么 条件 下执行。

JSON 策略的 Action 元素描述可用于在策略中允许或拒绝访问的操作。策略操作通常与关联的 AWS API 操作同名。有一些例外情况,例如没有匹配 API 操作的仅限权限 操作。还有一些操作需要在策略中执行多个操作。这些附加操作称为相关操作。

在策略中包含操作以授予执行关联操作的权限。

要查看用于路由控制的 Route 53 ARC 操作列表,请参阅《服务授权参考<u>》中的 Amazon Route 53 恢</u>复控制定义的操作和亚马逊 Route 53 恢复集群定义的操作。

Route 53 ARC 中用于路由控制的策略操作在操作前使用以下前缀,具体取决于你正在使用的 API:

route53-recovery-control-config

route53-recovery-cluster

要在单个语句中指定多项操作,请使用逗号将它们隔开。例如,可以:

```
"Action": [
    "route53-recovery-control-config:action1",
    "route53-recovery-control-config:action2"
    ]
```

您也可以使用通配符(*)指定多个操作。例如,要指定以单词 Describe 开头的所有操作,包括以下操作:

```
"Action": "route53-recovery-control-config:Describe*"
```

要查看 Route 53 ARC 基于身份的路由控制策略示例,请参阅。Amazon Route 53 应用程序恢复控制器中用于路由控制的基于身份的策略示例

Route 53 ARC 策略资源

支持策略资源

是

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体 可以对什么资源 执行操作,以及在什么条件 下执行。

Resource JSON 策略元素指定要向其应用操作的一个或多个对象。语句必须包含 Resource 或 NotResource 元素。作为最佳实践,请使用其 <u>Amazon 资源名称 (ARN)</u>指定资源。对于支持特定资源类型(称为资源级权限)的操作,您可以执行此操作。

对于不支持资源级权限的操作(如列出操作),请使用通配符(*)指示语句应用于所有资源。

```
"Resource": "*"
```

在《服务授权参考》中,您可以看到以下与 Route 53 ARC 相关的信息:

有关资源类型及其 ARN 的列表,以及您可以使用每个资源的 ARN 指定的操作,请参阅《服务授权参考》中的以下主题:

- Amazon Route 53 恢复控制定义的操作
- 由 Amazon Route 53 恢复集群定义的操作。

要查看 Route 53 ARC 基于身份的路由控制策略示例,请参阅。<u>Amazon Route 53 应用程序恢复控制</u> 器中用于路由控制的基于身份的策略示例

Route 53 ARC 策略条件键

支持特定于服务的策略条件键

是

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体可以对什么资源执行操作,以及在什么条件下执行。

在 Condition 元素(或 Condition 块)中,可以指定语句生效的条件。Condition 元素是可选的。您可以创建使用条件运算符(例如,等于或小于)的条件表达式,以使策略中的条件与请求中的值相匹配。

如果您在一个语句中指定多个 Condition 元素,或在单个 Condition 元素中指定多个键,则 AWS 使用逻辑 AND 运算评估它们。如果您为单个条件键指定多个值,则使用逻辑0R运算来 AWS 评估条件。在授予语句的权限之前必须满足所有的条件。

在指定条件时,您也可以使用占位符变量。例如,只有在使用 IAM 用户名标记 IAM 用户时,您才能为 其授予访问资源的权限。有关更多信息,请参阅 IAM 用户指南中的 IAM 策略元素:变量和标签。

AWS 支持全局条件密钥和特定于服务的条件键。要查看所有 AWS 全局条件键,请参阅 IAM 用户指南中的AWS 全局条件上下文密钥。

要查看用于路由控制的 Route 53 ARC 条件键列表,请参阅《服务授权参考》中的以下主题:

- Amazon Route 53 恢复控制的条件键
- Amazon Route 53 恢复集群的条件键

要查看可与条件键配合使用的操作和资源,请参阅《服务授权参考》中的以下主题:

- 要查看资源类型及其 ARN 的列表,请参阅 Amazon Route 53 恢复控制定义的操作和 Amaz on Route 53 恢复集群定义的操作。
- 要查看您可以使用每种资源的 ARN 指定的操作列表,请参阅 Amazon Route <u>53 恢复控制定义的资</u>源和由 Amazon Route 53 恢复集群定义的资源。

要查看 Route 53 ARC 基于身份的路由控制策略示例,请参阅 <u>Amazon Route 53 应用程序恢复控制器</u>中用于路由控制的基于身份的策略示例

Route 53 ARC 中的访问控制列表 (ACL)

支持 ACL 否

访问控制列表(ACL)控制哪些主体(账户成员、用户或角色)有权访问资源。ACL 与基于资源的策略类似,尽管它们不使用 JSON 策略文档格式。

Route 53 ARC 中基于属性的访问权限控制 (ABAC)

支持 ABAC (策略中的标签)

部分

基于属性的访问权限控制(ABAC)是一种授权策略,该策略基于属性来定义权限。在中 AWS,这些属性称为标签。您可以向 IAM 实体(用户或角色)和许多 AWS 资源附加标签。标记实体和资源是 ABAC 的第一步。然后设计 ABAC 策略,以在主体的标签与他们尝试访问的资源标签匹配时允许操作。

ABAC 在快速增长的环境中非常有用,并在策略管理变得繁琐的情况下可以提供帮助。

要基于标签控制访问,您需要使用 aws:ResourceTag/key-name、aws:RequestTag/key-name或 aws:TagKeys 条件键在策略的条件元素中提供标签信息。

如果某个服务对于每种资源类型都支持所有这三个条件键,则对于该服务,该值为 Yes(是)。如果某个服务仅对于部分资源类型支持所有这三个条件键,则该值为 Partial(部分)。

有关 ABAC 的更多信息,请参阅《IAM 用户指南》中的<u>什么是 ABAC?</u>。要查看设置 ABAC 步骤的教程,请参阅《IAM 用户指南》中的使用基于属性的访问权限控制(ABAC)。

Route 53 ARC 路由控制包括对 ABAC 的以下支持:

- 恢复控制 Config 支持 ABAC。
- 恢复集群不支持 ABAC。

在 Route 53 ARC 中使用临时凭证

支持临时凭证

是

当你使用临时证书登录时,有些 AWS 服务 不起作用。有关更多信息,包括哪些 AWS 服务 适用于临时证书,请参阅 IAM 用户指南中的AWS 服务 与 IA M 配合使用的信息。

如果您使用除用户名和密码之外的任何方法登录,则 AWS Management Console 使用的是临时证书。例如,当您 AWS 使用公司的单点登录 (SSO) 链接进行访问时,该过程会自动创建临时证书。当您以用户身份登录控制台,然后切换角色时,您还会自动创建临时凭证。有关切换角色的更多信息,请参阅《IAM 用户指南》中的 切换到角色(控制台)。

您可以使用 AWS CLI 或 AWS API 手动创建临时证书。然后,您可以使用这些临时证书进行访问 AWS。 AWS 建议您动态生成临时证书,而不是使用长期访问密钥。有关更多信息,请参阅 <u>IAM 中的</u>临时安全凭证。

Route 53 ARC 的跨服务主体权限

支持转发访问会话 (FAS)

是

当您使用 IAM 实体(用户或角色)在中执行操作时 AWS,您被视为委托人。策略向主体授予权限。使用某些服务时,您可能会执行一个操作,此操作然后在不同服务中触发另一个操作。在这种情况下,您必须具有执行这两个操作的权限。

要查看某个操作是否需要策略中的其他相关操作,请参阅《服务授权参考》中的以下主题:

- Amazon Route 53 恢复集群
- Amazon Route 53 恢复控制

Route 53 ARC 服务角色

支持服务角色

否

服务角色是由一项服务担任、代表您执行操作的 <u>IAM 角色</u>。IAM 管理员可以在 IAM 中创建、修改和删除服务角色。有关更多信息,请参阅《IAM 用户指南》中的创建向 AWS 服务委派权限的角色。

Route 53 ARC 服务相关角色

支持服务相关角色

是

服务相关角色是一种与服务关联的 AWS 服务角色。服务可以代入代表您执行操作的角色。服务相关角色显示在您的 AWS 账户中,并归服务所有。IAM 管理员可以查看但不能编辑服务相关角色的权限。

路由控制不使用服务相关角色。

Amazon Route 53 应用程序恢复控制器中用于路由控制的基于身份的策略示例

默认情况下,用户和角色没有创建或修改 Route 53 ARC 资源的权限。他们也无法使用 AWS Management Console、 AWS Command Line Interface (AWS CLI) 或 AWS API 执行任务。要授予用户对所需资源执行操作的权限,IAM 管理员可以创建 IAM 策略。管理员随后可以向角色添加 IAM 策略,用户可以代入角色。

要了解如何使用这些示例 JSON 策略文档创建基于 IAM 身份的策略,请参阅 IAM 用户指南中的 创建 IAM policy。

有关 Route 53 ARC 定义的操作和资源类型的详细信息,包括每种资源类型的 ARN 格式,请参阅《服务授权参考》中的 Amazon Route 53 应用程序恢复控制器的操作、资源和条件键。

主题

- 策略最佳实践
- 示例:用于路由控制的 Route 53 ARC 控制台访问权限
- 示例:用于路由控制配置的 Route 53 ARC API 操作

策略最佳实践

基于身份的策略确定某个人是否可以创建、访问或删除您账户中的 Route 53 ARC 资源。这些操作可能会使 AWS 账户产生成本。创建或编辑基于身份的策略时,请遵循以下准则和建议:

- 开始使用 AWS 托管策略并转向最低权限权限 要开始向用户和工作负载授予权限,请使用为许多常见用例授予权限的AWS 托管策略。它们在你的版本中可用 AWS 账户。我们建议您通过定义针对您的用例的 AWS 客户托管策略来进一步减少权限。有关更多信息,请参阅《IAM 用户指南》中的AWS 托管策略或工作职能的AWS 托管策略。
- 应用最低权限 在使用 IAM 策略设置权限时,请仅授予执行任务所需的权限。为此,您可以定义 在特定条件下可以对特定资源执行的操作,也称为最低权限许可。有关使用 IAM 应用权限的更多信息,请参阅《IAM 用户指南》中的 IAM 中的策略和权限。
- 使用 IAM 策略中的条件进一步限制访问权限 您可以向策略添加条件来限制对操作和资源的访问。
 例如,您可以编写策略条件来指定必须使用 SSL 发送所有请求。如果服务操作是通过特定的方式使

用的,则也可以使用条件来授予对服务操作的访问权限 AWS 服务,例如 AWS CloudFormation。有关更多信息,请参阅《IAM 用户指南》中的 IAM JSON 策略元素:条件。

- 使用 IAM Access Analyzer 验证您的 IAM 策略,以确保权限的安全性和功能性 IAM Access Analyzer 会验证新策略和现有策略,以确保策略符合 IAM 策略语言 (JSON) 和 IAM 最佳实践。IAM Access Analyzer 提供 100 多项策略检查和可操作的建议,以帮助您制定安全且功能性强的策略。有 关更多信息,请参阅《IAM 用户指南》中的 IAM Access Analyzer 策略验证。
- 需要多重身份验证 (MFA)-如果 AWS 账户您的场景需要 IAM 用户或根用户,请启用 MFA 以提高安全性。若要在调用 API 操作时需要 MFA,请将 MFA 条件添加到您的策略中。有关更多信息,请参阅《IAM 用户指南》中的 配置受 MFA 保护的 API 访问。

有关 IAM 中的最佳实操的更多信息,请参阅《IAM 用户指南》中的 IAM 中的安全最佳实操。

示例:用于路由控制的 Route 53 ARC 控制台访问权限

要访问 Amazon Route 53 应用程序恢复控制器控制台,您必须具有一组最低的权限。这些权限必须允许您列出和查看有关您的 Route 53 ARC 资源的详细信息 AWS 账户。如果创建比必需的最低权限更为严格的基于身份的策略,对于附加了该策略的实体(用户或角色),控制台将无法按预期正常运行。

对于仅调用 AWS CLI 或 AWS API 的用户,您无需为其设置最低控制台权限。相反,只允许访问与其尝试执行的 API 操作相匹配的操作。

为确保在您仅允许访问特定 API 操作时用户和角色仍然可以使用 Route 53 ARC 控制台,还要为实体附加一项 Route 53 ARC 的ReadOnly AWS 托管策略。有关更多信息,请参阅 Route 53 ARC 的Route 53 ARC 托管策略页面或《IAM 用户指南》中的为用户添加权限。

要向用户提供通过控制台使用 Route 53 ARC 路由控制功能的完全权限,请向用户附加如下策略,以授予用户配置 Route 53 ARC 路由控制资源和操作的完全权限:

```
"route53-recovery-control-config:CreateRoutingControl",
                   "route53-recovery-control-config:CreateSafetyRule",
                   "route53-recovery-control-config:DeleteCluster",
                   "route53-recovery-control-config:DeleteControlPanel",
                   "route53-recovery-control-config:DeleteRoutingControl",
                   "route53-recovery-control-config:DeleteSafetyRule",
                   "route53-recovery-control-config:DescribeCluster",
                   "route53-recovery-control-config:DescribeControlPanel",
                   "route53-recovery-control-config:DescribeSafetyRule",
                   "route53-recovery-control-config:DescribeRoutingControl",
                   "route53-recovery-control-config:ListAssociatedRoute53HealthChecks",
                   "route53-recovery-control-config:ListClusters",
                   "route53-recovery-control-config:ListControlPanels",
                   "route53-recovery-control-config:ListRoutingControls",
                   "route53-recovery-control-config:ListSafetyRules",
                   "route53-recovery-control-config:UpdateControlPanel",
                   "route53-recovery-control-config:UpdateRoutingControl",
                   "route53-recovery-control-config:UpdateSafetyRule"
             ],
            "Resource": "*"
        },
            "Effect": "Allow",
            "Action": [
                   "route53:GetHealthCheck",
                   "route53:CreateHealthCheck",
                   "route53:DeleteHealthCheck",
                   "route53:ChangeTagsForResource"
            ],
            "Resource": "*"
        }
    ]
}
```

示例:用于路由控制配置的 Route 53 ARC API 操作

为确保用户可以使用 Route 53 ARC API 操作来处理 Route 53 ARC 路由控制配置,请附加与用户需要 使用的 API 操作相对应的策略,如下所述。

要使用 API 操作进行恢复控制配置,请向用户附加类似以下的策略:

```
{
    "Version": "2012-10-17",
```

```
"Statement": [
        {
            "Effect": "Allow",
            "Action": [
                   "route53-recovery-control-config:CreateCluster",
                   "route53-recovery-control-config:CreateControlPanel",
                   "route53-recovery-control-config:CreateRoutingControl",
                   "route53-recovery-control-config:CreateSafetyRule",
                   "route53-recovery-control-config:DeleteCluster",
                   "route53-recovery-control-config:DeleteControlPanel",
                   "route53-recovery-control-config:DeleteRoutingControl",
                   "route53-recovery-control-config:DeleteSafetyRule",
                   "route53-recovery-control-config:DescribeCluster",
                   "route53-recovery-control-config:DescribeControlPanel",
                   "route53-recovery-control-config:DescribeSafetyRule",
                   "route53-recovery-control-config:DescribeRoutingControl",
                   "route53-recovery-control-config:GetResourcePolicy",
                   "route53-recovery-control-config:ListAssociatedRoute53HealthChecks",
                   "route53-recovery-control-config:ListClusters",
                   "route53-recovery-control-config:ListControlPanels",
                   "route53-recovery-control-config:ListRoutingControls",
                   "route53-recovery-control-config:ListSafetyRules",
                   "route53-recovery-control-config:ListTagsForResource",
                   "route53-recovery-control-config:UpdateControlPanel",
                   "route53-recovery-control-config:UpdateRoutingControl",
                   "route53-recovery-control-config:UpdateSafetyRule",
                   "route53-recovery-control-config:TagResource",
                   "route53-recovery-control-config:UntagResource"
            ],
            "Resource": "*"
        }
    ]
}
```

要使用恢复集群数据平面 API 在 Route 53 ARC 路由控制中执行任务,例如更新路由控制状态以在灾难事件期间进行故障转移,您可以将 Route 53 ARC IAM 策略附加到您的 IAM 用户,例如以下内容。

AllowSafetyRuleOverride 布尔值提供权限来覆盖您为保障路由控制安全而配置的安全规则。在"打碎玻璃"的情况下,可能需要此权限才能在灾难或其他紧急失效转移情况下绕过这些安全措施。例如,操作员可能需要快速失效转移以进行灾难恢复,而一个或多个安全规则可能会意外阻止流量重新路由所需的路由控制状态更新操作。此权限允许操作员在调用 API 更新路由控制状态时指定要覆盖的安全规则。有关更多信息,请参阅 覆盖安全规则以重新路由流量。

如果要允许操作员使用恢复集群数据平面 API,但又不想覆盖安全规则,则可以附加如下所示的策略,并将AllowSafetyRuleOverrides布尔值设置为false。要允许操作员忽略安全规则,请将AllowSafetyRuleOverrides布尔值设置为true。

```
{
    "Version": "2012-10-17",
    "Statement": [
            "Effect": "Allow",
            "Action": [
                "route53-recovery-cluster:GetRoutingControlState",
                "route53-recovery-cluster:ListRoutingControls"
            ],
            "Resource": "*"
        },
        {
            "Effect": "Allow",
            "Action": Γ
                "route53-recovery-cluster:UpdateRoutingControlStates",
                "route53-recovery-cluster:UpdateRoutingControlState"
            ],
            "Resource": "*",
            "Condition": {
                "Bool": {
                     "route53-recovery-cluster:AllowSafetyRulesOverrides": "false"
                }
            }
        }
    ]
}
```

AWS Amazon Route 53 应用程序恢复控制器中的路由控制托管策略

AWS 托管策略是由创建和管理的独立策略 AWS。 AWS 托管策略旨在为许多常见用例提供权限,以便您可以开始为用户、组和角色分配权限。

请记住, AWS 托管策略可能不会为您的特定用例授予最低权限权限,因为它们可供所有 AWS 客户使用。我们建议通过定义特定于您的使用场景的客户管理型策略来进一步减少权限。

您无法更改 AWS 托管策略中定义的权限。如果 AWS 更新 AWS 托管策略中定义的权限,则更新会影响该策略所关联的所有委托人身份(用户、组和角色)。 AWS 最有可能在启动新的 API 或现有服务可以使用新 AWS 服务 的 API 操作时更新 AWS 托管策略。

有关更多信息,请参阅《IAM 用户指南》中的 AWS 托管式策略。

AWS 托管策略: AmazonRoute53 RecoveryControlConfigFullAccess

您可以将 AmazonRoute53RecoveryControlConfigFullAccess 附加到 IAM 实体。此策略授予对 Route 53 ARC 中的恢复控制配置操作的完全访问权限。将此策略附加到需要恢复控制配置操作的完全访问权限的 IAM 用户和其他主体。

您可以自行决定添加对其他 Amazon Route 53 操作的访问权限,以使用户能够为路由控制创建运行状况检查。例如,您可以提供对以下一项或多项操作的访问权

限:route53:GetHealthCheck、route53:CreateHealthCheck、route53:DeleteHealthCheck和route53:ChangeTagsForResource。

要查看此策略的权限,请参阅《AWS 托管策略参考》RecoveryControlConfigFullAccess中的AmazonRoute53。

AWS 托管策略: AmazonRoute53 RecoveryControlConfigReadOnlyAccess

您可以将 AmazonRoute53RecoveryControlConfigReadOnlyAccess 附加到 IAM 实体。它适用于需要查看路由控制和安全规则配置的用户。此策略授予对 Route 53 ARC 中的恢复控制配置操作的只读访问权限。这些用户无法创建、更新或删除恢复控制资源。

要查看此策略的权限,请参阅《AWS 托管策略参考》RecoveryControlConfigReadOnlyAccess中的AmazonRoute53。

AWS 托管策略: AmazonRoute53 RecoveryClusterFullAccess

您可以将 AmazonRoute53RecoveryClusterFullAccess 附加到 IAM 实体。此策略授予对 Route 53 ARC 中的集群数据面板操作的完全访问权限。将此策略附加到需要更新和检索路由控制状态的完全访问权限的 IAM 用户和其他主体。

要查看此策略的权限,请参阅《AWS 托管策略参考》RecoveryClusterFullAccess中的 AmazonRoute53。

AWS 托管策略: AmazonRoute53 RecoveryClusterReadOnlyAccess

您可以将 AmazonRoute53RecoveryClusterReadOnlyAccess 附加到 IAM 实体。此策略授予对 Route 53 ARC 中集群数据面板的只读访问权限。这些用户可以检索路由控制状态,但无法更新这些状态。

要查看此策略的权限,请参阅《AWS 托管策略参考》RecoveryClusterReadOnlyAccess中的 AmazonRoute53。

路由控制 AWS 托管策略更新

有关 Route 53 ARC 中路由控制 AWS 托管策略自该服务开始跟踪这些更改以来更新的详细信息,请参阅Amazon Route 53 应用程序恢复控制器 AWS 托管策略的更新。要自动获取此页面的变动提醒,请在 Route 53 ARC 文档历史记录页面上订阅 RSS 源。

路由控制配额

Amazon Route 53 应用程序恢复控制器中的路由控制受以下配额(以前称为限制)的约束。

实体	限额
每个账户的集群数	2
每个集群的控制面板数	50
每个控制面板的路由控制数	100
每个集群的路由控制总数(在所有控制面板中)	300
每个控制面板的安全规则数	20
每次工 <u>UpdateRoutingControlStates</u> 序调用的路 由控制数量	10
每秒对集群端点的可变 API 调用次数	3

Amazon Route 53 应用程序恢复控制器中的就绪检查

通过 Amazon Route 53 应用程序恢复控制器中的准备情况检查,您可以深入了解您的应用程序和资源是否为恢复做好了准备。在 Route 53 ARC 中对 AWS 应用程序进行建模并创建就绪检查后,这些检查会持续监控有关您的应用程序的信息,例如 AWS 资源配额、容量和网络路由策略。然后,您可以选择收到有关更改的通知,这些更改会影响您故障转移到应用程序副本以及从事件中恢复的能力。就绪性检查有助于确保您可以持续地将多区域应用程序保持在经过扩展和配置以处理故障转移流量的状态。

 本章介绍如何在 Route 53 ARC 中对应用程序进行建模,通过创建恢复组和描述应用程序的单元来设置 使准备就绪检查起作用的结构。然后,您可以按照步骤添加就绪检查和就绪范围,这样 Route 53 ARC 就可以审核应用程序的准备情况。

创建就绪检查后,您可以监控资源的就绪状态。就绪性检查可帮助您确保备用应用程序副本及其资源 持续与您的生产副本相匹配,从而反映生产应用程序的容量、路由策略和其他配置细节。如果副本不匹 配,则可以增加容量或更改配置,以便应用程序副本重新对齐。

↑ Important

就绪检查非常有助于持续验证应用程序副本配置和运行时状态是否一致。您不该使用就绪检查 来指示生产副本是否正常,也不该依赖就绪检查作为灾难事件期间失效转移的主要触发条件。

Amazon Route 53 应用程序恢复控制器中的准备情况检查是什么?

Route 53 ARC 中的准备情况检查持续(每隔一分钟),审核检查中包含的资源的 AWS 预配置容量、 服务配额、油门限制以及配置和版本差异方面的不匹配情况。就绪检查可以将这些差异通知给您,这样 您就可以确保每个副本具有相同的配置设置和相同的运行时状态。尽管就绪检查可确保您在副本之间配 置的容量一致,但不应期待就绪检查能代表您决定副本的容量应该是多少。例如,您应该了解应用程序 需求,在设定自动扩缩组的大小时在每个副本中留足缓冲容量,以应对另一个单元格不可用的情况。

当 Route 53 ARC 通过就绪检查检测到限额不匹配时,它可以采取措施调整副本的限额,通过增加较低 的限额,使之与较高的限额相匹配。当限额匹配时,就绪检查状态显示 READY。(请注意,这个过程 不是立即更新的,总时间取决于特定的资源类型和其他因素。)

第一步是设置就绪检查,以创建代表应用程序的恢复组。每个恢复组都包括应用程序的每个故障控制单 位或副本的对应单元格。接下来,为应用程序中的每种资源类型创建资源集,并将就绪检查与资源集关 联起来。最后,您可以将资源与就绪范围相关联,这样您就可以获得恢复组(您的应用程序)或各个单 元格 [副本,即区域或可用区 (AZ)] 中资源的就绪状态。

就绪状态(即 READY 或 NOT READY)基于就绪检查范围内的资源和某一资源类型的规则集。每种资 源类型都有一组就绪规则,Route 53 ARC 检查使用这些规则来审计资源的就绪情况。资源是否 READY 取决于每条就绪规则的定义方式。所有就绪规则都会评估资源,但有些规则会对资源进行比较,有些则 会查看有关资源集中每种资源的具体信息。

通过添加就绪检查,您可以通过以下几种方式之一监控就绪状态:使用、在 Route 53 ARC API 操作中 或使用 Route 53 ARC API 操作。 EventBridge AWS Management Console您还可以在不同的上下文 中监控资源的就绪状态,包括单元格的就绪情况和应用程序的就绪情况。使用 Route 53 ARC 中的跨账 户授权功能,可以更轻松地设置和监控来自单个 AWS 账户的分布式资源。

通过就绪性检查监控应用程序副本

Route 53 ARC 使用就绪检查审计应用程序副本,以确保每个副本有相同的配置设置和相同的运行时状 态。就绪性检查会持续审核应用程序的 AWS 资源容量、配置、 AWS 配额和路由策略,这些信息可用 于帮助确保副本已准备好进行故障转移。就绪性检查可帮助您确保恢复环境已扩展并配置为在需要时进 行故障切换。

以下各节提供了有关准备情况检查工作原理的更多详细信息。

就绪性检查和您的应用程序副本

为了做好恢复准备,您必须始终在副本中保持足够的备用容量,以吸收来自其他可用区或区域的故障转 移流量。Route 53 ARC 会持续(每分钟一次)检查您的应用程序,以确保所有可用区或区域上的预调 配容量相匹配。

例如,Route 53 ARC 检查的容量包括 Amazon EC2 实例数量、Aurora 读取和写入容量单位以及 Amazon EBS 卷大小。如果您在主副本中扩大资源的容量值,但忘记同时增加备用副本中的相应 值,Route 53 ARC 会检测到不匹配情况,以便您可以增加备用副本中的值。

↑ Important

就绪检查非常有助于持续验证应用程序副本配置和运行时状态是否一致。您不该使用就绪检查 来指示生产副本是否正常,也不该依赖就绪检查作为灾难事件期间失效转移的主要触发条件。

在主动-备用配置中,您应该根据监控和运行状况检查系统来确定是否从某单元格或向某单元格进行失 效转移,并考虑将就绪检查作为这些系统的补充服务。Route 53 ARC 就绪检查的可用性不高,因此您 不应在中断期间依赖检查的可用性。此外,在灾难事件发生期间,所检查的资源也可能不可用。

您可以监控特定单元(AWS 区域或可用区)中应用程序资源的就绪状态,也可以监控整个应用程 序的就绪状态。例如,通过在中创建规则,当准备情况检查状态更改为(变为)时Not ready,您 会收到通知 EventBridge。有关更多信息,请参阅 在亚马逊的 Route 53 ARC 中使用准备情况检查 EventBridge。您还可以在中查看就绪状态 AWS Management Console,或者使用 API 操作(例如) 来查看就绪状态get-recovery-readiness。有关更多信息,请参阅 准备情况检查 API 操作。

准备情况检查的工作原理

Route 53 ARC 使用就绪检查审计应用程序副本,以确保每个副本有相同的配置设置和相同的运行时状 态。

例如,为了做好恢复准备,您必须始终保持足够的备用容量,以吸收来自其他可用区或区域的失效转移 流量。Route 53 ARC 会持续(每分钟一次)检查您的应用程序,以确保所有可用区或区域上的预调配 容量相匹配。例如,Route 53 ARC 检查的容量包括 Amazon EC2 实例数量、Aurora 读取和写入容量 单位以及 Amazon EBS 卷大小。如果您在主副本中扩大资源的容量值,但忘记同时增加备用副本中的 相应值,Route 53 ARC 会检测到不匹配情况,以便您可以增加备用副本中的值。

♠ Important

就绪检查非常有助于持续验证应用程序副本配置和运行时状态是否一致。您不该使用就绪检查 来指示生产副本是否正常,也不该依赖就绪检查作为灾难事件期间失效转移的主要触发条件。

在主动-备用配置中,您应该根据监控和运行状况检查系统来确定是否从某单元格或向某单元格进行失 效转移,并考虑将就绪检查作为这些系统的补充服务。Route 53 ARC 就绪检查的可用性不高,因此您 不应在中断期间依赖检查的可用性。此外,在灾难事件发生期间,所检查的资源也可能不可用。

您可以监控特定单元(AWS 区域或可用区)中应用程序资源的就绪状态,也可以监控整个应用程 序的就绪状态。例如,通过在中创建规则,当准备情况检查状态更改为(变为)时Not ready,您 会收到通知 EventBridge。有关更多信息,请参阅 在亚马逊的 Route 53 ARC 中使用准备情况检查 EventBridge。您还可以在中查看就绪状态 AWS Management Console,或者使用 API 操作(例如) 来查看就绪状态get-recovery-readiness。有关更多信息,请参阅 准备情况检查 API 操作。

就绪规则如何确定就绪状态

Route 53 ARC 准备情况检查根据每种资源类型的预定义规则以及这些规则的定义方式来确定就绪状 态。对于支持的每种资源类型,Route 53 ARC 都包含一组对应的规则。例如,Route 53 ARC 包含 Amazon Aurora 集群、自动扩缩组等资源的就绪规则组。有些就绪规则会对一个资源集里的资源进行 比较,有些则会查看有关资源集中每种资源的具体信息。

您无法添加、编辑或删除就绪规则或规则组。但是,您可以创建 Amazon CloudWatch 警报并创建准备 情况检查以监控警报的状态。例如,您可以创建自定义 CloudWatch 警报来监控 Amazon EKS 容器服 务,并创建就绪检查以审计警报的就绪状态。

您可以在创建资源集 AWS Management Console 时查看每种资源类型的所有就绪规则,也可以稍后 通过导航到资源集的详细信息页面来查看就绪规则。您还可以在以下部分中查看就绪规则:Route 53 ARC 中的就绪规则。

当就绪检查使用一组规则审计一组资源时,每条规则的定义方式将决定所有资源的检查结果都是 READY 或 NOT READY,还是结果因资源而异。此外,您还可以通过多种方式查看就绪状态。例如,您

可以查看资源集中一组资源的就绪状态,也可以查看恢复组或单元(即 AWS 区域或可用区,具体取决于您设置恢复组的方式)的就绪状态摘要。

每条规则的描述语言将说明在应用该规则时,它如何评估资源以确定就绪状态。规则定义为检查资源集 中的每个资源或所有资源以确定就绪情况。具体而言,规则的工作原理如下:

- 规则检查资源集中的每个资源,以确保符合条件。
 - 如果所有资源都符合条件,则所有资源都设置为 READY。
 - 如果一个资源不符合,则该资源设置为 NOT READY,其他单元格仍然是 READY。

例如: MskClusterState: 检查每个 Amazon MSK 集群以确保其处于 ACTIVE 状态。

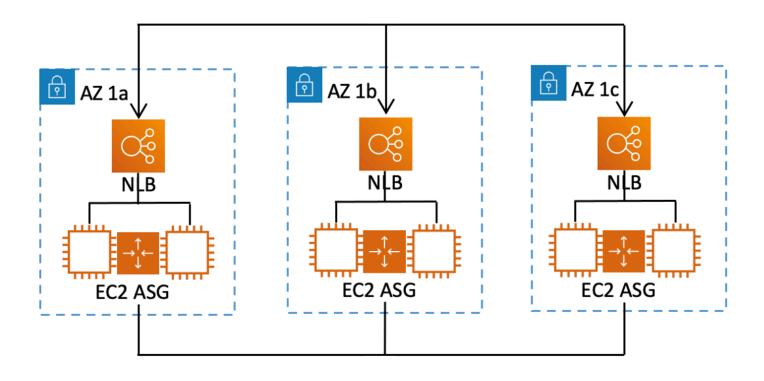
- 该规则检查资源集中的所有资源,以确保符合条件。
 - 如果符合条件,则所有资源都设置为 READY。
 - 如果有任何资源不符合条件,所有资源都设置为 NOT READY。

例如: VpcSubnetCount: 检查所有 VPC 子网,以确保它们的子网数量相同。

- 非关键条件:该规则检查资源集中的所有资源,以确保符合条件。
 - 如果有任何资源不符合,就绪状态保持不变。有此行为的规则会在描述中包含一个注释。

例如:ElbV2CheckAzCount: 检查每个网络负载均衡器,确保其仅连接到一个可用区。注意:该规则不影响就绪状态。

此外,Route 53 ARC 在限额方面采取了额外措施。如果就绪检查检测到各单元格之间任何受支持资源的服务限额(资源创建和操作的最大值)存在不匹配之处,Route 53 ARC 会自动提高低限额资源的限额。这仅适用于限额(限制)。对于容量,您应该根据应用程序需求添加额外的容量。


您还可以为准备情况检查设置 Amazon EventBridge 通知,例如,当任何准备情况检查状态更改为时NOT READY。然后,当检测到配置不匹配时, EventBridge 会向您发送通知,您可以采取纠正措施来确保您的应用程序副本已对齐并做好恢复准备。有关更多信息,请参阅 <u>在亚马逊的 Route 53 ARC中使用准备情况检查 EventBridge</u>。

准备情况检查、资源集和就绪范围如何协同工作

就绪性检查始终会审计资源集中的资源组。您可以创建资源集(单独或在创建就绪检查时),以对 Route 53 ARC 恢复组中单元(可用区或 AWS 区域)中的资源进行分组,以便定义就绪性检查。资源集通常是一组相同类型的资源(如网络负载均衡器),但也可以是 DNS 目标资源(用于架构就绪检查)。

一般为应用程序中的每种资源创建一个资源集和就绪检查。对于架构就绪检查,您可以为其创建顶级 DNS 目标资源和全局(恢复组级别)资源集,然后为单独的资源集创建单元格级 DNS 目标资源。

下图显示了一个包含三个单元格(可用区)的恢复组示例,每个单元格都有一个网络负载均衡器 (NLB)和自动扩缩组 (ASG)。

在这种情况下,您将为三个网络负载均衡器创建资源集和就绪检查,并为三个自动扩缩组创建资源集和就绪检查。现在,您可以按资源类型对恢复组的每个资源集进行就绪检查了。

通过为资源创建就绪范围,您可以为单元格或恢复组添加就绪检查摘要。要为资源指定就绪范围,请将单元格或恢复组的 ARN 与资源集中的每个资源关联起来。您可以在为资源集创建就绪检查时执行此操作。

例如,当您为该恢复组的网络负载均衡器资源集添加就绪检查时,可以同时向每个 NLB 添加就绪范围。在这种情况下,您可以将 AZ 1a 的 ARN 关联到 AZ 1a 中的 NLB,将 AZ 1b 的 ARN 关联到 AZ 1b 中的 NLB,将 AZ 1c 的 ARN 关联到 AZ 1c 中的 NLB。为自动扩缩组创建就绪检查时,您也要这样做,在为自动扩缩组资源集创建就绪检查时,为每个组分配就绪范围。

创建就绪检查时,关联就绪范围是可选操作,但是我们强烈建议您设置范围。就绪范围可以让 Route 53 ARC 在恢复组就绪检查摘要和单元格级就绪检查摘要中显示正确的就绪状态 READY 或 NOT READY。如果不设置就绪范围,Route 53 ARC 无法提供这些摘要。

请注意,在添加应用程序级资源或全局资源(例如 DNS 路由策略)时,不能为就绪范围选择恢复组或单元格,而是选择全局资源(不含单元格)。

DNS 目标资源就绪检查:审计弹性就绪

通过 Route 53 ARC 中的 DNS 目标资源准备情况检查,您可以审核应用程序的架构和弹性准备情况。 这种就绪检查会持续扫描应用程序架构和 Amazon Route 53 路由策略,以审计跨可用区和跨区域的依赖关系。

以恢复为导向的应用程序有多个副本,这些副本孤立在可用区或 AWS 区域中,因此副本可以相互独立地发生故障。如果您的应用程序需要调整以正确隔离起来,Route 53 ARC 将根据需要提供更改建议,以更新应用程序架构,确保它具有弹性并可以进行失效转移。

Route 53 ARC 会自动检测应用程序中单元格(代表副本或故障控制单位)的数量和范围,以及这些单元格是否按可用区或区域隔离起来。然后,Route 53 ARC 会识别单元格中的应用程序资源并向您提供相关信息,以确定它们是否正确地隔离到可用区或区域中。例如,如果单元格范围限定在特定可用区中,则就绪检查可以监控负载均衡器及其后面的目标是否也隔离到这些可用区。

利用这些信息,您可以确定是否需要进行更改,以使单元格中的资源对应到正确的可用区或区域。

首先,您需要为应用程序创建 DNS 目标资源及其资源集和就绪检查。有关更多信息,请参阅 <u>在 Route</u> 53 ARC 中获取架构建议。

就绪检查和灾难恢复场景

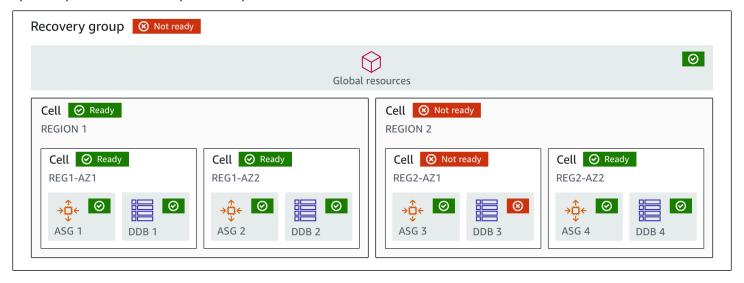
Route 53 ARC 就绪性检查可帮助您确保应用程序经过扩展以处理故障转移流量,从而深入了解您的应用程序和资源是否已做好恢复准备。不应使用就绪检查状态作为指示生产副本是否正常的信号。但是,您可以使用就绪检查作为应用程序和基础架构监控或运行状况检查系统的补充,以确定是否从某副本或向某副本进行失效转移。

在紧急情况下或发生中断时,结合使用运行状况检查和其他信息来确定备用单元格是否已扩展、运行状况良好,并且准备好进行生产流量的失效转移。例如,除了验证备用单元格的就绪检查状态为 READY 之外,还要检查备用单元格上运行的金丝雀是否符合您的成功标准。

请注意,Route 53 ARC 就绪检查托管在美国西部(俄勒冈州) AWS 区域中,在中断或灾难期间,就 绪检查信息可能会过时或无法执行检查。有关更多信息,请参阅 用于路由控制的数据和控制平面。

AWS 区域可用性以进行准备情况检查

有关 Amazon Route 53 应用程序恢复控制器的区域支持和服务端点的详细信息,请参阅《Amazon Web Services 一般参考》中的 Amazon Route 53 应用程序恢复控制器端点和限额。


AWS 区域 148

Note

Amazon Route 53 应用程序恢复控制器中的准备情况检查是一项全球功能。但是,就绪检查资源位于美国西部(俄勒冈)区域,因此在创建资源集和就绪检查等资源时,您必须在 Route 53 ARC 区域 AWS CLI 命令中指定美国西部(俄勒冈--region us-west-2)区域(指定参数)。

就绪检查组件

下图展示了配置为支持就绪检查功能的恢复组示例。此示例中的资源在恢复组中按单元格(按 AWS 区域)和嵌套单元格(按可用区)分组。这里有恢复组(应用程序)的总体就绪状态,以及每个单元格(区域)和嵌套单元格(可用区)的个体就绪状态。

以下是 Route 53 ARC 中就绪检查功能的组件。

单元格

单元格定义了应用程序的副本或独立的失效转移单位。它将应用程序在副本中独立运行所需的所有 AWS 资源进行分组。例如,您的主单元格中可能有一组资源,备用单元格中可能有另一组资源。 您可以确定单元格所含内容的边界,但单元格通常代表可用区或区域。一个单元格中可以有多个单元格(嵌套单元格),例如一个区域内的多个可用区。每个嵌套单元格代表一个孤立的失效转移单位。

恢复组

单元格组合成一个恢复组。恢复组代表您要检查失效转移就绪情况的一个或一组应用程序。它由功能上彼此匹配的两个或多个单元格或副本组成。例如,如果您有一个在 us-east-1a 和 us-east-1b

组件 149

之间复制的 Web 应用程序(其中 us-east-1b 是失效转移环境),则可以在 Route 53 ARC 中将该应用程序表示为恢复组,它包含两个单元格:一个在 us-east-1a 中,一个在 us-east-1b 中。恢复组还可以包括全局资源,例如 Route 53 运行状况检查。

资源和资源标识符

在 Route 53 ARC 中创建就绪检查组件时,您可以使用资源标识符指定资源,例如 Amazon DynamoDB 表、网络负载均衡器或 DNS 目标资源。资源标识符是资源的 Amazon 资源名称 (ARN),而对于 DNS 目标资源,则是 Route 53 ARC 在创建资源时生成的标识符。

DNS 目标资源

DNS 目标资源是应用程序的域名和其他 DNS 信息(例如该域所指向的 AWS 资源)的组合。您可以选择是否包含 AWS 资源,但如果提供该资源,它必须是 Route 53 资源记录或网络负载均衡器。当您提供 AWS 资源时,您可以获得更详细的架构建议,这些建议可以帮助您提高应用程序的恢复弹性。您可以在 Route 53 ARC 中为 DNS 目标资源创建资源集,然后为资源集创建就绪检查,以便获得应用程序架构建议。就绪检查还会根据 DNS 目标资源的就绪规则监控应用程序的 DNS 路由策略。

资源集

资源集是一组跨越多个单元的 AWS 资源,包括资源或 DNS 目标资源。例如,您可能有一个负载均衡器在 us-east-1a 中,还有一个在 us-east-1b 中。要监控负载均衡器的恢复就绪情况,您可以创建一个包含两个负载均衡器的资源集,然后为该资源集创建就绪检查。Route 53 ARC 将持续检查集合中资源的就绪情况。您还可以添加就绪范围,将资源集中的资源与您为应用程序创建的恢复组相关联。

就绪规则

就绪规则是 Route 53 ARC 对资源集中的一组资源执行的审计规则。在 Route 53 ARC 中,支持就 绪检查的每种资源都有一组就绪规则。每个规则都包含一个 ID 和一个描述,描述中解释了 Route 53 ARC 检查资源的目的。

就绪检查

就绪检查监控应用程序中的资源集(例如一组 Amazon Aurora 实例),Route 53 ARC 将审计它的恢复就绪情况。准备情况检查可以包括审计,例如容量配置、 AWS 配额或路由策略。例如,如果您想审计跨两个可用区的 Amazon EC2 Auto Scaling 组的就绪情况,可以为包含两个资源 ARN(每个自动扩缩组一个)的资源集创建就绪检查。然后,为了确保每个组同等扩展,Route 53 ARC 会持续监控两个组中的实例类型和数量。

组件 150

就绪范围

就绪范围标识特定就绪检查所包含的资源分组。就绪检查的范围可以是恢复组(即整个应用程序全局)或单元格(即区域或可用区)。如果资源属于 Route 53 ARC 全局资源,将就绪范围设置到恢复组或全局资源级别。例如,Route 53 运行状况检查是 Route 53 ARC 中的一项全局资源,因为它不是特定于某个区域或可用区的。

用于准备情况检查的数据和控制平面

在规划故障转移和灾难恢复时,请考虑故障转移机制的弹性。我们建议您确保在故障转移期间所依赖的机制具有高可用性,以便在灾难情况下可以根据需要使用它们。通常,应尽可能为机制使用数据平面函数,以获得最大的可靠性和容错性。考虑到这一点,请务必了解服务的功能如何在控制面板和数据面板之间划分,以及何时可以依赖服务的数据面板可预期的极高可靠性。

与大多数 AWS 服务一样,控制平面和数据平面支持就绪检查功能。虽然这两者都是为了可靠而构建的,但控制平面针对数据一致性进行了优化,而数据平面则针对可用性进行了优化。数据面板专为弹性而设计,因此即使在中断事件期间,当控制面板可能不可用时,它也能保持可用性。

一般而言,控制面板允许您执行基本的管理功能,例如在服务中创建、更新和删除资源。数据面板提供服务的核心功能。

对于准备情况检查,控制平面和数据平面只有一个 <u>API,即恢复就绪 API</u>。就绪检查和就绪资源仅位于美国西部(俄勒冈州)区域 (us-west-2)。就绪检查控制平面和数据平面可靠,但可用性不高。

有关数据平面、控制平面以及如何 AWS 构建服务以满足高可用性目标的更多信息,请参阅 Amazon Builders Library 中的 "<u>使用可用区的静态稳定性" 论文</u>。

在 Amazon Route 53 应用程序恢复控制器中标记准备就绪性检查

标签是您用来识别和组织 AWS 资源的单词或短语(元数据)。您可以向每个资源添加多个标签,并且 每个标签都包含您定义的一个键和一个值。例如,键可能是环境,值可能是生产。您可以根据添加的标 签搜索和筛选您的资源。

您可以在 Route 53 ARC 中将以下资源标记为准备情况检查:

- 资源集
- 就绪检查

Route 53 ARC 中的标记只能通过 API 使用,例如,通过使用 AWS CLI。

数据和控制平面 151

以下是使用在准备情况检查中进行标记的示例。 AWS CLI

```
aws route53-recovery-readiness --region us-west-2 create-resource-set --resource-set-name dynamodb_resource_set --resource-set-type

AWS::DynamoDB::Table --resources ReadinessScopes=arn:aws:aws-recovery-
readiness::111122223333:cell/PDXCell,ResourceArn=arn:aws:dynamodb:us-
west-2:111122223333:table/PDX_Table ReadinessScopes=arn:aws:aws-recovery-
readiness::111122223333:cell/IADCell,ResourceArn=arn:aws:dynamodb:us-
east-1:111122223333:table/IAD_Table --tags Stage=Prod
```

aws route53-recovery-readiness --region us-west-2 create-readinesscheck --readiness-check-name dynamodb_readiness_check --resource-set-name dynamodb_resource_set --tags Stage=Prod

有关更多信息,请参阅 <u>TagResource</u>Amazon Route 53 应用程序恢复控制器的恢复就绪 API 参考指南。

Route 53 ARC 中准备就绪检查的定价

对于 Amazon Route 53 应用程序恢复控制器,您只需为在该服务中配置使用的功能付费。对于准备情况检查,您需要为配置的每项准备情况检查支付每小时费用。

有关 Route 53 ARC 的详细定价信息和定价示例,请参阅 Amazon Route 53 应用程序恢复控制器定价,然后向下滚动到亚马逊 Route 53 应用程序恢复控制器。

为您的应用程序设置弹性恢复流程

要将 Amazon Route 53 AWS 应用程序恢复控制器用于多个 AWS 区域的应用程序,需要遵循一些指导方针来设置应用程序的弹性,以便您可以有效地支持恢复就绪。然后,您可以为应用程序创建就绪性检查,并设置路由控制以重新路由流量以进行故障转移。您还可以查看 Route 53 ARC 提供的应用程序架构建议,这些建议可以提高恢复能力。

Note

如果您的应用程序被可用区隔开,请考虑使用区域转移或区域自动切换进行故障转移恢复。无需进行任何设置即可使用区域移位或区域自动切换来可靠地从可用区损坏中恢复应用程序。要将流量从可用区域移出负载均衡器资源,请在 Route 53 ARC 控制台或 Elastic Load Balancing 控制台中开始区域切换。或者,您可以将 AWS Command Line Interface 或 AWS

定价 152

SDK 与区域移动 API 操作配合使用。有关更多信息,请参阅 <u>Amazon Route 53 应用程序恢复</u>控制器中的可用区转移。

要了解有关弹性故障转移配置入门的更多信息,请参阅<u>开始使用 Amazon Route 53 应用程序恢复控制</u>器中的多区域恢复。

在 Route 53 ARC 中进行准备情况检查的最佳实践

我们推荐以下在 Amazon Route 53 应用程序恢复控制器中进行准备情况检查的最佳实践。

添加就绪状态变更通知

在 Amazon 中设置规则, EventBridge 以便在准备情况检查状态发生变化时发送通知,例如从变READY为NOT READY。收到通知后,您可以调查并解决问题,以确保您的应用程序和资源按照预期准备好进行失效转移。

您可以设置 EventBridge 规则以发送多项就绪检查状态更改的通知,包括恢复组(针对您的应用程序)、单元(例如 AWS 区域)或资源集的就绪性检查的通知。

有关更多信息,请参阅 在亚马逊的 Route 53 ARC 中使用准备情况检查 EventBridge。

准备情况检查 API 操作

下表列出了可用于恢复就绪(就绪检查)的 Route 53 ARC 操作以及相关文档的链接。

有关如何在 AWS Command Line Interface中使用常见恢复就绪 API 操作的示例,请参阅 <u>使用 Route</u> 53 ARC 准备情况检查 API 操作的示例 AWS CLI。

操作	使用 Route 53 ARC 控制台	使用 Route 53 ARC API
创建单元格	请参阅 <u>在 Route 53 ARC 中创</u> 建、更新和删除恢复组。	请参阅 <u>CreateCell</u>
获取单元格	请参阅 在 Route 53 ARC 中创建、更新和删除恢复组。	请参阅 GetCell
删除单元格	请参阅 <u>在 Route 53 ARC 中创</u> 建、更新和删除恢复组。	请参阅 DeleteCell
更新单元格	不适用	请参阅 <u>UpdateCell</u> 。

操作	使用 Route 53 ARC 控制台	使用 Route 53 ARC API
列出账户的单元格	请参阅 <u>在 Route 53 ARC 中创</u> 建、更新和删除恢复组。	请参阅 <u>ListCells</u>
创建恢复组	请参阅 在 Route 53 ARC 中创建、更新和删除恢复组。	参见 <u>CreateRecovery群组</u>
获取恢复组	请参阅 <u>在 Route 53 ARC 中创</u> 建、更新和删除恢复组。	参见 <u>GetRecovery群组</u>
更新恢复组	请参阅 在 Route 53 ARC 中创建、更新和删除恢复组。	参见 <u>UpdateRecovery群组</u>
删除恢复组	请参阅 在 Route 53 ARC 中创建、更新和删除恢复组。	参见 <u>DeleteRecovery群组</u>
列出恢复组	请参阅 在 Route 53 ARC 中创建、更新和删除恢复组。	参见 <u>ListRecovery群组</u>
创建资源集	请参阅 在 Route 53 ARC 中创 建和更新就绪检查。	参见 <u>CreateResourceSet</u>
获取资源集	请参阅 在 Route 53 ARC 中创 建和更新就绪检查。	参见 <u>GetResourceSet</u>
更新资源集	请参阅 <u>在 Route 53 ARC 中创</u> 建和更新就绪检查。	参见 <u>UpdateResourceSet</u>
删除资源集	请参阅 在 Route 53 ARC 中创 建和更新就绪检查。	参见 <u>DeleteResourceSet</u>
列出资源集	请参阅 在 Route 53 ARC 中创 建和更新就绪检查。	参见 <u>ListResource套装</u>
创建就绪检查	请参阅 <u>在 Route 53 ARC 中创</u> 建和更新就绪检查。	参见 CreateReadinessCheck
获取就绪检查	请参阅 在 Route 53 ARC 中创 建和更新就绪检查。	参见 <u>GetReadinessCheck</u>

API 操作 154

操作	使用 Route 53 ARC 控制台	使用 Route 53 ARC API
更新就绪检查	请参阅 <u>在 Route 53 ARC 中创</u> 建和更新就绪检查。	参见 <u>UpdateReadinessCheck</u>
删除就绪检查	请参阅 在 Route 53 ARC 中创 建和更新就绪检查。	参见 DeleteReadinessCheck
列出就绪检查	请参阅 在 Route 53 ARC 中创 建和更新就绪检查。	参见 <u>ListReadiness支票</u>
列出就绪规则	请参阅 <u>Route 53 ARC 中的就</u> <u>绪规则描述</u> 。	请参阅 <u>ListRules</u>
检查整个就绪检查的状态	请参阅 监控 Route 53 ARC 中的就绪状态。	请参阅 <u>GetReadinessCheckS</u> <u>tatus</u>
检查资源的状态	请参阅 <u>监控 Route 53 ARC 中</u> 的就绪状态。	查看 <u>GetReadinessCheckR</u> esource状态
检查单元格的状态	请参阅 <u>监控 Route 53 ARC 中</u> 的就绪状态。	请参阅 <u>GetCellReadinessSu</u> <u>mmary</u>
检查恢复组的状态	请参阅 <u>监控 Route 53 ARC 中</u> 的就绪状态。	参见 <u>GetRecoveryGroupRe</u> adiness摘要

使用 Route 53 ARC 准备情况检查 API 操作的示例 AWS CLI

本节介绍简单的应用程序示例,使用 Amazon Route 53 应用程序恢复控制器中的准备情况检查功能使用 API 操作。 AWS Command Line Interface 这些示例旨在帮助您基本了解如何使用 CLI 使用就绪检查功能。

在 Route 53 ARC 审计中检查应用程序副本中是否存在资源不匹配的准备情况。要为应用程序设置就绪性检查,您必须在 Route 53 ARC 单元中设置或建模应用程序资源,使其与您为应用程序创建的副本保持一致。然后,您可以设置就绪性检查来审计这些副本,以帮助您确保备用应用程序副本及其资源持续与生产副本相匹配

我们来看一个简单的案例。您有一个名为 Simple-Service 的应用程序目前在美国东部(弗吉尼亚州北部)区域 (us-east-1) 运行。您还在美国西部(俄勒冈州)区域 (us-west-2) 有一个应用程序备用副本。

在本例中,我们将配置就绪检查,以比较应用程序的这两个版本。这样,我们就可以确保美国西部(俄 勒冈州)区域的备用副本在失效转移场景中能够准备好接收流量。

有关使用的更多信息 AWS CLI,请参阅《AWS CLI 命令参考》。有关就绪 API 操作的列表和指向更多信息的链接,请参阅 准备情况检查 API 操作。

Route 53 ARC 中的单元格代表故障边界(如可用区或区域),并集合到恢复组中。恢复组代表您要检查失效转移就绪情况的应用程序。有关就绪检查组成部分的更多信息,请参阅就绪检查组件。

Note

Route 53 ARC 是一项全球服务,支持多个终端节点, AWS 区域 但您必须在大多数 Route 53 ARC CLI 命令中指定美国西部(俄勒冈--region us-west-2)区域(即指定参数)。例如,创建诸如恢复组或准备情况检查之类的资源。

在我们的应用程序示例中,首先要为拥有资源的每个区域创建一个单元格。然后,创建一个恢复组,接 着完成就绪检查的设置。

1. 创建单元格

1a. 创建 us-east-1 单元格。

```
aws route53-recovery-readiness --region us-west-2 create-cell \
    --cell-name east-cell

{
    "CellArn": "arn:aws:route53-recovery-readiness::111122223333:cell/east-cell",
    "CellName": "east-cell",
    "Cells": [],
    "ParentReadinessScopes": [],
    "Tags": {}
}
```

1b. 创建 us-west-1 单元格。

```
aws route53-recovery-readiness --region us-west-2 create-cell \
    --cell-name west-cell
{
```

```
"CellArn": "arn:aws:route53-recovery-readiness::111122223333:cell/west-cell",
    "CellName": "west-cell",
    "Cells": [],
    "ParentReadinessScopes": [],
    "Tags": {}
}
```

1c. 现在,我们有了两个单元格。您可以通过调用 list-cells API 来验证它们是否存在。

```
aws route53-recovery-readiness --region us-west-2 list-cells
```

```
{
    "Cells": [
        {
            "CellArn": "arn:aws:route53-recovery-readiness::111122223333:cell/east-
cell",
            "CellName": "east-cell",
            "Cells": [],
            "ParentReadinessScopes": [],
            "Tags": {}
        },
            "CellArn": "arn:aws:route53-recovery-readiness::111122223333:cell/west-
cell",
            "CellName": "west-cell"
            "Cells": [],
            "ParentReadinessScopes": [],
            "Tags": {}
        }
    ]
}
```

2. 创建恢复组

恢复组是 Route 53 ARC 中恢复就绪的顶级资源。恢复组代表整个应用程序。在该步骤中,我们将创建一个恢复组,对整个应用程序进行建模,然后添加我们创建的两个单元格。

2a. 创建恢复组。

```
aws route53-recovery-readiness --region us-west-2 create-recovery-group \
    --recovery-group-name simple-service-recovery-group \
    --cells "arn:aws:route53-recovery-readiness::111122223333:cell/east-cell"\
```

```
"arn:aws:route53-recovery-readiness::111122223333:cell/west-cell"
```

```
{
    "Cells": [],
    "RecoveryGroupArn": "arn:aws:route53-recovery-readiness::111122223333:recovery-
group/simple-service-recovery-group",
    "RecoveryGroupName": "simple-service-recovery-group",
    "Tags": {}
}
```

2b. (可选)您可以通过调用 list-recovery-groups API 来验证恢复组是否已正确创建。

```
aws route53-recovery-readiness --region us-west-2 list-recovery-groups
```

现在我们已经有了应用程序模型,接着添加要监控的资源。在 Route 53 ARC 中,您要监控的一组资源称为资源集。资源集包含全部属于相同类型的资源。我们对资源集中的资源进行相互比较,以帮助确定单元格是否准备好进行失效转移。

3. 创建资源集

假设我们的 Simple-Service 应用程序非常简单,只使用 DynamoDB 表。它在 us-east-1 中有一张 DynamoDB 表,在 us-west-2 中也有一张。资源集还包含就绪范围,用于标识每个资源包含在哪个单元格中。

3a. 创建反映 Simple-Service 应用程序资源的资源集。

使用 CLI 操作的示例 15^a

```
{
    "ResourceSetArn": "arn:aws:route53-recovery-readiness::111122223333:resource-set/
sample-resource-set",
    "ResourceSetName": "ImportantInformationTables",
    "Resources": [
        {
            "ReadinessScopes": [
                "arn:aws:route53-recovery-readiness::111122223333:cell/west-cell"
            "ResourceArn": "arn:aws:dynamodb:us-west-2:111122223333:table/
TableInUsWest2"
        },
        {
            "ReadinessScopes": [
                "arn:aws:route53-recovery-readiness::111122223333:cell/east-cell"
            "ResourceArn": "arn:aws:dynamodb:us-west-2:111122223333:table/
TableInUsEast1"
        }
    ],
    "Tags": {}
}
```

3b. (可选)您可以通过调用 list-resource-sets API 来验证资源集中包含的资源。这列出了 AWS 账户的所有资源集。在这里,您可以看到我们只有上面创建的一个资源集。

```
aws route53-recovery-readiness --region us-west-2 list-resource-sets
```

```
"ResourceSets": [
        {
            "ResourceSetArn": "arn:aws:route53-recovery-
readiness::111122223333:resource-set/ImportantInformationTables",
            "ResourceSetName": "ImportantInformationTables",
            "Resources": [
                {
                    "ReadinessScopes": [
                        "arn:aws:route53-recovery-readiness::111122223333:cell/west-
cell"
                    ],
                    "ResourceArn": "arn:aws:dynamodb:us-west-2:111122223333:table/
TableInUsWest2"
                },
                {
                    "ReadinessScopes": [
                        "arn:aws:route53-recovery-readiness::111122223333:cell/east-
cell"
                    ],
                    "ResourceArn": "arn:aws:dynamodb:us-west-2:111122223333:table/
TableInUsEast1"
                }
            ],
            "Tags": {}
        }
    ]
}{
    "ResourceSets": [
        {
            "ResourceSetArn": "arn:aws:route53-recovery-
readiness::111122223333:resource-set/ImportantInformationTables",
            "ResourceSetName": "ImportantInformationTables",
            "Resources": [
                {
                    "ReadinessScopes": [
                        "arn:aws:route53-recovery-readiness::111122223333:cell/west-
cell"
                    "ResourceArn": "arn:aws:dynamodb:us-west-2:111122223333:table/
TableInUsWest2"
                },
                    "ReadinessScopes": [
```

现在,我们已经创建了单元格、恢复组和资源集,以便在 Route 53 ARC 中对 Simple-Service 应用程序进行建模。接下来,我们将设置就绪检查,以监控资源是否准备好进行失效转移。

4. 创建就绪检查

就绪检查将一组规则应用于附加到检查的资源集中的每个资源。规则特定于每种资源类型。也就是说,AWS::DynamoDB::Table、AWS::EC2::Instance 等有不同的规则。规则会从各个维度检查资源,包括配置、容量(如果可用而且适用)、限制(如果可用而且适用)和路由配置。

Note

要查看就绪检查中应用于资源的规则,可以使用 get-readiness-check-resource-status API,如步骤 5 中所述。要查看 Route 53 ARC 中所有就绪规则的列表,请使用 list-rules 或参阅Route 53 ARC 中的就绪规则描述。Route 53 ARC 有一组针对每种资源 类型运行的特定规则;这些规则目前不能自定义。

4a. 为资源集 ImportantInformationTables 创建就绪检查。

}

4b. (可选)要验证是否已成功创建就绪检查,请运行 list-readiness-checks API。该 API 显示账户中的所有就绪检查。

```
aws route53-recovery-readiness --region us-west-2 list-readiness-checks
```

5. 监控就绪检查

现在,我们已经对应用程序进行了建模并添加了就绪检查,接下来可以监控资源了。您可以在四个级别上对应用程序的就绪情况进行建模:就绪检查级别(一组资源)、单个资源级别、单元格级别(可用区或区域中的所有资源)和恢复组级别(整个应用程序)。下面提供了获取上述每种类型的就绪状态的命令。

5a. 查看就绪检查的状态。

```
aws route53-recovery-readiness --region us-west-2 get-readiness-check-status\
--readiness-check-name ImportantInformationTableCheck
```

```
{
    "LastCheckedTimestamp": "2021-01-07T00:53:39Z",
    "Readiness": "READY",
    "ResourceArn": "arn:aws:dynamodb:us-west-2:111122223333:table/
TableInUsEast2"
  ]
}
```

5b. 查看就绪检查中单个资源的详细就绪状态,包括检查的每条规则的状态。

```
aws route53-recovery-readiness --region us-west-2 get-readiness-check-resource-status \
    --readiness-check-name ImportantInformationTableCheck \
    --resource-identifier "arn:aws:dynamodb:us-west-2:111122223333:table/
TableInUsWest2"
```

```
{"Readiness": "READY",
    "Rules": [
        {
            "LastCheckedTimestamp": "2021-01-07T00:55:41Z",
            "Messages": [],
            "Readiness": "READY",
            "RuleId": "DynamoTableStatus"
        },
        {
            "LastCheckedTimestamp": "2021-01-07T00:55:41Z",
            "Messages": [],
            "Readiness": "READY",
            "RuleId": "DynamoCapacity"
        },
        {
            "LastCheckedTimestamp": "2021-01-07T00:55:41Z",
            "Messages": [],
            "Readiness": "READY",
            "RuleId": "DynamoPeakRcuWcu"
        },
        {
            "LastCheckedTimestamp": "2021-01-07T00:55:41Z",
            "Messages": [],
            "Readiness": "READY",
            "RuleId": "DynamoGSIsPeakRcuWcu"
        },
            "LastCheckedTimestamp": "2021-01-07T00:55:41Z",
```

```
"Messages": [],
            "Readiness": "READY",
            "RuleId": "DynamoGSIsConfig"
        },
        {
            "LastCheckedTimestamp": "2021-01-07T00:55:41Z",
            "Messages": [],
            "Readiness": "READY",
            "RuleId": "DynamoGSIsStatus"
        },
        {
            "LastCheckedTimestamp": "2021-01-07T00:55:41Z",
            "Messages": [],
            "Readiness": "READY",
            "RuleId": "DynamoGSIsCapacity"
        },
        {
            "LastCheckedTimestamp": "2021-01-07T00:55:41Z",
            "Messages": [],
            "Readiness": "READY",
            "RuleId": "DynamoReplicationLatency"
        },
        {
            "LastCheckedTimestamp": "2021-01-07T00:55:41Z",
            "Messages": [],
            "Readiness": "READY",
            "RuleId": "DynamoAutoScalingConfiguration"
        },
        {
            "LastCheckedTimestamp": "2021-01-07T00:55:41Z",
            "Messages": [],
            "Readiness": "READY",
            "RuleId": "DynamoLimits"
        }
    ]
}
```

5c. 查看单元格的总体就绪情况。

```
aws route53-recovery-readiness --region us-west-2 get-cell-readiness-summary \
    --cell-name west-cell
```

5d. 最后,查看恢复组级别上应用程序的顶级就绪情况。

```
aws route53-recovery-readiness --region us-west-2 get-recovery-group-readiness-summary

--recovery-group-name simple-service-recovery-group
```

与恢复小组合作并进行准备情况检查

本节介绍并提供了恢复组和准备情况检查的过程,包括创建、更新和删除这些资源。

在 Route 53 ARC 中创建、更新和删除恢复组

恢复组在 Amazon Route 53 应用程序恢复控制器中代表您的应用程序。它通常由两个或多个单元格组成,这些单元格在资源和功能上是彼此的副本,因此您可以从一个单元格向另一个单元格进行失效转移。每个单元格都包含一个 AWS 区域或可用区域的活跃资源的 Amazon 资源名称 (ARN)。资源可能是 Elastic Load Balancing 负载均衡器、自动扩缩组或其他资源。代表另一个可用区或区域的相应单元格包含与活动单元格类型相同的备用资源(负载均衡器、自动扩缩组等)。

单元格代表应用程序的副本。Route 53 ARC 中的就绪检查可帮助您确定应用程序是否已准备好从一个副本失效转移到另一个副本。但是,您应该根据监控和运行状况检查系统来确定是否从某副本或向某副本进行失效转移,并考虑将就绪检查作为这些系统的补充服务。

就绪检查会审计资源,根据该类型资源的一组预定义规则来确定其就绪情况。创建包含副本的恢复组后,为应用程序中的资源添加 Route 53 ARC 就绪检查,因此 Route 53 ARC 可以帮助确保副本长期拥有相同的设置和配置。

主题

- 创建恢复组
- 更新和删除恢复组和单元

创建恢复组

本节中的步骤说明了如何在 Route 53 ARC 控制台中创建恢复组。要了解如何在 Amazon Route 53 应用程序恢复控制器中使用恢复就绪 API 操作,请参阅 准备情况检查 API 操作。

创建恢复组的步骤

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 选择"准备情况检查"。
- 3. 在恢复就绪页面上,选择创建,然后选择恢复组。
- 4. 输入恢复组的名称,然后选择下一步。
- 5. 选择创建单元格,然后选择添加单元格。
- 6. 输入单元格名称。例如,如果您在美国西部(北加利福尼亚)中有一个应用程序副本,则可以添加一个名为 MyApp-us-west-1 的单元格。
- 7. 选择添加单元格,然后为第二个单元格添加名称。例如,如果您在美国东部(俄亥俄州)中有一个 副本,则可以添加一个名为 MyApp-us-east-2 的单元格。
- 如果要添加嵌套单元格(区域内可用区中的副本),请选择操作,再选择添加嵌套单元格,然后输入名称。
- 9. 为应用程序副本添加了所有单元格和嵌套单元格后,请选择下一步。
- 10. 查看您的恢复组,然后选择创建恢复组。

更新和删除恢复组和单元

本节中的步骤说明了如何在 Route 53 ARC 控制台中更新和删除恢复组并删除单元格。要了解如何在 Amazon Route 53 应用程序恢复控制器中使用恢复就绪 API 操作,请参阅 准备情况检查 API 操作。

更新或删除恢复组或删除单元格的步骤

- 1. 打开 Route 53 ARC 控制台,网址为<u>https://console.aws.amazon.com/route53recovery/home#/</u> dashboard。
- 2. 选择"准备情况检查"。
- 3. 在恢复就绪页面上,选择一个恢复组。
- 4. 要操作恢复组,请选择操作,然后选择编辑恢复组或删除恢复组。
- 5. 编辑恢复组时,可以添加或删除单元格或嵌套单元格。
 - 要添加单元格,请选择添加单元格。
 - 要删除单元格,请在单元格旁边的操作标签下,选择删除单元格。

在 Route 53 ARC 中创建和更新就绪检查

本节提供准备情况检查和资源集的过程,包括创建、更新和删除这些资源。

创建和更新就绪检查

本节中的步骤说明了如何在 Route 53 ARC 控制台中创建就绪检查。要了解如何在 Amazon Route 53 应用程序恢复控制器中使用恢复就绪 API 操作,请参阅 准备情况检查 API 操作。

要更新就绪检查,您可以编辑就绪检查的资源集,以添加或删除资源或者更改资源的就绪范围。

创建就绪检查的步骤

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 选择"准备情况检查"。
- 3. 在就绪页面上,选择创建,然后选择就绪检查。
- 4. 输入就绪检查的名称,选择要检查的资源类型,然后选择下一步。
- 5. 为就绪检查添加资源集。资源集是不同副本中相同类型的一组资源。选择以下操作之一:
 - 使用已创建资源集中的资源创建就绪检查。
 - 创建新的资源集。

如果您选择创建新的资源集,请输入资源集的名称并选择添加。

对于您想要加入到资源集的每个资源,逐一复制并粘贴 Amazon 资源名称 (ARN),然后选择下一 步。

(i) Tip

有关 Route 53 ARC 对每种资源类型所要求的 ARN 格式的示例和更多信息,请参阅Route 53 ARC 中的资源类型和 ARN 格式。

- 如果您愿意,请查看 Route 53 ARC 检查该就绪检查中所包含的资源类型时将会使用的就绪规则。 然后选择下一步。
- (可选)在恢复组名称下,选择要与就绪检查关联的恢复组,然后从资源所在的下拉菜单中为每个 资源 ARN 选择一个单元格(区域或可用区)。如果它是应用程序级资源,比如 DNS 路由策略, 请选择全局资源(不含单元格)。

这一步为就绪检查中的资源指定了就绪范围。

Important

尽管该步骤是可选的,但必须添加就绪范围才能获取恢复组和单元格的就绪摘要信息。如 果跳过该步骤,没有通过在此处选择就绪范围将就绪检查与恢复组的资源相关联,那么 Route 53 ARC 将无法返回恢复组或单元格的就绪摘要信息。

- 9. 选择下一步。
- 10. 检查确认页面上的信息,然后选择创建就绪检查。

删除就绪检查的步骤

- 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/ dashboard。
- 2. 选择"准备情况检查"。
- 3. 选择就绪检查,然后在操作下选择删除。

创建和编辑资源集

通常情况下,在创建就绪检查的过程中创建资源集,但也可以单独创建资源集。您也可以编辑资源集, 以添加或删除资源。本节中的步骤说明了如何在 Route 53 ARC 控制台中创建或编辑资源集。要了解如 何在 Amazon Route 53 应用程序恢复控制器中使用恢复就绪 API 操作,请参阅 <u>准备情况检查 API 操</u>作。

创建资源集的步骤

- 1. 打开 Route 53 控制台,网址为 https://console.aws.amazon.com/route53/home。
- 2. 在应用程序恢复控制器下,选择资源集。
- 3. 选择创建。
- 4. 输入资源集的名称,然后选择要包含在资源集中的资源类型。
- 5. 选择添加,然后输入要添加到资源集的资源的 Amazon 资源名称 (ARN)。
- 6. 添加完资源后,选择创建资源集。

编辑资源集的步骤

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 选择"准备情况检查"。
- 3. 在"资源集"下,选择"操作",然后选择"编辑"。
- 4. 请执行以下操作之一:
 - 要从资源集中删除资源,请选择删除。
 - 要向资源集中添加资源,请选择添加,然后输入该资源的 Amazon 资源名称 (ARN)。
- 5. 您还可以编辑资源的就绪范围,以便将资源与其他单元格关联起来,进行就绪检查。
- 6. 选择保存。

监控 Route 53 ARC 中的就绪状态

在 Amazon Route 53 应用程序恢复控制器中,您可以按以下级别查看应用程序就绪情况:

- 资源集中资源的就绪检查级别
- 单个资源级别
- 可用区或 AWS 区域中所有资源的单元(应用程序副本)级别
- 整个应用程序的恢复组级别

<u>监控就绪状态</u> 169

您可以收到有关就绪状态变化的通知,也可以在 Route 53 控制台中或使用 Route 53 ARC CLI 命令监控就绪状态的变化。

就绪状态通知

您可以使用 Amazon EventBridge 设置事件驱动的规则,以监控 Route 53 ARC 资源并通知您有关就绪 状态的变化。有关更多信息,请参阅 在亚马逊的 Route 53 ARC 中使用准备情况检查 EventBridge。

在 Route 53 ARC 控制台中监控就绪状态

以下过程介绍如何在中监控恢复准备情况 AWS Management Console。

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 选择"准备情况检查"。
- 3. 在就绪页面的恢复组下,查看每个恢复组(应用程序)的恢复组就绪状态。

您还可以查看特定单元格或单个资源的就绪情况。

使用 CLI 命令监控就绪状态

本节提供了用于查看不同级别应用程序和资源的就绪状态的 AWS CLI 命令示例。

资源集的就绪情况

您为资源集(一组资源)创建的就绪检查的状态。

aws route53-recovery-readiness --region us-west-2 get-readiness-checkstatus --readiness-check-name *ReadinessCheckName*

单个资源的就绪情况

要在就绪检查中获取单个资源的状态,包括检查的每条就绪规则的状态,请指定就绪检查名称和资源 ARN。例如:

aws route53-recovery-readiness --region us-west-2 get-readiness-check-status --readiness-check-name *ReadinessCheckName* --resource-arn "arn:aws:dynamodb:us-west-2:111122223333:table/*TableName*"

单元格的就绪情况

一个单元格(即区域或可用区)的状态。

<u>监控就绪状态</u> 170

aws route53-recovery-readiness --region us-west-2 get-cell-readiness-summary --cell-name *CellName*

应用程序的就绪情况

整个应用程序(恢复组级别)的状态。

aws route53-recovery-readiness --region us-west-2 get-recovery-group-readiness-summary --recovery-group-name *RecoveryGroupName*

在 Route 53 ARC 中获取架构建议

如果您有现成的应用程序,Amazon Route 53 应用程序恢复控制器可以评估应用程序架构和路由策略,提供修改设计的建议,以提高应用程序的恢复弹性。在 Route 53 ARC 中创建代表应用程序的恢复组后,请按照本节中的步骤获取有关应用程序架构的建议。

如果您尚未为恢复组 DNS 目标资源指定目标资源,我们建议您指定一个,以便我们提供更详细的建议。当您提供更多信息时,Route 53 ARC 可以为您提供更好的建议。例如,如果您输入 Amazon Route 53 资源记录或网络负载均衡器作为目标资源,Route 53 ARC 可以提供有关您是否为恢复组创建了最佳数量的单元格的信息。

对于 DNS 目标资源,请注意以下几点:

- 仅为目标资源指定 Route 53 资源记录或网络负载均衡器。
- 仅为每个恢复组创建一个 DNS 目标资源。
- 建议:为每个单元格创建一个 DNS 目标资源。
- 在就绪检查中,将 DNS 目标资源组成一个资源集。

以下步骤说明了如何创建 DNS 目标资源以及如何获取适用于应用程序的架构建议。

获取架构更新建议的步骤

- 1. 打开 Route 53 ARC 控制台,网址为https://console.aws.amazon.com/route53recovery/home#/dashboard。
- 2. 选择"准备情况检查"。
- 3. 在恢复组名称下,选择代表应用程序的恢复组。
- 4. 在恢复组的详细信息页面的操作菜单上,选择获取该恢复组的架构建议。

 5. 如果您尚未创建 DNS 目标资源就绪检查,请创建一个,以便 Route 53 ARC 提供架构建议。选择创建 DNS 目标资源。

有关 DNS 目标资源的更多信息,请参阅就绪检查组件。

- 6. 要为 DNS 目标资源创建资源集,请创建就绪检查。输入就绪检查的名称,然后对于就绪检查类型,选择 DNS 目标资源。
- 7. 输入资源集的名称。
- 8. 输入应用程序的属性,包括 DNS 名称、托管区 ARN 和记录集 ID。
 - Tip

要查看托管区 ARN 的格式,请参阅Route 53 ARC 中的资源类型和 ARN 格式中托管区的 ARN 格式。

可选但强烈推荐的步骤是,选择添加可选属性,然后提供网络负载均衡器 ARN 或域的 Route 53 资源记录。

- 9. (可选)在恢复组配置中,为您的 DNS 目标资源选择一个单元格,以设置就绪范围。
- 10. 选择创建资源集。
- 11. 在恢复组的详细信息页面上,选择获取架构建议。Route 53 ARC 在页面上显示了一组建议。

查看建议列表。然后,您可以决定是否以及如何进行更改,以提高应用程序的恢复弹性。

在 Route 53 ARC 中创建跨账户授权

您的资源可能分布在多个 AWS 账户中,这使得全面了解应用程序的运行状况变得困难。它还可能使获取快速决策所需的信息变得困难。为了在 Amazon Route 53 应用程序恢复控制器中简化准备情况,您可以使用跨账户授权。

Route 53 ARC 中的跨账户授权会与就绪检查功能结合使用。通过跨账户授权,您可以使用一个中央 AWS 账户来监控位于多个 AWS 账户中的资源。在包含要监控的资源的每个账户中,您可以授权中央 账户访问这些资源。然后,该中央账户可以为所有账户中的资源创建就绪检查,并且您可以从该中央账户监控失效转移就绪情况。

创建跨账户授权 172

Note

在控制台中不能设置跨账户授权。请使用 Route 53 ARC API 操作来设置和使用跨账户授权。为了帮助您入门,本节提供了 AWS CLI 命令示例。

假设某个应用程序有一个账户在美国西部(俄勒冈州)区域 (us-west-2) 拥有资源,还有一个账户在美国东部(弗吉尼亚州北部)区域 (us-east-1) 拥有您想要监控的资源。借助跨账户授权,您可以通过 Route 53 ARC 从一个账户 us-west-2 访问这两组资源。

例如,假设您有以下 AWS 账户:

• 美国西部账户: 99999999999

• 美国东部账户: 111111111111

在 us-east-1 账户 (111111111111) 中,我们可以启用跨账户授权,并为 us-west-2 IAM 账户中的 (根)用户指定 Amazon 资源名称 (ARN): arn:aws:iam::9999999999:root,从而允许 us-west-2 账户 (999999999) 访问。创建授权后,us-west-2 账户便可将 us-east-1 拥有的资源添加到资源集中,并创建要对该资源集运行的就绪检查。

以下示例说明了如何为一个账户设置跨账户授权。您必须在每个拥有要在 Route 53 ARC 中添加和监控的 AWS 资源的额外账户中启用跨账户授权。

Note

Route 53 ARC 是一项全球服务,支持多个 AWS 区域的终端节点,但您必须在大多数 Route 53 ARC CLI 命令中指定美国西部(俄勒冈--region us-west-2)区域(即指定参数)。

以下 AWS CLI 命令显示如何为此示例设置跨账户授权:

aws route53-recovery-readiness --region us-west-2 --profile *profile-in-us-east-1-account* \

要禁用该授权,请执行以下操作:

创建跨账户授权 173

```
aws route53-recovery-readiness --region us-west-2 --profile profile-in-us-east-1-
account \
    delete-cross-account-authorization --cross-account-authorization
arn:aws:iam::999999999999:root
```

要在一个特定账户中查看所有您已提供跨账户授权的账户,请使用 list-cross-accountauthorizations 命令。请注意,目前无法反向检查。也就是说,您无法在某账户资料中使用 API 操 作来列出它已获得跨账户授权(以添加和监控资源)的所有账户。

```
aws route53-recovery-readiness --region us-west-2 --profile profile-in-us-east-1-
account \
   list-cross-account-authorizations

{
    "CrossAccountAuthorizations": [
        "arn:aws:iam::9999999999:root"
    ]
}
```

就绪规则、资源类型和 ARNS

本节包括有关准备规则描述、支持的资源类型以及您用于资源集的 Amazon 资源名称 (ARN) 格式的参考信息。

Route 53 ARC 中的就绪规则描述

本节列出了 Amazon Route 53 应用程序恢复控制器支持的所有资源类型的就绪规则描述。要查看 Route 53 ARC 支持的资源类型列表,请参阅Route 53 ARC 中的资源类型和 ARN 格式。

您还可以通过执行以下操作,在 Route 53 ARC 控制台上或使用 API 操作查看就绪规则描述:

- 要在控制台中查看就绪规则,请按照以下过程中的步骤操作:在控制台上查看就绪规则。
- 要使用 API 查看就绪规则,请参阅ListRules操作。

主题

- Route 53 ARC 中的就绪规则
- 在控制台上查看就绪规则

就绪规则、资源类型和 ARNS 174

Route 53 ARC 中的就绪规则

本节列出了 Route 53 ARC 支持的每种资源类型的一组就绪规则。

在浏览规则描述时,您可以看到大部分都包含词语检查所有或检查每个。要了解这些词语如何说明在就 绪检查背景下规则的工作原理,以及有关 Route 53 ARC 如何设置就绪状态的其他详细信息,请参阅<u>就</u> 绪规则如何确定就绪状态。

就绪规则

Route 53 ARC 使用以下就绪规则审计资源。

Amazon API Gateway 版本 1 阶段

- ApiGwV1ApiKeyCount:检查所有 API Gateway 阶段,确保它们关联的 API 密钥数量相同。
- ApiGwV1ApiKeySource:检查所有 API Gateway 阶段,确保它们的 API Key Source 值相 同。
- ApiGwV1BasePath:检查所有 API Gateway 阶段,确保它们链接到相同的基本路径。
- ApiGwV1BinaryMediaTypes:检查所有 API Gateway 阶段,确保它们支持相同的二进制媒体类型。
- ApiGwV1CacheClusterEnabled:检查所有 API Gateway 阶段,确保全部启用或都没启用 Cache Cluster。
- ApiGwV1CacheClusterSize:检查所有 API Gateway 阶段,确保它们的 Cache Cluster Size 相同。如果有一个的值比较大,则其他标记为 NOT READY。
- ApiGwV1CacheClusterStatus:检查所有 API Gateway 阶段,确保 Cache Cluster 处于 AVAILABLE 状态。
- ApiGwV1DisableExecuteApiEndpoint:检查所有 API Gateway 阶段,确保全部禁用或都没禁用 Execute API Endpoint。
- ApiGwV1DomainName:检查所有 API Gateway 阶段,确保它们链接到相同的域名。
- ApiGwV1EndpointConfiguration:检查所有 API Gateway 阶段,确保它们链接到具有相同端点配置的域。
- ApiGwV1EndpointDomainNameStatus:检查所有 API Gateway 阶段,确保它们关联的域名处于 AVAILABLE 状态。
- ApiGwV1MethodSettings:检查所有 API Gateway 阶段,确保它们的 Method Settings 值相 同。
- ApiGwV1MutualTlsAuthentication:检查所有 API Gateway 阶段,确保它们的 Mutual TLS Authentication 值相同。

就绪规则、资源类型和 ARNS 175

- ApiGwV1Policy:检查所有 API Gateway 阶段,确保全部使用或都不使用 API 级别策略。
- ApiGwV1RegionalDomainName:检查所有 API Gateway 阶段,确保它们链接到相同的区域域名。注意:该规则不影响就绪状态。
- ApiGwV1ResourceMethodConfigs:检查所有 API Gateway 阶段,确保它们具有相似的资源层次结构,包括相关配置。
- ApiGwV1SecurityPolicy:检查所有 API Gateway 阶段,确保它们的 Security Policy 值相
 同。
- ApiGwV1Quotas:检查所有 API Gateway 组,确保它们符合由 Service Quotas 管理的限额(限制)。
- ApiGwV1UsagePlans:检查所有 API Gateway 阶段,确保它们链接到具有相同配置的 Usage Plans。

Amazon API Gateway 版本 2 阶段

- ApiGwV2ApiKeySelectionExpression:检查所有 API Gateway 阶段,确保它们的 API Key Selection Expression值相同。
- ApiGwV2ApiMappingSelectionExpression:检查所有 API Gateway 阶段,确保它们的 API Mapping Selection Expression 值相同。
- ApiGwV2CorsConfiguration:检查所有 API Gateway 阶段,确保它们具有相同的 CORS 相关配置。
- ApiGwV2DomainName:检查所有 API Gateway 阶段,确保它们链接到相同的域名。
- ApiGwV2DomainNameStatus:检查所有 API Gateway 阶段,确保域名处于 AVAILABLE 状态。
- ApiGwV2EndpointType:检查所有 API Gateway 阶段,确保它们的 Endpoint Type 值相同。
- ApiGwV2Quotas:检查所有 API Gateway 组,确保它们符合由 Service Quotas 管理的限额(限制)。
- ApiGwV2MutualTlsAuthentication:检查所有 API Gateway 阶段,确保它们的 Mutual TLS Authentication 值相同。
- ApiGwV2ProtocolType:检查所有 API Gateway 阶段,确保它们的 Protocol Type 值相同。
- ApiGwV2RouteConfigs:检查所有 API Gateway 阶段,确保它们具有相同的路由层次结构和相同的配置。
- ApiGwV2RouteSelectionExpression:检查所有 API Gateway 阶段,确保它们的 Route Selection Expression值相同。
- ApiGwV2RouteSettings:检查所有 API Gateway 阶段,确保它们的 Default Route Settings 值相同。

- ApiGwV2SecurityPolicy:检查所有 API Gateway 阶段,确保它们的 Security Policy 值相 同。
- ApiGwV2StageVariables: 检查所有 API Gateway 阶段,确保它们的 Stage Variables 都与其他阶段相同。
- ApiGwV2ThrottlingBurstLimit:检查所有 API Gateway 阶段,确保它们的 Throttling Burst Limit 值相同。
- ApiGwV2ThrottlingRateLimit:检查所有 API Gateway 阶段,确保它们的 Throttling Rate Limit 值相同。

Amazon Aurora 集群

- RdsClusterStatus:检查每个 Aurora 集群,以确保其状态为 AVAILABLE 或 BACKING-UP。
- RdsEngineMode:检查所有 Aurora 集群,确保它们的 Engine Mode 值相同。
- RdsEngineVersion:检查所有 Aurora 集群,确保它们的 Major Version 值相同。
- RdsGlobalReplicaLag:检查每个 Aurora 集群,确保其 Global Replica Lag 小于 30 秒。
- RdsNormalizedCapacity:检查所有 Aurora 集群,确保其标准化容量占资源集中最大容量的 15%以内。
- RdsInstanceType:检查所有 Aurora 集群,确保它们有相同的实例类型。
- RdsQuotas:检查所有 Aurora 集群,确保它们符合由 Service Quotas 管理的限额(限制)。

自动扩缩组

- AsgMinSizeAndMaxSize:检查所有自动扩缩组,确保它们的组大小下限和上限相同。
- AsgAZCount:检查所有自动扩缩组,确保其可用区数量相同。
- AsgInstanceTypes:检查所有自动扩缩组,确保它们有相同的实例类型。注意:该规则不影响就 绪状态。
- AsgInstanceSizes:检查所有自动扩缩组,确保它们的实例大小相同。
- AsgNormalizedCapacity:检查所有自动扩缩组,确保其标准化容量占资源集中最大容量的 15%以内。
- AsgQuotas:检查所有自动扩缩组,确保它们符合由 Service Quotas 管理的限额(限制)。

CloudWatch 警报

CloudWatchAlarmState:检查 CloudWatch 警报以确保每个警报都未处于ALARM或INSUFFICIENT_DATA状态。

客户网关

• CustomerGatewayIpAddress:检查所有客户网关,确保它们的 IP 地址相同。

- CustomerGatewayState: 检查客户网关,确保每个网关都处于 AVAILABLE 状态。
- CustomerGatewayVPNType:检查所有客户网关,确保它们的 VPN 类型相同。

DNS target resources

- DnsTargetResourceHostedZoneConfigurationRule:检查所有 DNS 目标资源,确保它们具有相同的 Amazon Route 53 托管区 ID,并且每个托管区都不是私有的。注意:该规则不影响就绪状态。
- DnsTargetResourceRecordSetConfigurationRule:检查所有 DNS 目标资源,确保它们具有相同的资源记录缓存生存时间 (TTL),并且 TTL 小于或等于 300。
- DnsTargetResourceRoutingRule:检查每个与别名资源记录集关联的 DNS 目标资源,确保其将流量路由到目标资源上配置的 DNS 名称。注意:该规则不影响就绪状态。
- DnsTargetResourceHealthCheckRule:检查所有 DNS 目标资源,确保运行状况检查在适当时与 其资源记录集相关联,而非相反情况。注意:该规则不影响就绪状态。

Amazon DynamoDB 表

- DynamoConfiguration:检查所有 DynamoDB 表,确保它们具有相同的密钥、属性、服务器端加密和流配置。
- DynamoTableStatus:检查每个 DynamoDB 表,确保其状态为 ACTIVE。
- DynamoCapacity:检查所有 DynamoDB 表,确保其预配置的读取容量和写入容量占资源集中最大容量的 20% 以内。
- DynamoPeakRcuWcu:检查每个 DynamoDB 表,确保其峰值流量与其他表类似,以保证预配置的容量。
- DynamoGsiPeakRcuWcu:检查每个 DynamoDB 表,确保其最大读取和写入容量与其他表类似,以保证预配置的容量。
- DynamoGsiConfig:检查所有具有全局二级索引的 DynamoDB 表,确保这些表使用相同的索引、键架构和投影。
- DynamoGsiStatus:检查所有具有全局二级索引的 DynamoDB 表,确保全局二级索引处于 ACTIVE 状态。
- DynamoGsiCapacity:检查所有具有全局二级索引的 DynamoDB 表,确保这些表的预配置 GSI 读取容量和 GSI 写入容量占资源集中最大容量的 20% 以内。
- DynamoReplicationLatency:检查所有作为全局表的 DynamoDB 表,确保它们的复制延迟相同。
- DynamoAutoScalingConfiguration:检查所有启用了自动扩缩的 DynamoDB 表,确保它们具有相同的最小容量、最大容量及目标读取和写入容量。

DynamoQuotas:检查所有 DynamoDB 表,确保它们符合由 Service Quotas 管理的限额(限制)。

Elastic Load Balancing (经典负载均衡器)

- ElbV1CheckAzCount:检查每个经典负载均衡器,确保其仅连接到一个可用区。注意:该规则不影响就绪状态。
- ElbV1AnyInstances: 检查所有经典负载均衡器,确保它们至少有一个 EC2 实例。
- ElbV1AnyInstancesHealthy: 检查所有经典负载均衡器,确保它们至少有一个运行正常的 EC2 实例。
- ElbV1Scheme:检查所有经典负载均衡器,确保它们采用相同的负载均衡器方案。
- ElbV1HealthCheckThreshold:检查所有经典负载均衡器,确保它们的运行状况检查阈值相同。
- ElbV1HealthCheckInterval:检查所有经典负载均衡器,确保它们的运行状况检查间隔值相同。
- ElbV1CrossZoneRoutingEnabled:检查所有经典负载均衡器,确保它们具有相同的跨区域负载均衡值(ENABLED 或 DISABLED)。
- ElbV1AccessLogsEnabledAttribute:检查所有经典负载均衡器,确保它们的访问日志值相同 (ENABLED 或 DISABLED)。
- ElbV1ConnectionDrainingEnabledAttribute:检查所有经典负载均衡器,确保它们的连接耗尽值相同(ENABLED 或 DISABLED)。
- ElbV1ConnectionDrainingTimeoutAttribute:检查所有经典负载均衡器,确保它们的连接耗尽超时值相同。
- ElbV1IdleTimeoutAttribute:检查所有经典负载均衡器,确保它们的空闲超时值相同。
- ElbV1ProvisionedCapacityLcuCount:检查所有预配置的 LCU 大于 10 的经典负载均衡器,确保它们占资源集中最高预配置 LCU 的 20% 以内。
- ElbV1ProvisionedCapacityStatus:检查每个经典负载均衡器的预配置容量状态,确保其值不是 DISABLED 或 PENDING。

Amazon EBS 卷

- EbsVolumeEncryption:检查所有 EBS 卷,确保它们的加密值相同(ENABLED 或 DISABLED)。
- EbsVolumeEncryptionDefault:检查所有 EBS 卷,确保它们的默认加密值相同(ENABLED 或 DISABLED)。
- EbsVolumelops:检查所有 EBS 卷,确保它们每秒进行读写操作的次数 (IOPS) 相同。
- EbsVolumeKmsKeyId:检查所有EBS卷以确保它们的默认 AWS KMS 密钥 ID 相同。

- EbsVolumeMultiAttach:检查所有 EBS 卷,确保它们的多重挂载值相同(ENABLED 或 DISABLED)。
- EbsVolumeQuotas:检查所有 EBS 卷,确保它们符合 Service Quotas 设置的限额(限制)。
- EbsVolumeSize:检查所有 EBS 卷,确保它们的可读大小相同。
- EbsVolumeState:检查所有 EBS 卷,确保它们的卷状态相同。
- EbsVolumeType:检查所有 EBS 卷,确保它们的卷类型相同。

AWS Lambda 函数

- LambdaMemorySize:检查所有 Lambda 函数,确保它们的内存大小相同。如果有一个内存比较多,则其他标记为 NOT READY。
- LambdaFunctionTimeout:检查所有 Lambda 函数,确保它们的超时值相同。如果有一个的值比较大,则其他标记为 NOT READY。
- LambdaFunctionRuntime:检查所有 Lambda 函数,确保它们都具有相同的运行时间。
- LambdaFunctionReservedConcurrentExecutions:检查所有 Lambda 函数,确保它们都具有相同的 Reserved Concurrent Executions 值。如果有一个的值比较大,则其他标记为 NOT READY。
- LambdaFunctionDeadLetterConfig:检查所有 Lambda 函数,确保它们全都定义或都没定义
 Dead Letter Config。
- LambdaFunctionProvisionedConcurrencyConfig:检查所有 Lambda 函数,确保它们的 Provisioned Concurrency 值相同。
- LambdaFunctionSecurityGroupCount:检查所有 Lambda 函数,确保它们的 Security Groups 值相同。
- LambdaFunctionSubnetIdCount:检查所有 Lambda 函数,确保它们的 Subnet Ids 值相同。
- LambdaFunctionEventSourceMappingMatch:检查所有 Lambda 函数,确保它们之间所有选定的 Event Source Mapping 属性都匹配。
- LambdaFunctionLimitsRule:检查所有 Lambda 函数,确保它们符合由 Service Quotas 管理的 限额(限制)。

网络负载均衡器和应用程序负载均衡器

- ElbV2CheckAzCount:检查每个网络负载均衡器,确保其仅连接到一个可用区。注意:该规则不影响就绪状态。
- ElbV2TargetGroupsCanServeTraffic:检查每个网络负载均衡器和应用程序负载均衡器,确保其至少有一个运行正常的 Amazon EC2 实例。

- ElbV2State:检查每个网络负载均衡器和应用程序负载均衡器,确保其处于 ACTIVE 状态。
- ElbV2IpAddressType:检查所有网络负载均衡器和应用程序负载均衡器,确保它们的 IP 地址类型相同。
- ElbV2Scheme:检查所有网络负载均衡器和应用程序负载均衡器,确保它们的方案相同。
- ElbV2Type:检查所有网络负载均衡器和应用程序负载均衡器,确保它们的类型相同。
- ElbV2S3LogsEnabled:检查所有网络负载均衡器和应用程序负载均衡器,确保它们的 Amazon S3 服务器访问日志值相同(ENABLED 或 DISABLED)。
- ElbV2DeletionProtection:检查所有网络负载均衡器和应用程序负载均衡器,确保它们的删除保护值相同(ENABLED 或 DISABLED)。
- ElbV2IdleTimeoutSeconds:检查所有网络负载均衡器和应用程序负载均衡器,确保它们的空闲时间秒数值相同。
- ElbV2HttpDropInvalidHeaders:检查所有网络负载均衡器和应用程序负载均衡器,确保它们的 HTTP 丢弃无效标题值相同。
- ElbV2Http2Enabled:检查所有网络负载均衡器和应用程序负载均衡器,确保它们的 HTTP2 值相同(ENABLED 或 DISABLED)。
- ElbV2CrossZoneEnabled:检查所有网络负载均衡器和应用程序负载均衡器,确保它们具有相同的跨区域负载均衡值(ENABLED 或 DISABLED)。
- ElbV2ProvisionedCapacityLcuCount:检查所有预配置的 LCU 大于 10 的网络负载均衡器和应用程序负载均衡器,确保它们占资源集中最高预配置 LCU 的 20% 以内。
- ElbV2ProvisionedCapacityEnabled:检查所有网络负载均衡器和应用程序负载均衡器的预配置容量状态,确保其值不是 DISABLED 或 PENDING。

Amazon MSK 集群

- MskClusterClientSubnet:检查每个 MSK 集群,确保它只有两个或只有三个客户端子网。
- MskClusterInstanceType:检查所有 MSK 集群,确保它们具有相同的 Amazon EC2 实例类型。
- MskClusterSecurityGroups:检查所有 MSK 集群,确保它们具有相同的安全组。
- MskClusterStorageInfo:检查所有 MSK 集群,确保它们的 EBS 存储卷大小相同。如果有一个的值比较大,则其他标记为 NOT READY。
- MskClusterACMCertificate:检查所有 MSK 集群,确保它们具有相同的客户端授权证书 ARN 列表。
- MskClusterServerProperties:检查所有 MSK 集群,确保它们的 Current Broker Software Info 值相同。
- MskClusterKafkaVersion:检查所有 MSK 集群,确保它们的 Kafka 版本相同。

- MskClusterEncryptionInTransitInCluster:检查所有 MSK 集群,确保它们的 Encryption In Transit In Cluster 值相同。
- MskClusterEncryptionInClientBroker:检查所有 MSK 集群,确保它们的 Encryption In Transit Client Broker 值相同。
- MskClusterEnhancedMonitoring:检查所有 MSK 集群,确保它们的 Enhanced Monitoring 值相同。
- MskClusterOpenMonitoringInJmx:检查所有 MSK 集群,确保它们的 Open Monitoring JMX Exporter 值相同。
- MskClusterOpenMonitoringInNode: 检查所有 MSK 集群,确保它们的 Open Monitoring Not Exporter. 值相同。
- MskClusterLoggingInS3:检查所有 MSK 集群,确保它们的 Is Logging in S3 值相同。
- MskClusterLoggingInFirehose:检查所有 MSK 集群,确保它们的 Is Logging In Firehose 值相同。
- MskClusterLoggingInCloudWatch:检查所有 MSK 集群,确保它们的 Is Logging Available In CloudWatch Logs 值相同。
- MskClusterNumberOfBrokerNodes:检查所有 MSK 集群,确保它们的 Number of Broker Nodes 值相同。如果有一个的值比较大,则其他标记为 NOT READY。
- MskClusterState:检查每个 MSK 集群,确保其处于 ACTIVE 状态。
- MskClusterLimitsRule:检查所有 Lambda 函数,确保它们符合由 Service Quotas 管理的限额 (限制)。

Amazon Route 53 运行状况检查

- R53HealthCheckType:检查每个 Route 53 运行状况检查,确保其类型不是 CALCULATED,并且所有检查的类型都相同。
- R53HealthCheckDisabled:检查每个 Route 53 运行状况检查,确保其不处于 DISABLED 状态。
- R53HealthCheckStatus:检查每个 Route 53 运行状况检查,确保其处于 SUCCESS 状态。
- R53HealthCheckRequestInterval:检查所有 Route 53 运行状况检查,确保它们都具有相同的 Request Interval 值。
- R53HealthCheckFailureThreshold:检查所有 Route 53 运行状况检查,确保它们都具有相同的 Failure Threshold. 值。
- R53HealthCheckEnableSNI:检查所有 Route 53 运行状况检查,确保它们都具有相同的 Enable SNI.值。

- R53HealthCheckSearchString:检查所有 Route 53 运行状况检查,确保它们都具有相同的 Search String.值。
- R53HealthCheckRegions:检查所有 Route 53 运行状况检查,确保它们都有相同的 AWS 区域列表。
- R53HealthCheckMeasureLatency:检查所有 Route 53 运行状况检查,确保它们都具有相同的 Measure Latency 值。
- R53HealthCheckInsufficientDataHealthStatus:检查所有 Route 53 运行状况检查,确保它们都具有相同的 Insufficient Data Health Status 值。
- R53HealthCheckInverted:检查所有 Route 53 运行状况检查,确保它们全都倒置或全未倒置。
- R53HealthCheckResourcePath:检查所有 Route 53 运行状况检查,确保它们都具有相同的 Resource Path 值。
- R53HealthCheckCloudWatchAlarm:检查所有 Route 53 运行状况检查,确保与之关联的 CloudWatch 警报具有相同的设置和配置。

Amazon SNS 订阅

- SnsSubscriptionProtocol:检查所有 SNS 订阅,确保它们的协议相同。
- SnsSubscriptionSqsLambdaEndpoint:检查所有包含 Lambda 或 SQS 端点的 SNS 订阅,确保 它们包含不同的端点。
- SnsSubscriptionNonAwsEndpoint:检查所有具有非AWS服务端点类型(例如电子邮件)的SNS订阅,以确保订阅具有相同的终端节点。
- SnsSubscriptionPendingConfirmation:检查所有 SNS 订阅,确保它们的"待确认"值相同。
- SnsSubscriptionDeliveryPolicy:检查所有使用 HTTP/S 的 SNS 订阅,确保它们的"有效传输期"值相同。
- SnsSubscriptionRawMessageDelivery:检查所有 SNS 订阅,确保它们的"原始消息传输"值相同。
- SnsSubscriptionFilter:检查所有 SNS 订阅,确保它们的"筛选策略"值相同。
- SnsSubscriptionRedrivePolicy:检查所有 SNS 订阅,确保它们的"重新驱动政策"值相同。
- SnsSubscriptionEndpointEnabled:检查所有 SNS 订阅,确保它们的"端点已启用"的值相同。
- SnsSubscriptionLambdaEndpointValid:检查所有包含 Lambda 端点的 SNS 订阅,确保它们包含有效的 Lambda 端点。
- SnsSubscriptionSqsEndpointValidRule:检查所有使用 SQS 端点的 SNS 订阅,确保它们包含有效的 SQS 端点。

• SnsSubscriptionQuotas:检查所有 SNS 订阅,确保它们符合由 Service Quotas 管理的限额(限制)。

Amazon SNS 主题

- SnsTopicDisplayName:检查所有 SNS 主题,确保它们的 Display Name 值相同。
- SnsTopicDeliveryPolicy:检查所有拥有 HTTPS 订阅用户的 SNS 主题,确保它们的 EffectiveDeliveryPolicy 相同。
- SnsTopicSubscription:检查所有 SNS 主题,确保每个协议的订阅用户数相同。
- SnsTopicAwsKmsKey:检查所有 SNS 主题,确保所有主题都有或都没有 AWS KMS 密钥。
- SnsTopicQuotas:检查所有 SNS 主题,确保它们符合由 Service Quotas 管理的限额(限制)。

Amazon SQS 队列

- SqsQueueType:检查所有 SQS 队列,确保它们都具有相同的 Type 值。
- SqsQueueDelaySeconds:检查所有 SQS 队列,确保它们都具有相同的 Delay Seconds 值。
- SqsQueueMaximumMessageSize:检查所有 SQS 队列,确保它们都具有相同的 Maximum Message Size 值。
- SqsQueueMessageRetentionPeriod:检查所有 SQS 队列,确保它们都具有相同的 Message Retention Period 值。
- SqsQueueReceiveMessageWaitTimeSeconds:检查所有 SQS 队列,确保它们都具有相同的 Receive Message Wait Time Seconds 值。
- SqsQueueRedrivePolicyMaxReceiveCount:检查所有 SQS 队列,确保它们都具有相同的 Redrive Policy Max Receive Count 值。
- SqsQueueVisibilityTimeout:检查所有 SQS 队列,确保它们都具有相同的 Visibility Timeout 值。
- SqsQueueContentBasedDeduplication:检查所有 SQS 队列,确保它们都具有相同的 Content-Based Deduplication 值。
- SqsQueueQuotas:检查所有 SQS 队列,确保它们符合由 Service Quotas 管理的限额(限制)。

Amazon VPC

- VpcCidrBlock:检查所有 VPC,确保它们都具有相同的 CIDR 块网络大小值。
- VpcCidrBlocksSameProtocolVersion:检查所有具有相同 CIDR 块的 VPC,确保它们的 Internet 流协议版本号值相同。
- VpcCidrBlocksStateInAssociationSets:检查所有 VPC 的所有 CIDR 块关联集,确保它们的 CIDR 块都处于 ASSOCIATED 状态。

- Vpclpv6CidrBlocksStateInAssociationSets:检查所有 VPC 的所有 CIDR 块关联集,确保它们的 CIDR 块有相同的地址数。
- VpcCidrBlocksInAssociationSets:检查所有 VPC 的所有 CIDR 块关联集,确保它们都有相同的大小。
- Vpclpv6CidrBlocksInAssociationSets:检查所有 VPC 的所有 IPv6 CIDR 块关联集,确保它们都有相同的大小。
- VpcState:检查每个 VPC,确保其处于 AVAILABLE 状态。
- VpcInstanceTenancy:检查所有 VPC,确保它们都具有相同的 Instance Tenancy 值。
- VpclsDefault:检查所有 VPC,确保它们具有相同的 Is Default.值。
- VpcSubnetState:检查每个 VPC 子网,确保其处于 AVAILABLE 状态。
- VpcSubnetAvailableIpAddressCount:检查每个 VPC 子网,确保其可用的 IP 地址数大于零。
- VpcSubnetCount:检查所有 VPC 子网,确保它们的子网数量相同。
- VpcQuotas:检查所有 VPC 子网,确保它们符合由 Service Quotas 管理的限额(限制)。

AWS VPN 连接

- VpnConnectionsRouteCount:检查所有 VPN 连接,确保它们至少有一条路由,而且路由数量相同。
- VpnConnectionsEnableAcceleration:检查所有 VPN 连接,确保它们的 Enable Accelerations 值相同。
- VpnConnectionsStaticRoutesOnly:检查所有 VPN 连接,确保它们的 Static Routes Only.
 值相同。
- VpnConnectionsCategory:检查所有 VPN 连接,确保它们的类别为 VPN。
- VpnConnectionsCustomerConfiguration:检查所有 VPN 连接,确保它们的 Customer Gateway Configuration 值相同。
- VpnConnectionsCustomerGatewayId:检查每个 VPN 连接,确保它连接了客户网关。
- VpnConnectionsRoutesState:检查所有 VPN 连接,确保它们处于 AVAILABLE 状态。
- VpnConnectionsVgwTelemetryStatus:检查每个 VPN 连接,确保其 VGW 状态为 UP。
- VpnConnectionsVgwTelemetryIpAddress:检查每个 VPN 连接,确保其每个 VGW 遥测都有不同的外部 IP 地址。
- VpnConnectionsTunnelOptions:检查所有 VPN 连接,确保它们的隧道选项相同。
- VpnConnectionsRoutesCidr:检查所有 VPN 连接,确保它们的目标 CIDR 块相同。
- VpnConnectionsInstanceType:检查所有 VPN 连接,确保它们的 Instance Type 相同。

AWS VPN 网关

- VpnGatewayState:检查所有 VPN 网关,确保它们处于 AVAILABLE 状态。
- VpnGatewayAsn:检查所有 VPN 网关,确保它们的 ASN 相同。
- VpnGatewayType:检查所有 VPN 网关,确保它们的类型相同。
- VpnGatewayAttachment:检查所有 VPN 网关,确保它们的连接配置相同。

在控制台上查看就绪规则

您可以在上查看按每种资源类型列出的就绪规则。 AWS Management Console

在控制台上查看就绪规则的步骤

- 1. 打开 Route 53 ARC 控制台,网址为<u>https://console.aws.amazon.com/route53recovery/home#/</u>dashboard。
- 2. 选择"准备情况检查"。
- 3. 在资源类型下,选择需要的资源类型以查看其规则。

Route 53 ARC 中的资源类型和 ARN 格式

在 Amazon Route 53 应用程序恢复控制器中创建资源集时,您可以指定要包含在资源集中的资源类型以及要包含的每个资源的 Amazon 资源名称 (ARN)。Route 53 ARC 要求每种资源类型采用特定的 ARN 格式。本节列出了 Route 53 ARC 支持的资源类型以及每种资源类型的关联 ARN 格式。

具体格式取决于资源。当您提供 ARN 时,请将##文本替换为特定于资源的信息。

Note

请注意,Route 53 ARC 要求的资源 ARN 格式可能不同于服务本身所要求的资源 ARN 格式。例如,《服务授权参考》中每项服务的资源类型部分中描述的 ARN 格式可能不包括 Route 53 ARC 支持 Route 53 ARC 服务中功能所需的 AWS 账户 ID 或其他信息。

AWS::ApiGateway::Stage

Amazon API Gateway 版本 1 阶段。

 ARN 格式: arn:partition:apigateway:region:account:/restapis/api-id/ stages/stage-name

例如:arn:aws:apigateway:us-east-1:111122223333:/restapis/123456789/ stages/ExampleStage

有关更多信息,请参阅 API Gateway Amazon 资源名称 (ARN) 参考。

AWS::ApiGatewayV2::Stage

Amazon API Gateway 版本 2 阶段。

• ARN 格式: arn: partition: apigateway: region: account: /apis/api-id/stages/stage-name

例如:arn:aws:apigateway:us-east-1:111122223333:/apis/123456789/stages/ ExampleStage

有关更多信息,请参阅 API Gateway Amazon 资源名称 (ARN) 参考。

AWS::CloudWatch::Alarm

亚马逊 CloudWatch 警报。

• ARN 格式:arn:partition:cloudwatch:region:account:alarm:alarm-name

例如:arn:aws:cloudwatch:us-west-2:111122223333:alarm:test-alarm-1

有关更多信息,请参阅 Amazon 定义的资源类型 CloudWatch。

AWS::DynamoDB::Table

Amazon DynamoDB 表。

• ARN 格式: arn:partition:dynamodb:region:account:table/table-name

例如:arn:aws:dynamodb:us-west-2:111122223333:table/BigTable

有关更多信息,请参阅 DynamoDB 资源和操作。

AWS::EC2::CustomerGateway

客户网关设备。

 ARN 格式: arn:partition:ec2:region:account:customergateway/CustomerGatewayId

例如:arn:aws:ec2:us-west-2:111122223333:customer-gateway/vcg-123456789

有关更多信息,请参阅 Amazon EC2 定义的资源类型。

AWS::EC2::Volume

Amazon EBS 卷。

• ARN 格式:arn:partition:ec2:region:account:volume/VolumeId

例如:arn:aws:ec2:us-west-2:111122223333:volume/volume-of-cylinder-ispi

有关更多信息,请参阅 API Gateway Amazon 资源名称 (ARN) 参考。

AWS::ElasticLoadBalancing::LoadBalancer

经典负载均衡器。

• ARN 格

式:arn:partition:elasticloadbalancing:region:account:loadbalancer/LoadBalance

例如:arn:aws:elasticloadbalancing:us-

west-2:111122223333:loadbalancer/123456789abcbdeCLB

有关更多信息,请参阅 Elastic Load Balancing 资源。

AWS::ElasticLoadBalancingV2::LoadBalancer

网络负载均衡器或应用程序负载均衡器。

• 网络负载均衡器的 ARN 格

式:arn:partition:elasticloadbalancing:region:account:loadbalancer/net/LoadBalancerName

网络负载均衡器示例:arn:aws:elasticloadbalancing:uswest-2:111122223333:loadbalancer/net/sandbox-net/123456789acbdeNLB

应用程序负载均衡器的 ARN 格

式:arn:partition:elasticloadbalancing:region:account:loadbalancer/app/LoadBalancerName

应用程序负载均衡器示例:arn:aws:elasticloadbalancing:uswest-2:111122223333:loadbalancer/app/sandbox-alb/123456789acbdeALB

有关更多信息,请参阅 <u>Elastic Load Balancing 资源</u>。

AWS::Lambda::Function

- 一个 AWS Lambda 函数。
- ARN 格式: arn: partition: lambda: region: account: function: FunctionName

例如:arn:aws:lambda:us-west-2:111122223333:function:my-function

有关更多信息,请参阅 Lambda 操作的资源和条件。

AWS::MSK::Cluster

Amazon MSK 集群。

• ARN 格式:arn:partition:kafka:region:account:cluster/ClusterName/UUID

例如:arn:aws:kafka:us-east-1:111122223333:cluster/democluster-1/123456-1111-2222-3333

有关更多信息,请参阅 Amazon Managed Streaming for Apache Kafka 定义的资源类型。

AWS::RDS::DBCluster

Aurora 数据库集群。

• ARN 格

式:arn:partition:rds:region:account:cluster:DbClusterInstanceName

例如:arn:aws:rds:us-west-2:111122223333:cluster:database-1

有关更多信息,请参阅在 Amazon RDS 中使用 Amazon 资源名称 (ARN)。

AWS::Route53::HealthCheck

Amazon Route 53 运行状况检查。

• ARN 格式: arn: partition: route53:::healthcheck/Id

例如:arn:aws:route53:::healthcheck/123456-1111-2222-3333

AWS::SQS::Queue

Amazon SQS 队列。

ARN 格式: arn:partition:sqs:region:account:QueueName

例如:arn:aws:sqs:us-west-2:111122223333:StandardQueue

有关更多信息,请参阅 Amazon Simple Queue Service 资源和操作。

AWS::SNS::Topic

Amazon SNS 主题。

• ARN 格式: arn:partition:sns:region:account:TopicName

例如:arn:aws:sns:us-west-2:111122223333:TopicName

有关更多信息,请参阅 Amazon SNS 资源 ARN 格式。

AWS::SNS::Subscription

Amazon SNS 订阅。

• ARN 格式: arn:partition:sns:region:account:TopicName:SubscriptionId

例如:arn:aws:sns:us-

west-2:111122223333:TopicName:123456789012345567890

AWS::EC2::VPC

虚拟私有云 (VPC)。

• ARN 格式:arn:partition:ec2:region:account:vpc/VpcId

例如:arn:aws:ec2:us-west-2:111122223333:vpc/vpc-123456789

有关更多信息,请参阅 VPC 资源。

AWS::EC2::VPNConnection

虚拟专用网络 (VPN) 连接。

• ARN 格式: arn: partition: ec2: region: account: vpn-connection/VpnConnectionId

例如:arn:aws:ec2:us-west-2:111122223333:vpn-connection/vpn-123456789

有关更多信息,请参阅 Amazon EC2 定义的资源类型。

AWS::EC2::VPNGateway

虚拟专用网络 (VPN) 网关。

• ARN 格式:arn:partition:ec2:region:account:vpn-gateway/VpnGatewayId

例如:arn:aws:ec2:us-west-2:111122223333:vpn-gateway/vgw-123456789acbdefgh

有关更多信息,请参阅 Amazon EC2 定义的资源类型。

AWS::Route53RecoveryReadiness::DNSTargetResource

用于就绪检查的 DNS 目标资源包括 DNS 记录类型、域名、Route 53 托管区 ARN 以及网络负载均 衡器 ARN 或 Route 53 记录集 ID。

• 托管区的 ARN 格式: arn: partition: route53::account: hostedzone/Id

托管区示例:arn:aws:route53::111122223333:hostedzone/abcHostedZone

注意:您必须按照此处指定的方式在托管区 ARN 中加入账户 ID。必须提供账户 ID,这样 Route 53 ARC 才能轮询资源。该格式故意不同于 Amazon Route 53 要求的 ARN 格式(在《服务授权参考》的 Route 53 服务资源类型中有描述)。

• 网络负载均衡器的 ARN 格

式:arn:partition:elasticloadbalancing:region:account:loadbalancer/net/LoadBalancerName

网络负载均衡器示例:arn:aws:elasticloadbalancing:uswest-2:111122223333:loadbalancer/net/sandbox-net/123456789acbdefgh

有关更多信息,请参阅 Elastic Load Balancing 资源。

在 Amazon Route 53 应用程序恢复控制器中记录和监控准备情况检查

您可以使用 Amazon CloudWatch 和 Amazon EventBridge 在 Amazon Route 53 应用程序恢复控制器中监控准备情况检查,以分析模式并帮助解决问题。 AWS CloudTrail

Note

无论是在控制台中还是在使用时,您都必须查看美国西部(俄勒冈)地区的 Route 53 ARC 的 CloudWatch 指标和日志 AWS CLI。使用时 AWS CLI,请通过包括以下参数为您的命令指定美国西部(俄勒冈)区域:--region us-west-2。

主题

- 在 Rout CloudWatch e 53 ARC 中使用亚马逊进行准备情况检查
- 使用记录准备情况检查 API 调用 AWS CloudTrail

• 在亚马逊的 Route 53 ARC 中使用准备情况检查 EventBridge

在 Rout CloudWatch e 53 ARC 中使用亚马逊进行准备情况检查

Amazon Route 53 应用程序恢复控制器将数据点发布到亚马逊 CloudWatch ,供您检查准备情况。 CloudWatch 允许您以一组有序的时间序列数据(称为指标)的形式检索有关这些数据点的统计信息。 可将指标视为要监控的变量,而将数据点视为该变量随时间变化的值。例如,您可以监控指定时间段内通过某个 AWS 区域的流量。每个数据点都有相关联的时间戳和可选测量单位。

您可使用指标来验证系统是否正常运行。例如,您可以创建 CloudWatch 警报来监控指定的指标,并在该指标超出您认为可接受的范围时启动操作(例如向电子邮件地址发送通知)。

有关更多信息,请参阅 Amazon CloudWatch 用户指南。

主题

- Route 53 ARC 指标
- Route 53 ARC 指标的统计数据
- 查看 Route 53 ARC 中的 CloudWatch 指标

Route 53 ARC 指标

AWS/Route53RecoveryReadiness 命名空间包括以下指标。

指标	描述
ReadinessChecks	表示 Route 53 ARC 处理的就绪检查的数量。该指标可以按状态确定 维度,如下所示。
	单位:Count。
	报告标准:有非零值。
	统计数据:唯一有用的统计数据是 Sum。
	尺寸
	• READY
	• NOT_READY

指标	描述
	NOT_AUTHORIZEDUNKNOWN
Resources	表示 Route 53 ARC 处理的资源数量,可以根据 API 定义的资源标识符来确定维度。
	単位:Count。 报告标准:有非零值。
	统计数据:唯一有用的统计数据是 Sum。
	尺寸
	• ResourceSetType :这些是资源类型,按 Route 53 ARC 评估的 每种给定类型的资源数量进行筛选
	例如:AWS::CloudWatch::Alarm

Route 53 ARC 指标的统计数据

CloudWatch 根据 Route 53 ARC 发布的指标数据点提供统计数据。统计数据是在指定的时间段内汇总的指标数据。当请求统计数据时,返回的数据流按指标名称和维度进行识别。维度是用于唯一标识指标的名称/值对。

以下是您可能认为有用的指标/维度组合示例:

- 查看 Route 53 ARC 为评估就绪情况而进行的就绪检查数量。
- 查看 Route 53 ARC 评估的给定资源集类型的资源总数。

查看 Route 53 ARC 中的 CloudWatch 指标

您可以使用 CloudWatch 控制台或查看 Route 53 ARC 的 CloudWatch 指标 AWS CLI。在控制台中, 这些指标显示为监控图表。

您必须在控制台中或使用时查看美国西部(俄勒冈)地区的 Route 53 ARC 的 CloudWatch 指标 AWS CLI。使用时 AWS CLI,请通过包括以下参数为您的命令指定美国西部(俄勒冈)区域:--region us-west-2。

- Fi 记账记录和监控 193

使用 CloudWatch 控制台查看指标

- 1. 打开 CloudWatch 控制台,网址为 https://console.aws.amazon.com/cloudwatch/。
- 2. 在导航窗格中,选择指标。
- 3. 选择 Route53 命RecoveryReadiness名空间。
- 4. (可选)要跨所有维度查看某个指标,请在搜索字段中键入其名称。

要查看指标,请使用 AWS CLI

使用以下 list-metrics 命令列出可用指标:

```
aws cloudwatch list-metrics --namespace AWS/Route53RecoveryReadiness --region us-west-2
```

要获取指标的统计数据,请使用 AWS CLI

使用以下<u>get-metric-statistics</u>命令获取指定指标和维度的统计信息。请注意, CloudWatch 将每个唯一的维度组合视为一个单独的指标。您无法使用未专门发布的维度组合检索统计数据。您必须指定创建指标时使用的同一维度。

以下示例列出了 Route 53 ARC 中某账户每分钟评估的就绪检查总数。

```
aws cloudwatch get-metric-statistics --namespace AWS/Route53RecoveryReadiness \
   --metric-name ReadinessChecks \
   --region us-west-2 \
   --statistics Sum --period 60 \
   --dimensions Name=State,Value=READY \
   --start-time 2021-07-03T01:00:00Z --end-time 2021-07-03T01:20:00Z
```

下面是该命令的示例输出:

```
"Timestamp": "2021-07-08T18:04:00Z",
            "Sum": 1.0,
            "Unit": "Count"
        },
        {
            "Timestamp": "2021-07-08T18:01:00Z",
            "Sum": 1.0,
            "Unit": "Count"
        },
            "Timestamp": "2021-07-08T18:02:00Z",
            "Sum": 1.0,
            "Unit": "Count"
        },
            "Timestamp": "2021-07-08T18:03:00Z",
            "Sum": 1.0,
            "Unit": "Count"
        }
    ]
}
```

使用记录准备情况检查 API 调用 AWS CloudTrail

Amazon Route 53 应用程序恢复控制器与 AWS CloudTrail一项服务集成,该服务提供用户、角色或 AWS 服务在 Route 53 ARC 中采取的操作的记录。 CloudTrail 将 Route 53 ARC 的所有 API 调用捕获为事件。捕获的调用包含来自 Route 53 ARC 控制台的调用和对 Route 53 ARC API 操作的代码调用。

如果您创建了跟踪,则可以允许将 CloudTrail 事件持续传输到 Amazon S3 存储桶,包括 Route 53 ARC 的事件。如果您未配置跟踪,您仍然可以在 CloudTrail 控制台的 "事件历史记录" 中查看最新的事件。

使用收集的信息 CloudTrail,您可以确定向 Route 53 ARC 发出的请求、发出请求的 IP 地址、谁发出了请求、何时发出请求以及其他详细信息。

要了解更多信息 CloudTrail,请参阅AWS CloudTrail 用户指南。

Route 53 ARC 信息在 CloudTrail

CloudTrail 在您创建账户 AWS 账户 时已在您的账户上启用。当 Route 53 ARC 中发生活动时,该活动与其他 AWS 服务 CloudTrail 事件一起记录在事件历史记录中。您可以在中查看、搜索和下载最近发生的事件 AWS 账户。有关更多信息,请参阅使用 CloudTrail 事件历史记录。

 要持续记录您的事件 AWS 账户,包括 Route 53 ARC 的事件,请创建一条跟踪。跟踪允许 CloudTrail 将日志文件传输到 Amazon S3 存储桶。预设情况下,在控制台中创建跟踪记录时,此跟踪记录应用于所有 AWS 区域。跟踪记录 AWS 分区中所有区域的事件,并将日志文件传送到您指定的 Amazon S3 存储桶。此外,您可以配置其他 AWS 服务,以进一步分析和处理 CloudTrail 日志中收集的事件数据。有关更多信息,请参阅下列内容:

- 创建跟踪记录概述
- CloudTrail 支持的服务和集成
- 配置 Amazon SNS 通知 CloudTrail
- 接收来自多个地区的 CloudTrail 日志文件和接收来自多个账户的 CloudTrail 日志文件

所有 Route 53 ARC 操作都由 CloudTrail 亚马逊 Route 53 应用程序恢复控制器的恢复准备 API 参考指南、亚马逊 Route 53 应用程序恢复控制器的恢复控制配置 API 参考指南和亚马逊 Route 53 应用程序恢复控制器的路由控制 API 参考指南和亚马逊 Route 53 应用程序恢复控制器的路由控制 API 参考指南中记录并记录在案。例如,调用UpdateRoutingControlState和CreateRecoveryGroup操作会在 CloudTrail 日志文件中生成条目。CreateCluster

每个事件或日记账条目都包含有关生成请求的人员信息。身份信息有助于您确定以下内容:

- 请求是使用根证书还是 AWS Identity and Access Management (IAM) 用户凭证发出。
- 请求是使用角色还是联合用户的临时安全凭证发出的。
- 请求是否由其他 AWS 服务发出。

有关更多信息,请参阅CloudTrail 用户身份元素。

在事件历史记录中查看 Route 53 ARC 事件

CloudTrail 允许您在事件历史记录中查看最近的事件。要查看 Route 53 ARC API 请求事件,您必须在控制台顶部的"区域"选择器中选择美国西部(俄勒冈州)。有关更多信息,请参阅《AWS CloudTrail 用户指南》中的"使用 CloudTrail 事件历史记录"。

了解 Route 53 ARC 日志文件条目

跟踪是一种配置,允许将事件作为日志文件传输到您指定的 Amazon S3 存储桶。 CloudTrail 日志文件包含一个或多个日志条目。事件代表来自任何来源的单个请求,包括有关请求的操作、操作的日期和时间、请求参数等的信息。 CloudTrail 日志文件不是公共 API 调用的有序堆栈跟踪,因此它们不会按任何特定顺序出现。

以下示例显示了一个演示准备情况检查CreateRecoveryGroup操作的 CloudTrail 日志条目。

```
{
    "eventVersion": "1.08",
    "userIdentity": {
        "type": "AssumedRole",
        "principalId": "A1B2C3D4E5F6G7EXAMPLE",
        "arn": "arn:aws:iam::111122223333:role/admin",
        "accountId": "111122223333",
        "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
        "sessionContext": {
            "sessionIssuer": {
                "type": "Role",
                "principalId": "AROA33L3W36EXAMPLE",
                "arn": "arn:aws:iam::111122223333:role/admin",
                "accountId": "111122223333",
                "userName": "EXAMPLENAME"
            },
            "webIdFederationData": {},
            "attributes": {
                "mfaAuthenticated": "false",
                "creationDate": "2021-07-06T17:38:05Z"
            }
        }
    },
    "eventTime": "2021-07-06T18:08:03Z",
    "eventSource": "route53-recovery-readiness.amazonaws.com",
    "eventName": "CreateRecoveryGroup",
    "awsRegion": "us-west-2",
    "sourceIPAddress": "192.0.2.50",
    "userAgent": "Boto3/1.17.101 Python/3.8.10 Linux/4.14.231-180.360.amzn2.x86_64
 exec-env/AWS_Lambda_python3.8 Botocore/1.20.102",
    "requestParameters": {
        "recoveryGroupName": "MyRecoveryGroup"
    },
    "responseElements": {
        "Access-Control-Expose-Headers": "x-amzn-errortype,x-amzn-requestid,x-amzn-
errormessage, x-amzn-trace-id, x-amzn-requestid, x-amz-apigw-id, date",
        "cells": [],
        "recoveryGroupName": "MyRecoveryGroup",
        "recoveryGroupArn": "arn:aws:route53-recovery-readiness::111122223333:recovery-
group/MyRecoveryGroup",
        "tags": "***"
    },
```

```
"requestID": "fd42dcf7-6446-41e9-b408-d096example",
    "eventID": "4b5c42df-1174-46c8-be99-d67aexample",
    "readOnly": false,
    "eventType": "AwsApiCall",
    "managementEvent": true,
    "eventCategory": "Management",
    "recipientAccountId": "111122223333"
}
```

在亚马逊的 Route 53 ARC 中使用准备情况检查 EventBridge

使用 Amazon EventBridge,您可以设置事件驱动的规则,在 Amazon Route 53 应用程序恢复控制器中监控您的准备情况检查资源,然后启动使用其他 AWS 服务的目标操作。例如,当准备情况检查状态从"就绪"变为"未就绪"时,您可以向 Amazon SNS 主题发送信号,从而设置发送电子邮件通知的规则。

Note

Route 53 ARC 仅在美国西部(俄勒冈)(us-west- AWS 2)地区发布准备情况检查 EventBridge 的事件。要接收 EventBridge 事件以进行准备情况检查,请在美国西部(俄勒冈)区域创建 EventBridge 规则。

您可以在 Amazon 中创建规则 EventBridge ,以便对以下 Route 53 ARC 准备情况检查事件采取行动:

• 就绪检查就绪。该事件指定就绪检查状态是否发生变化,例如,从 READY 变为 NOT READY。

要捕获您感兴趣的特定 Route 53 ARC 事件,请定义 EventBridge 可用于检测事件的特定事件模式。事件模式与它们匹配的事件具有相同的结构。模式引用了您要匹配的字段,并提供您所查找的值。

尽最大努力发出事件。 EventBridge 在正常运营情况下,它们几乎实时地从 Route 53 ARC 交付。但是,可能会出现延迟或阻止事件交付的情况。

有关 EventBridge 规则如何处理事件模式的信息,请参阅<u>中的事件和事件模式 EventBridge</u>。

使用监控准备情况检查资源 EventBridge

使用 EventBridge,您可以创建规则,定义当 Route 53 ARC 为准备情况检查资源发出事件时要采取的操作。

要在 EventBridge 控制台中键入或复制并粘贴事件模式,请在控制台中选择 "Enter my ow n" 选项。为了帮助您确定可能对您有用的事件模式,本主题包括准备事件模式示例。

要为资源事件创建规则

- 1. 打开亚马逊 EventBridge 控制台,网址为 https://console.aws.amazon.com/events/。
- 2. AWS 区域 要在中创建规则,请选择美国西部(俄勒冈)。这是就绪事件的必填区域。
- 3. 选择 Create rule (创建规则)。
- 4. 输入规则的 Name (名称) 和"Description (描述)" (可选)。
- 5. 对于事件总线,保留默认值,即默认。
- 6. 选择下一步。
- 7. 对于构建事件模式步骤,对于事件源,保留默认值,即 AWS 事件。
- 8. 在示例事件下,选择输入我自己的。
- 9. 对于示例事件,键入或复制并粘贴事件模式。有关示例,请参阅下一节。

就绪事件模式示例

事件模式与它们匹配的事件具有相同的结构。模式引用了您要匹配的字段,并提供您所查找的值。

您可以将本节中的事件模式复制并粘贴 EventBridge 到中,以创建可用于监控 Route 53 ARC 操作和资源的规则。

以下事件模式提供了一些示例,您可以在 Route 53 ARC EventBridge 的准备情况检查功能中使用这些示例。

• 选择来自 Route 53 ARC 就绪检查的所有事件。

```
{
    "source": [
        "aws.route53-recovery-readiness"
    ]
}
```

• 仅选择与单元相关的事件。

```
{
    "source": [
        "aws.route53-recovery-readiness"
],
```

```
"detail-type": [
        "Route 53 Application Recovery Controller cell readiness status change"
]
}
```

• 仅选择与名为 MyExampleCell 的特定单元相关的事件。

```
{
    "source": [
        "aws.route53-recovery-readiness"
],
    "detail-type": [
        "Route 53 Application Recovery Controller cell readiness status change"
],
    "resources": [
        "arn:aws:route53-recovery-readiness::111122223333:cell/MyExampleCell"
]
}
```

• 仅选择任何恢复组、单元或就绪检查状态变为 NOT READY 时的事件。

• 仅选择任何恢复组、单元或就绪检查变为 READY 以外状态时的事件。

```
{
    "source":[
        "aws.route53-recovery-readiness"
],
    "detail":{
        "new-state":{
            "readiness-status":[
```

```
{
        "anything-but":"READY"
        }
    }
}
```

以下是恢复组就绪状态更改的 Route 53 ARC 事件示例:

```
{
    "version": "0",
    "account": "111122223333",
    "detail-type": "Route 53 Application Recovery Controller recovery group readiness
 status change",
    "source": "route53-recovery-readiness.amazonaws.com",
    "time": "2020-11-03T00:31:54Z",
    "id": "1234a678-1b23-c123-12fd3f456e78",
    "region": "us-west-2",
    "resources":[
        "arn:aws:route53-recovery-readiness::111122223333:recovery-group/BillingApp"
    ],
    "detail": {
        "recovery-group-name": "BillingApp",
        "previous-state": {
            "readiness-status": "READY|NOT_READY|UNKNOWN|NOT_AUTHORIZED"
        },
        "new-state": {
            "readiness-status": "READY|NOT_READY|UNKNOWN|NOT_AUTHORIZED"
        }
    }
}
```

以下是 Route 53 ARC 单元就绪状态更改事件的示例:

```
"version": "0",
   "account":"111122223333",
   "detail-type":"Route 53 Application Recovery Controller cell readiness status
change",
   "source":"route53-recovery-readiness.amazonaws.com",
   "time":"2020-11-03T00:31:54Z",
```

以下是 Route 53 ARC 就绪检查状态更改事件的示例:

```
{
    "version": "0",
    "account": "111122223333",
    "detail-type": "Route 53 Application Recovery Controller readiness check status
 change",
    "source": "route53-recovery-readiness.amazonaws.com",
    "time":"2020-11-03T00:31:54Z",
    "id": "1234a678-1b23-c123-12fd3f456e78",
    "region": "us-west-2",
    "resources":[
        "arn:aws:route53-recovery-readiness::111122223333:readiness-check/
UserTableReadinessCheck"
    ٦,
    "detail": {
    "readiness-check-name": "UserTableReadinessCheck",
        "previous-state": {
            "readiness-status": "READY|NOT_READY|UNKNOWN|NOT_AUTHORIZED"
        },
        "new-state": {
            "readiness-status": "READY|NOT_READY|UNKNOWN|NOT_AUTHORIZED"
        }
    }
}
```

指定要用作目标的 CloudWatch 日志组

创建 EventBridge 规则时,必须指定将与该规则匹配的事件发送到哪个目标。有关可用目标的列表 EventBridge,请参阅 EventBridge 控制台中的可用目标。您可以添加到 EventBridge 规则的目标之一是 Amazon CloudWatch 日志组。本节介绍将 CloudWatch 日志组添加为目标的要求,并提供了在创建规则时添加日志组的过程。

要将 CloudWatch 日志组添加为目标,可以执行以下操作之一:

- 创建新的日志组
- 选择现有的日志组

如果您在创建规则时使用控制台指定了新的日志组,则 EventBridge 会自动为您创建该日志组。确保用作 EventBridge 规则目标的日志组以开头/aws/events。如果要选择现有的日志组,请注意,只有以开头的日志组才/aws/events会作为选项出现在下拉菜单中。有关更多信息,请参阅 Amazon CloudWatch 用户指南中的创建新日志组。

如果您使用控制台之外的 CloudWatch 操作创建或使用 CloudWatch 日志组作为目标,请确保正确设置权限。如果您使用控制台向 EventBridge 规则添加日志组,则该日志组的基于资源的策略会自动更新。但是,如果您使用 AWS Command Line Interface 或 S AWS DK 来指定日志组,则必须更新该日志组的基于资源的策略。以下示例策略说明了您必须在基于资源的策略中为日志组定义的权限:

```
{
  "Statement": [
    {
      "Action": [
        "logs:CreateLogStream",
        "logs:PutLogEvents"
      ],
      "Effect": "Allow",
      "Principal": {
        "Service": [
          "events.amazonaws.com",
          "delivery.logs.amazonaws.com"
        ]
      "Resource": "arn:aws:logs:region:account:log-group:/aws/events/*:*",
      "Sid": "TrustEventsToStoreLogEvent"
    }
  ],
  "Version": "2012-10-17"
```

}

您无法使用控制台为日志组配置基于资源的策略。要向基于资源的策略添加所需的权限,请使用CloudWatch <u>PutResource策略</u> API 操作。然后,您可以使用 d <u>escribe-resource-policies CLI 命令来检</u>查您的策略是否已正确应用。

为资源事件创建规则并指定 CloudWatch 日志组目标

- 1. 打开亚马逊 EventBridge 控制台,网址为 https://console.aws.amazon.com/events/。
- 2. 选择 AWS 区域 要在其中创建规则的。
- 3. 选择 "创建规则",然后输入有关该规则的任何信息,例如事件模式或计划详细信息。

有关创建就绪性 EventBridge 规则的更多信息,请参阅使用监控准备情况检查资源 EventBridge。

- 在 "选择目标" 页面上,选择CloudWatch作为您的目标。
- 5. 从下拉菜单中选择一个 CloudWatch 日志组。

Identity and Access Management 用于准备情况检查

AWS Identity and Access Management (IAM) AWS 服务 可帮助管理员安全地控制对 AWS 资源的访问权限。IAM 管理员控制可以通过身份验证(登录)和授权(具有权限)使用 Route 53 ARC 资源的人员。您可以使用 IAM AWS 服务 ,无需支付额外费用。

内容

- ServiceLong; 中的准备情况检查如何与 IAM 配合使用
- Amazon Route 53 应用程序恢复控制器中准备情况检查的基于身份的策略示例
- 在 Route 53 ARC 中使用服务关联角色进行准备情况检查
- AWS 在 Amazon Route 53 应用程序恢复控制器中进行准备情况检查的托管策略

ServiceLong; 中的准备情况检查如何与 IAM 配合使用

在使用 IAM 管理对 Route 53 ARC 的访问之前,您应该了解哪些 IAM 功能可用于 Route 53 ARC。

在使用 IAM 管理对 Amazon Route 53 应用程序恢复控制器中准备情况检查的访问权限之前,请先了解有哪些 IAM 功能可用于准备情况检查。

您可以在 Amazon Route 53 应用程序恢复控制器中进行准备情况检查时使用的 IAM 功能

IAM 功能	准备情况检查支持
基于身份的策略	是
基于资源的策略	否
策略操作	是
<u>策略资源</u>	是
策略条件键	是
ACL	否
ABAC(策略中的标签)	是
临时凭证	是
主体权限	是
服务角色	否
服务相关角色	是

要全面了解 AWS 服务如何与大多数 IAM 功能配合使用,请参阅 IAM 用户指南中的与 IAM <u>配合使用的</u> AWS 服务。

基干身份的准备情况检查策略

支持基于身份的策略	是
-----------	---

基于身份的策略是可附加到身份(如 IAM 用户、用户组或角色)的 JSON 权限策略文档。这些策略控制用户和角色可在何种条件下对哪些资源执行哪些操作。要了解如何创建基于身份的策略,请参阅 IAM 用户指南中的创建 IAM 策略。

通过使用 IAM 基于身份的策略,您可以指定允许或拒绝的操作和资源以及允许或拒绝操作的条件。您无法在基于身份的策略中指定主体,因为它适用于其附加的用户或角色。要了解可在 JSON 策略中使用的所有元素,请参阅《IAM 用户指南》中的 IAM JSON 策略元素引用。

要查看 Route 53 ARC 基于身份的策略的示例,请参阅Amazon Route 53 应用程序恢复控制器中基于身份的策略示例。

准备情况检查中基于资源的策略

支持基于资源的策略

否

基于资源的策略是附加到资源的 JSON 策略文档。基于资源的策略的示例包括 IAM 角色信任策略和 Simple Storage Service(Amazon S3)存储桶策略。在支持基于资源的策略的服务中,服务管理员可以使用它们来控制对特定资源的访问。

准备情况检查的政策行动

支持策略操作

是

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体 可以对什么资源 执行操作,以及在什么 条件 下执行。

JSON 策略的 Action 元素描述可用于在策略中允许或拒绝访问的操作。策略操作通常与关联的 AWS API 操作同名。有一些例外情况,例如没有匹配 API 操作的仅限权限 操作。还有一些操作需要在策略中执行多个操作。这些附加操作称为相关操作。

在策略中包含操作以授予执行关联操作的权限。

要查看准备情况检查的 Route 53 ARC 操作列表,请参阅《服务授权参考<u>》中的 Amazon Route 53 恢</u>复准备情况定义的操作。

Route 53 ARC 中用于就绪性检查的策略操作在操作前使用以下前缀:

route53-recovery-readiness

要在单个语句中指定多项操作,请使用逗号将它们隔开。例如,以下内容:

"Action": [

"route53-recovery-readiness:action1",

"route53-recovery-readiness:action2"

]

您也可以使用通配符(*)指定多个操作。例如,要指定以单词 Describe 开头的所有操作,包括以下操作:

"Action": "route53-recovery-readiness:Describe*"

要查看 Route 53 ARC 基于身份的准备情况检查策略示例,请参阅。Amazon Route 53 应用程序恢复控制器中准备情况检查的基于身份的策略示例

准备情况检查的政策资源

支持策略资源

是

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体 可以对什么资源 执行操作,以及在什么条件 下执行。

Resource JSON 策略元素指定要向其应用操作的一个或多个对象。语句必须包含 Resource 或 NotResource 元素。作为最佳实践,请使用其 <u>Amazon 资源名称 (ARN)</u>指定资源。对于支持特定资源类型(称为资源级权限)的操作,您可以执行此操作。

对于不支持资源级权限的操作(如列出操作),请使用通配符(*)指示语句应用于所有资源。

"Resource": "*"

要查看用于区域转移的 Route 53 ARC 操作列表,请参阅 <u>Amazon Route 53 恢复准备情况定义的操</u>作。

要查看 Route 53 ARC 基于身份的准备情况检查策略示例,请参阅。Amazon Route 53 应用程序恢复控制器中准备情况检查的基于身份的策略示例

准备情况检查的策略条件密钥

支持特定于服务的策略条件键

是

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体可以对什么资源执行操作,以及在什么条件下执行。

在 Condition 元素(或 Condition 块)中,可以指定语句生效的条件。Condition 元素是可选的。您可以创建使用条件运算符(例如,等于或小于)的条件表达式,以使策略中的条件与请求中的值相匹配。

如果您在一个语句中指定多个 Condition 元素,或在单个 Condition 元素中指定多个键,则 AWS 使用逻辑 AND 运算评估它们。如果您为单个条件键指定多个值,则使用逻辑0R运算来 AWS 评估条件。在授予语句的权限之前必须满足所有的条件。

在指定条件时,您也可以使用占位符变量。例如,只有在使用 IAM 用户名标记 IAM 用户时,您才能为 其授予访问资源的权限。有关更多信息,请参阅 IAM 用户指南中的 IAM 策略元素:变量和标签。

AWS 支持全局条件密钥和特定于服务的条件密钥。要查看所有 AWS 全局条件键,请参阅 IAM 用户指南中的AWS 全局条件上下文密钥。

要查看准备情况检查的 Route 53 ARC 操作列表,请参阅 Amazon Route 53 恢复准备情况的条件密钥

要查看可用于带就绪检查的条件密钥的操作和资源,请参阅 Amazon Route 53 恢复准备情况定义的操作

要查看 Route 53 ARC 基于身份的准备情况检查策略示例,请参阅。Amazon Route 53 应用程序恢复控制器中准备情况检查的基于身份的策略示例

访问控制列表 (ACL) 处于准备状态检查中

支持 ACL 否

访问控制列表(ACL)控制哪些主体(账户成员、用户或角色)有权访问资源。ACL 与基于资源的策略类似,尽管它们不使用 JSON 策略文档格式。

带就绪性检查的基于属性的访问控制 (ABAC)

支持 ABAC (策略中的标签) 部分

基于属性的访问权限控制(ABAC)是一种授权策略,该策略基于属性来定义权限。在中 AWS,这些属性称为标签。您可以向 IAM 实体(用户或角色)和许多 AWS 资源附加标签。标记实体和资源是 ABAC 的第一步。然后设计 ABAC 策略,以在主体的标签与他们尝试访问的资源标签匹配时允许操作。

ABAC 在快速增长的环境中非常有用,并在策略管理变得繁琐的情况下可以提供帮助。

要基于标签控制访问,您需要使用 aws:ResourceTag/key-name、aws:RequestTag/key-name或 aws:TagKeys 条件键在策略的条件元素中提供标签信息。

如果某个服务对于每种资源类型都支持所有这三个条件键,则对于该服务,该值为 Yes(是)。如果某个服务仅对于部分资源类型支持所有这三个条件键,则该值为 Partial(部分)。

有关 ABAC 的更多信息,请参阅《IAM 用户指南》中的<u>什么是 ABAC?</u>。要查看设置 ABAC 步骤的教程,请参阅《IAM 用户指南》中的使用基于属性的访问权限控制(ABAC)。

恢复就绪(就绪检查)支持 ABAC。

使用带有准备情况检查的临时证书

支持临时凭证

是

当你使用临时证书登录时,有些 AWS 服务 不起作用。有关更多信息,包括哪些 AWS 服务 适用于临时证书,请参阅 IAM 用户指南中的AWS 服务 与 IA M 配合使用的信息。

如果您使用除用户名和密码之外的任何方法登录,则 AWS Management Console 使用的是临时证书。例如,当您 AWS 使用公司的单点登录 (SSO) 链接进行访问时,该过程会自动创建临时证书。当您以用户身份登录控制台,然后切换角色时,您还会自动创建临时凭证。有关切换角色的更多信息,请参阅《IAM 用户指南》中的 切换到角色(控制台)。

您可以使用 AWS CLI 或 AWS API 手动创建临时证书。然后,您可以使用这些临时证书进行访问 AWS。 AWS 建议您动态生成临时证书,而不是使用长期访问密钥。有关更多信息,请参阅 <u>IAM 中的</u>临时安全凭证。

准备情况检查的跨服务主体权限

支持转发访问会话 (FAS)

是

当您使用 IAM 实体(用户或角色)在中执行操作时 AWS,您被视为委托人。策略向主体授予权限。使用某些服务时,您可能会执行一个操作,此操作然后在不同服务中触发另一个操作。在这种情况下,您必须具有执行这两个操作的权限。

要查看准备情况检查中的操作是否需要策略中的其他相关操作,请参阅 Amazon Route 53 恢复准备情况

准备情况检查的服务角色

支持服务角色

否

服务角色是由一项服务担任、代表您执行操作的 <u>IAM 角色</u>。IAM 管理员可以在 IAM 中创建、修改和删除服务角色。有关更多信息,请参阅《IAM 用户指南》中的创建向 AWS 服务委派权限的角色。

用于就绪性检查的服务关联角色

支持服务相关角色

是

服务相关角色是一种链接到的服务角色。 AWS 服务服务可以代入代表您执行操作的角色。服务相关 角色出现在您的中 AWS 账户 ,并且归服务所有。IAM 管理员可以查看但不能编辑服务相关角色的权 限。

有关创建或管理 Route 53 ARC 服务相关角色的详细信息,请参阅<u>在 Route 53 ARC 中使用服务关联角</u> 色进行准备情况检查。

有关创建或管理服务相关角色的详细信息,请参阅<u>能够与 IAM 搭配使用的AWS 服务</u>。在表中查找服务相关角色列中包含 Yes 的表。选择是链接以查看该服务的服务相关角色文档。

Amazon Route 53 应用程序恢复控制器中准备情况检查的基于身份的策略示例

默认情况下,用户和角色没有创建或修改 Route 53 ARC 资源的权限。他们也无法使用 AWS Management Console、 AWS Command Line Interface (AWS CLI) 或 AWS API 执行任务。要授予用户对所需资源执行操作的权限,IAM 管理员可以创建 IAM 策略。管理员随后可以向角色添加 IAM 策略,用户可以代入角色。

要了解如何使用这些示例 JSON 策略文档创建基于 IAM 身份的策略,请参阅 IAM 用户指南中的 创建 IAM policy。

有关 Route 53 ARC 定义的操作和资源类型的详细信息,包括每种资源类型的 ARN 格式,请参阅《服务授权参考》中的 Amazon Route 53 应用程序恢复控制器的操作、资源和条件键。

主题

• 策略最佳实践

- 示例:准备情况检查控制台访问权限
- 示例:就绪性检查 API 操作以进行就绪性检查

策略最佳实践

基于身份的策略确定某个人是否可以创建、访问或删除您账户中的 Route 53 ARC 资源。这些操作可能会使 AWS 账户产生成本。创建或编辑基于身份的策略时,请遵循以下准则和建议:

- 开始使用 AWS 托管策略并转向最低权限权限 要开始向用户和工作负载授予权限,请使用为许多常见用例授予权限的AWS 托管策略。它们在你的版本中可用 AWS 账户。我们建议您通过定义针对您的用例的 AWS 客户托管策略来进一步减少权限。有关更多信息,请参阅《IAM 用户指南》中的AWS 托管策略或工作职能的AWS 托管策略。
- 应用最低权限 在使用 IAM 策略设置权限时,请仅授予执行任务所需的权限。为此,您可以定义 在特定条件下可以对特定资源执行的操作,也称为最低权限许可。有关使用 IAM 应用权限的更多信息,请参阅《IAM 用户指南》中的 IAM 中的策略和权限。
- 使用 IAM 策略中的条件进一步限制访问权限 您可以向策略添加条件来限制对操作和资源的访问。例如,您可以编写策略条件来指定必须使用 SSL 发送所有请求。如果服务操作是通过特定 AWS 服务的(例如)使用的,则也可以使用条件来授予对服务操作的访问权限 AWS CloudFormation。有关更多信息,请参阅《IAM 用户指南》中的 IAM JSON 策略元素:条件。
- 使用 IAM Access Analyzer 验证您的 IAM 策略,以确保权限的安全性和功能性 IAM Access Analyzer 会验证新策略和现有策略,以确保策略符合 IAM 策略语言 (JSON) 和 IAM 最佳实践。IAM Access Analyzer 提供 100 多项策略检查和可操作的建议,以帮助您制定安全且功能性强的策略。有 关更多信息,请参阅《IAM 用户指南》中的 IAM Access Analyzer 策略验证。
- 需要多重身份验证 (MFA)-如果 AWS 账户您的场景需要 IAM 用户或根用户,请启用 MFA 以提高安全性。若要在调用 API 操作时需要 MFA,请将 MFA 条件添加到您的策略中。有关更多信息,请参阅《IAM 用户指南》中的 配置受 MFA 保护的 API 访问。

有关 IAM 中的最佳实操的更多信息,请参阅《IAM 用户指南》中的 <u>IAM 中的安全最佳实操</u>。

示例:准备情况检查控制台访问权限

要访问 Amazon Route 53 应用程序恢复控制器控制台,您必须具有一组最低的权限。这些权限必须允许您列出和查看有关您的 Route 53 ARC 资源的详细信息 AWS 账户。如果创建比必需的最低权限更为严格的基于身份的策略,对于附加了该策略的实体(用户或角色),控制台将无法按预期正常运行。

对于仅调用 AWS CLI 或 AWS API 的用户,您无需为其设置最低控制台权限。相反,只允许访问与其尝试执行的 API 操作相匹配的操作。

为确保在您仅允许访问特定 API 操作时用户和角色仍然可以使用就绪检查控制台,还要向实体附加准备情况检查的ReadOnly AWS 托管策略。有关更多信息,请参阅 IAM 用户指南中的<u>准备情况检查准备</u>情况检查托管策略页面或向用户添加权限。

要执行某些任务,用户必须有权在 Route 53 ARC 中创建与 Route 53 ARC 中的准备情况检查关联的服务相关角色。要了解更多信息,请参阅在 Route 53 ARC 中使用服务关联角色进行准备情况检查。

要向用户提供通过控制台使用准备情况检查功能的完全访问权限,请向用户附加类似以下的策略:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                   "route53-recovery-readiness:CreateCell",
                   "route53-recovery-readiness:CreateCrossAccountAuthorization",
                   "route53-recovery-readiness:CreateReadinessCheck",
                   "route53-recovery-readiness:CreateRecoveryGroup",
                   "route53-recovery-readiness:CreateResourceSet",
                   "route53-recovery-readiness:DeleteCell",
                   "route53-recovery-readiness:DeleteCrossAccountAuthorization",
                   "route53-recovery-readiness:DeleteReadinessCheck",
                   "route53-recovery-readiness:DeleteRecoveryGroup",
                   "route53-recovery-readiness:DeleteResourceSet",
                   "route53-recovery-readiness:GetArchitectureRecommendations",
                   "route53-recovery-readiness:GetCell",
                   "route53-recovery-readiness:GetCellReadinessSummary",
                   "route53-recovery-readiness:GetReadinessCheck",
                   "route53-recovery-readiness:GetReadinessCheckResourceStatus",
                   "route53-recovery-readiness:GetReadinessCheckStatus",
                   "route53-recovery-readiness:GetRecoveryGroup",
                   "route53-recovery-readiness:GetRecoveryGroupReadinessSummary",
                   "route53-recovery-readiness:GetResourceSet",
                   "route53-recovery-readiness:ListCells",
                   "route53-recovery-readiness:ListCrossAccountAuthorizations",
                   "route53-recovery-readiness:ListReadinessChecks",
                   "route53-recovery-readiness:ListRecoveryGroups",
                   "route53-recovery-readiness:ListResourceSets",
                   "route53-recovery-readiness:ListRules",
                   "route53-recovery-readiness:UpdateCell",
                   "route53-recovery-readiness:UpdateReadinessCheck",
                   "route53-recovery-readiness:UpdateRecoveryGroup",
```

示例:就绪性检查 API 操作以进行就绪性检查

为确保用户可以使用 Route 53 ARC API 操作来处理 Route 53 ARC 就绪检查控制平面(例如,创建恢复组、资源集和就绪检查),请附上与用户需要使用的 API 操作相对应的策略,如下所述。

要执行某些任务,用户必须有权在 Route 53 ARC 中创建与 Route 53 ARC 中的准备情况检查关联的服务相关角色。要了解更多信息,请参阅在 Route 53 ARC 中使用服务关联角色进行准备情况检查。

要使用 API 操作进行准备情况检查,请向用户附加类似以下的策略:

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                   "route53-recovery-readiness:CreateCell",
                   "route53-recovery-readiness:CreateCrossAccountAuthorization",
                   "route53-recovery-readiness:CreateReadinessCheck",
                   "route53-recovery-readiness:CreateRecoveryGroup",
                   "route53-recovery-readiness:CreateResourceSet",
                   "route53-recovery-readiness:DeleteCell",
                   "route53-recovery-readiness:DeleteCrossAccountAuthorization",
                   "route53-recovery-readiness:DeleteReadinessCheck",
                   "route53-recovery-readiness:DeleteRecoveryGroup",
                   "route53-recovery-readiness:DeleteResourceSet",
                   "route53-recovery-readiness:GetArchitectureRecommendations",
                   "route53-recovery-readiness:GetCell",
                   "route53-recovery-readiness:GetCellReadinessSummary",
                   "route53-recovery-readiness:GetReadinessCheck",
                   "route53-recovery-readiness:GetReadinessCheckResourceStatus",
                   "route53-recovery-readiness:GetReadinessCheckStatus",
                   "route53-recovery-readiness:GetRecoveryGroup",
                   "route53-recovery-readiness:GetRecoveryGroupReadinessSummary",
                   "route53-recovery-readiness:GetResourceSet",
                   "route53-recovery-readiness:ListCells",
```

```
"route53-recovery-readiness:ListCrossAccountAuthorizations",
                   "route53-recovery-readiness:ListReadinessChecks",
                   "route53-recovery-readiness:ListRecoveryGroups",
                   "route53-recovery-readiness:ListResourceSets",
                   "route53-recovery-readiness:ListRules",
                   "route53-recovery-readiness:ListTagsForResources",
                   "route53-recovery-readiness:UpdateCell",
                   "route53-recovery-readiness:UpdateReadinessCheck",
                   "route53-recovery-readiness:UpdateRecoveryGroup",
                   "route53-recovery-readiness:UpdateResourceSet",
                   "route53-recovery-readiness:TagResource",
                   "route53-recovery-readiness:UntagResource"
             ],
            "Resource": "*"
        }
    ]
}
```

在 Route 53 ARC 中使用服务关联角色进行准备情况检查

Amazon Route 53 应用程序恢复控制器使用 AWS Identity and Access Management (IAM) 服务相关角色。服务相关角色是一种独特类型的 IAM 角色,它与一种服务(在本例中为 Route 53 ARC)直接相关。服务相关角色由 Route 53 ARC 预定义,包括该服务出于特定目的代表您调用其他 AWS 服务所需的所有权限。

服务相关角色可让您更轻松地设置 Route 53 ARC,因为您不必手动添加必要的权限。Route 53 ARC 定义其服务相关角色的权限,除非另外定义,否则,仅 Route 53 ARC 可以担任其角色。定义的权限包括信任策略和权限策略,而且权限策略不能附加到任何其它 IAM 实体。

只有在首先删除服务相关角色的相关资源后,才能删除该角色。这将保护您的 Route 53 ARC 资源,因为您不会无意中删除对资源的访问权限。

有关支持服务相关角色的其他服务的信息,请参阅<u>可与 IAM 搭配使用的AWS 服务</u>,并查找服务相关角色列中为是的服务。选择是和链接,查看该服务的服务相关角色文档。

Route 53 ARC 具有以下服务相关角色,本章将对此进行介绍:

- Route 53 ARC 使用名为 Route53 RecoveryReadinessServiceRolePolicy 的服务相关角色访问资源和配置以检查准备情况。
- Route 53 ARC 使用为自动换档练习命名的服务相关角色来监控客户提供的 CloudWatch 亚马逊警报和 AWS Health Dashboard 客户事件,并开始练习。

Route53 的服务相关角色权限 RecoveryReadinessServiceRolePolicy

Route 53 ARC 使用名为 Route53 的服务相关角色RecoveryReadinessServiceRolePolicy来访问资源和配置以检查准备情况。本节介绍适用于该服务相关角色的权限,以及有关创建、编辑和删除该角色的信息。

Route53 的服务相关角色权限 RecoveryReadinessServiceRolePolicy

此服务相关角色使用托管策略 Route53RecoveryReadinessServiceRolePolicy。

Route53 RecoveryReadinessServiceRolePolicy 服务相关角色信任以下服务来代入该角色:

• route53-recovery-readiness.amazonaws.com

要查看此策略的权限,请参阅《AWS 托管策略参考》RecoveryReadinessServiceRolePolicy中的Route53。

您必须配置权限,允许 IAM 实体(如用户、组或角色)创建、编辑或删除服务相关角色。有关更多信息,请参阅《IAM 用户指南》中的服务相关角色权限。

为 Route 53 ARC 创建 Route 53 RecoveryReadinessServiceRolePolicy 服务相关角色

您无需手动创建 Route53 RecoveryReadinessServiceRolePolicy 服务相关角色。当您在 AWS Management Console、或 AWS API 中创建首次就绪检查或跨账户授权时 AWS CLI,Route 53 ARC 会为您创建服务相关角色。

如果您删除该服务相关角色,然后需要再次创建,您可以使用相同流程在账户中重新创建此角色。创建第一个就绪检查或跨账户授权时,Route 53 ARC 将再次为您创建服务相关角色。

编辑 Route 53 ARC 的 Route 53 RecoveryReadinessServiceRolePolicy 服务相关角色

Route 53 ARC 不允许你编辑 Route53 RecoveryReadinessServiceRolePolicy 服务相关角色。创建该服务相关角色后,将无法更改角色名称,因为可能有其它实体引用该角色。不过,您可以使用 IAM 编辑角色的说明。有关更多信息,请参阅《IAM 用户指南》中的编辑服务相关角色。

删除 Route 53 ARC 的 Route 53 RecoveryReadinessServiceRolePolicy 服务相关角色

如果不再需要使用某个需要服务相关角色的功能或服务,我们建议您删除该角色。这样就没有未被主动监控或维护的未使用实体。但是,必须先清除服务相关角色的资源,然后才能手动删除它。

删除准备情况检查和跨账户授权后,您可以删除 Route RecoveryReadinessServiceRolePolicy 53 服务相关角色。有关就绪检查的更多信息,请参阅Amazon Route 53 应用程序恢复控制器中的就绪检查。有关跨账户授权的更多信息,请参阅在 Route 53 ARC 中创建跨账户授权。

Note

如果在您试图删除资源时 Route 53 ARC 服务正在使用该角色,则服务角色删除操作可能会失 败。如果发生这种情况,请等待几分钟,然后重新尝试删除该角色。

使用 IAM 手动删除服务相关角色

使用 IAM 控制台 AWS CLI、或 AWS API 删除 Route53 RecoveryReadinessServiceRolePolicy 服务 相关角色。有关更多信息,请参阅《IAM 用户指南》中的删除服务相关角色。

更新了 Route 53 ARC 服务相关角色以进行准备情况检查

有关 Route 53 ARC 服务相关角色的 AWS 托管策略的更新,请参阅 Route 53 ARC 的AWS 托管策略 更新表。您也可以在 Route 53 ARC 文档历史记录页面上订阅自动 RSS 提醒。

AWS 在 Amazon Route 53 应用程序恢复控制器中进行准备情况检查的托管策略

AWS 托管策略是由创建和管理的独立策略 AWS。 AWS 托管策略旨在为许多常见用例提供权限,以便 您可以开始为用户、组和角色分配权限。

请记住, AWS 托管策略可能不会为您的特定用例授予最低权限权限,因为它们可供所有 AWS 客户使 用。我们建议通过定义特定于您的使用场景的客户管理型策略来进一步减少权限。

您无法更改 AWS 托管策略中定义的权限。如果 AWS 更新 AWS 托管策略中定义的权限,则更新会影 响该策略所关联的所有委托人身份(用户、组和角色)。 AWS 最有可能在启动新的 API 或现有服务可 以使用新 AWS 服务 的 API 操作时更新 AWS 托管策略。

有关更多信息,请参阅《IAM 用户指南》中的 AWS 托管式策略。

AWS 托管策略: Route53 RecoveryReadinessServiceRolePolicy

您不能将 Route53RecoveryReadinessServiceRolePolicy 附加到自己的 IAM 实体。此策略将 附加到某个允许 Amazon Route 53 应用程序恢复控制器访问由 Route 53 ARC 使用或管理的 AWS 服 务和资源的服务相关角色。有关更多信息,请参阅 在 Route 53 ARC 中使用服务关联角色进行准备情 况检查。

AWS 托管策略: AmazonRoute53 RecoveryReadinessFullAccess

您可以将 AmazonRoute53RecoveryReadinessFullAccess 附加到 IAM 实体。此策略授予对 Route 53 ARC 中的恢复就绪(就绪检查)操作的完整访问权限。将此策略附加到需要恢复就绪操作的 完全访问权限的 IAM 用户和其他主体。

要查看此策略的权限,请参阅《AWS 托管策略参考》RecoveryReadinessFullAccess中的AmazonRoute53。

AWS 托管策略: AmazonRoute53 RecoveryReadinessReadOnlyAccess

您可以将 AmazonRoute53RecoveryReadinessReadOnlyAccess 附加到 IAM 实体。此策略授予对 Route 53 ARC 中的恢复就绪操作的只读访问权限。这种权限适用于需要查看就绪状态和恢复组配置的用户。这些用户无法创建、更新或删除恢复就绪资源。

要查看此策略的权限,请参阅《AWS 托管策略参考》RecoveryReadinessReadOnlyAccess中的AmazonRoute53。

更新 AWS 托管策略以备不时之需

有关自该服务开始跟踪这些更改以来在 Route 53 ARC 中进行就绪检查的 AWS 托管策略更新的详细信息,请参阅Amazon Route 53 应用程序恢复控制器 AWS 托管策略的更新。要自动获取此页面的变动提醒,请在 Route 53 ARC 文档历史记录页面上订阅 RSS 源。

准备情况检查配额

Amazon Route 53 应用程序恢复控制器中的准备情况检查受以下配额(以前称为限制)的约束。

实体	限额
每个账户的恢复组数	5
每个账户的规则数	15
每个单元格的嵌套单元格数	3
每个恢复组的单元格数	3
每个单元格的资源数	10
每个恢复组的资源数	10
每个资源集的资源数	6
每个账户的资源集数	200
每个账户的就绪检查数	200

配额 217

实体	限额
跨账户授权数	100

配额 218

使用 AWS SDK 的应用程序恢复控制器的代码示例

以下代码示例展示了如何将应用程序恢复控制器与 AWS 软件开发套件 (SDK) 配合使用。

操作是大型程序的代码摘录,必须在上下文中运行。您可以通过操作了解如何调用单个服务函数,还可 以通过函数相关场景和跨服务示例的上下文查看操作。

有关 S AWS DK 开发者指南和代码示例的完整列表,请参阅<u>将此服务与 AWS SDK 配合使用</u>。本主题还包括有关入门的信息以及有关先前的 SDK 版本的详细信息。

代码示例

- 使用 AWS SDK 的应用程序恢复控制器的操作
 - GetRoutingControlState与 AWS SDK 或 CLI 配合使用
 - UpdateRoutingControlState与 AWS SDK 或 CLI 配合使用

使用 AWS SDK 的应用程序恢复控制器的操作

以下代码示例演示如何使用软件 AWS 开发工具包执行单个应用程序恢复控制器操作。这些节选代码调用应用程序恢复控制器 API,并且摘选自大型程序,必须在上下文中运行。每个示例都包含一个指向的链接 GitHub,您可以在其中找到有关设置和运行代码的说明。

以下示例仅包括最常用的操作。有关完整列表,请参阅 <u>Amazon Route 53 应用程序恢复控制器 API 参考</u>。

示例

- GetRoutingControlState与 AWS SDK 或 CLI 配合使用
- UpdateRoutingControlState与 AWS SDK 或 CLI 配合使用

GetRoutingControlState与 AWS SDK 或 CLI 配合使用

以下代码示例演示如何使用 GetRoutingControlState。

操作 21⁹

Java

适用于 Java 2 x 的 SDK

Note

还有更多相关信息 GitHub。在 AWS 代码示例存储库中查找完整示例,了解如何进行设 置和运行。

```
public static GetRoutingControlStateResponse
 getRoutingControlState(List<ClusterEndpoint> clusterEndpoints,
            String routingControlArn) {
       // As a best practice, we recommend choosing a random cluster endpoint to
 get or
       // set routing control states.
       // For more information, see
       // https://docs.aws.amazon.com/r53recovery/latest/dg/route53-arc-best-
practices.html#route53-arc-best-practices.regional
        Collections.shuffle(clusterEndpoints);
        for (ClusterEndpoint clusterEndpoint : clusterEndpoints) {
            try {
                System.out.println(clusterEndpoint);
                Route53RecoveryClusterClient client =
 Route53RecoveryClusterClient.builder()
                        .endpointOverride(URI.create(clusterEndpoint.endpoint()))
                        .region(Region.of(clusterEndpoint.region())).build();
                return client.getRoutingControlState(
                        GetRoutingControlStateRequest.builder()
                                .routingControlArn(routingControlArn).build());
            } catch (Exception exception) {
                System.out.println(exception);
            }
        }
       return null;
   }
```

• 有关 API 的详细信息,请参阅 AWS SDK for Java 2.x API 参考GetRoutingControlState中 的。

GetRoutingControlState 220

Python

SDK for Python (Boto3)

Note

还有更多相关信息 GitHub。在 AWS 代码示例存储库中查找完整示例,了解如何进行设 置和运行。

```
import boto3
def create_recovery_client(cluster_endpoint):
    Creates a Boto3 Route 53 Application Recovery Controller client for the
 specified
    cluster endpoint URL and AWS Region.
    :param cluster_endpoint: The cluster endpoint URL and Region.
    :return: The Boto3 client.
    return boto3.client(
        "route53-recovery-cluster",
        endpoint_url=cluster_endpoint["Endpoint"],
        region_name=cluster_endpoint["Region"],
    )
def get_routing_control_state(routing_control_arn, cluster_endpoints):
    Gets the state of a routing control. Cluster endpoints are tried in
    sequence until the first successful response is received.
    :param routing_control_arn: The ARN of the routing control to look up.
    :param cluster_endpoints: The list of cluster endpoints to query.
    :return: The routing control state response.
    .....
    # As a best practice, we recommend choosing a random cluster endpoint to get
 or set routing control states.
```

GetRoutingControlState 221

```
# For more information, see https://docs.aws.amazon.com/r53recovery/latest/
dq/route53-arc-best-practices.html#route53-arc-best-practices.regional
    random.shuffle(cluster_endpoints)
   for cluster_endpoint in cluster_endpoints:
        try:
            recovery_client = create_recovery_client(cluster_endpoint)
            response = recovery_client.get_routing_control_state(
                RoutingControlArn=routing_control_arn
            return response
        except Exception as error:
            print(error)
            raise error
```

• 有关 API 的详细信息,请参阅适用GetRoutingControlState于 Python 的AWS SDK (Boto3) API 参考。

有关 S AWS DK 开发者指南和代码示例的完整列表,请参阅将此服务与 AWS SDK 配合使用。本主题 还包括有关入门的信息以及有关先前的 SDK 版本的详细信息。

UpdateRoutingControlState与 AWS SDK 或 CLI 配合使用

以下代码示例演示如何使用 UpdateRoutingControlState。

Java

适用于 Java 2.x 的 SDK

Note

还有更多相关信息 GitHub。在 AWS 代码示例存储库中查找完整示例,了解如何进行设 置和运行。

```
public static UpdateRoutingControlStateResponse
updateRoutingControlState(List<ClusterEndpoint> clusterEndpoints,
           String routingControlArn,
           String routingControlState) {
```

```
// As a best practice, we recommend choosing a random cluster endpoint to
get or
       // set routing control states.
       // For more information, see
       // https://docs.aws.amazon.com/r53recovery/latest/dg/route53-arc-best-
practices.html#route53-arc-best-practices.regional
       Collections.shuffle(clusterEndpoints);
       for (ClusterEndpoint clusterEndpoint : clusterEndpoints) {
            try {
                System.out.println(clusterEndpoint);
                Route53RecoveryClusterClient client =
 Route53RecoveryClusterClient.builder()
                        .endpointOverride(URI.create(clusterEndpoint.endpoint()))
                        .region(Region.of(clusterEndpoint.region()))
                        .build();
                return client.updateRoutingControlState(
                        UpdateRoutingControlStateRequest.builder()
 .routingControlArn(routingControlArn).routingControlState(routingControlState).build());
            } catch (Exception exception) {
                System.out.println(exception);
            }
        }
       return null;
   }
```

 有关 API 的详细信息,请参阅 AWS SDK for Java 2.x API 参考UpdateRoutingControlState中 的。

Python

SDK for Python (Boto3)

Note

还有更多相关信息 GitHub。在 AWS 代码示例存储库中查找完整示例,了解如何进行设 置和运行。

import boto3

```
def create_recovery_client(cluster_endpoint):
   Creates a Boto3 Route 53 Application Recovery Controller client for the
 specified
    cluster endpoint URL and AWS Region.
    :param cluster_endpoint: The cluster endpoint URL and Region.
    :return: The Boto3 client.
   return boto3.client(
        "route53-recovery-cluster",
        endpoint_url=cluster_endpoint["Endpoint"],
       region_name=cluster_endpoint["Region"],
def update_routing_control_state(
   routing_control_arn, cluster_endpoints, routing_control_state
):
    11 11 11
   Updates the state of a routing control. Cluster endpoints are tried in
    sequence until the first successful response is received.
    :param routing_control_arn: The ARN of the routing control to update the
 state for.
    :param cluster_endpoints: The list of cluster endpoints to try.
    :param routing_control_state: The new routing control state.
    :return: The routing control update response.
   # As a best practice, we recommend choosing a random cluster endpoint to get
or set routing control states.
   # For more information, see https://docs.aws.amazon.com/r53recovery/latest/
dg/route53-arc-best-practices.html#route53-arc-best-practices.regional
    random.shuffle(cluster_endpoints)
   for cluster_endpoint in cluster_endpoints:
        try:
            recovery_client = create_recovery_client(cluster_endpoint)
            response = recovery_client.update_routing_control_state(
                RoutingControlArn=routing_control_arn,
                RoutingControlState=routing_control_state,
```

```
return response
except Exception as error:
  print(error)
```

• 有关 API 的详细信息,请参阅适用<u>UpdateRoutingControlState</u>于 Python 的AWS SDK (Boto3) API 参考。

有关 S AWS DK 开发者指南和代码示例的完整列表,请参阅<u>将此服务与 AWS SDK 配合使用</u>。本主题还包括有关入门的信息以及有关先前的 SDK 版本的详细信息。

开发人员指南

Amazon Route 53 应用程序恢复控制器的安全性

云安全 AWS 是重中之重。作为 AWS 客户,您可以受益于专为满足大多数安全敏感型组织的要求而构建的数据中心和网络架构。

安全是双方 AWS 的共同责任。责任共担模式将其描述为云的安全性和云中的安全性:

- 云安全 AWS 负责保护在云中运行 AWS 服务的基础架构 AWS Cloud。 AWS 还为您提供可以安全使用的服务。作为AWS 合规计划合规计划合规计划合的一部分,第三方审计师定期测试和验证我们安全的有效性。要了解适用于 Amazon Route 53 应用程序恢复控制器的合规计划,请参阅按合规计划提供的范围内的AWSAWS 服务按合规计划分的范围内服务。
- 云端安全-您的责任由您使用的 AWS 服务决定。您还需要对其他因素负责,包括您的数据的敏感性、您公司的要求以及适用的法律法规。

此文档将帮助您了解如何在使用 Route 53 ARC 时应用责任共担模型。以下主题说明如何配置 Route 53 ARC 以实现您的安全性和合规性目标。您还将学习如何使用其他 AWS 服务来帮助您监控和保护您的 Route 53 ARC 资源。

主题

- Amazon Route 53 应用程序恢复控制器中的数据保护
- 适用于 Amazon Route 53 应用程序恢复控制器的 Identity and Access Management
- Amazon Route 53 应用程序恢复控制器中的日志记录和监控
- Amazon Route 53 应用程序恢复控制器的合规性验证
- Amazon Route 53 应用程序恢复控制器中的故障恢复能力
- Amazon Route 53 应用程序恢复控制器的基础设施安全性

Amazon Route 53 应用程序恢复控制器中的数据保护

责任 AWS 共担模式分担责任模型适用于 Amazon Route 53 应用程序恢复控制器中的数据保护。如本模型所述 AWS,负责保护运行所有内容的全球基础架构 AWS Cloud。您负责维护对托管在此基础设施上的内容的控制。您还负责您所使用的 AWS 服务 的安全配置和管理任务。有关数据隐私的更多信息,请参阅数据隐私常见问题。有关欧洲数据保护的信息,请参阅 AWS 安全性博客 上的 AWS 责任共担模式和 GDPR 博客文章。

数据保护 226

出于数据保护目的,我们建议您保护 AWS 账户 凭证并使用 AWS IAM Identity Center 或 AWS Identity and Access Management (IAM) 设置个人用户。这样,每个用户只获得履行其工作职责所需的权限。我们还建议您通过以下方式保护数据:

- 对每个账户使用多重身份验证 (MFA)。
- 使用 SSL/TLS 与资源通信。 AWS 我们要求使用 TLS 1.2, 建议使用 TLS 1.3。
- 使用设置 API 和用户活动日志 AWS CloudTrail。
- 使用 AWS 加密解决方案以及其中的所有默认安全控件 AWS 服务。
- 使用高级托管安全服务(例如 Amazon Macie),它有助于发现和保护存储在 Amazon S3 中的敏感数据。
- 如果您在 AWS 通过命令行界面或 API 进行访问时需要经过 FIPS 140-2 验证的加密模块,请使用 FIPS 端点。有关可用的 FIPS 端点的更多信息,请参阅《美国联邦信息处理标准(FIPS)第 140-2 版》。

我们强烈建议您切勿将机密信息或敏感信息(如您客户的电子邮件地址)放入标签或自由格式文本字段(如名称字段)。这包括当你使用控制台、API或 AWS 软件开发工具包 AWS 服务 使用 Route 53 ARC 或其他方式时。 AWS CLI在用于名称的标签或自由格式文本字段中输入的任何数据都可能会用于计费或诊断日志。如果您向外部服务器提供网址,强烈建议您不要在网址中包含凭证信息来验证对该服务器的请求。

静态加密

客户配置信息存储在服务拥有的 Amazon DynamoDB 全局表中,并进行静态加密。

包含 Route 53 ARC 集群中单元格状态的数据集将写入 Amazon EBS 卷进行备份。Route 53 ARC 在数据处于静态时使用默认的 Amazon EBS 加密。

传输中加密

在整个服务过程中,使用 TLS 对传输中的客户请求和响应(适用于 Route 53 ARC 配置、就绪状态查询、单元格状态更新等)进行加密。

静态加密 227

适用于 Amazon Route 53 应用程序恢复控制器的 Identity and Access Management

AWS Identity and Access Management (IAM) AWS 服务 可帮助管理员安全地控制对 AWS 资源的访问权限。IAM 管理员控制可以通过身份验证(登录)和授权(具有权限)使用 Route 53 ARC 资源的人员。您可以使用 IAM AWS 服务 ,无需支付额外费用。

受众

您的使用方式 AWS Identity and Access Management (IAM) 会有所不同,具体取决于您在 Route 53 ARC 中所做的工作。

服务用户:如果您使用 Route 53 ARC 服务来完成工作,则您的管理员会为您提供所需的凭证和权限。 当您使用更多 Route 53 ARC 功能来完成工作时,您可能需要额外权限。了解如何管理访问权限有助于 您向管理员请求适合的权限。如果您无法访问 Route 53 ARC 中的功能,请参阅<u>Amazon Route 53 应</u> 用程序恢复控制器身份和访问的故障排除。

服务管理员:如果您在公司负责管理 Route 53 ARC 资源,则您可能具有 Route 53 ARC 的完全访问权限。您有责任确定您的服务用户应访问哪些 Route 53 ARC 功能和资源。然后,您必须向 IAM 管理员提交请求以更改服务用户的权限。请查看该页面上的信息以了解 IAM 的基本概念。要了解有关贵公司如何将 IAM 与 Route 53 ARC 搭配使用的更多信息,请参阅Amazon Route 53 应用程序恢复控制器功能如何与 IAM 配合使用。

IAM 管理员:如果您是 IAM 管理员,您可能希望了解有关如何编写策略以管理 Route 53 ARC 访问权限的详细信息。要查看您可在 IAM 中使用的 Route 53 ARC 基于身份的策略示例,请参阅<u>Amazon</u>Route 53 应用程序恢复控制器中基于身份的策略示例。

使用身份进行身份验证

身份验证是您 AWS 使用身份凭证登录的方式。您必须以 IAM 用户身份或通过担 AWS 账户根用户任 IAM 角色进行身份验证(登录 AWS)。

您可以使用通过身份源提供的凭据以 AWS 联合身份登录。 AWS IAM Identity Center (IAM Identity Center)用户、贵公司的单点登录身份验证以及您的 Google 或 Facebook 凭据就是联合身份的示例。 当您以联合身份登录时,您的管理员以前使用 IAM 角色设置了身份联合验证。当你使用联合访问 AWS 时,你就是在间接扮演一个角色。

根据您的用户类型,您可以登录 AWS Management Console 或 AWS 访问门户。有关登录的更多信息 AWS,请参阅《AWS 登录 用户指南》中的如何登录到您 AWS 账户的。

如果您 AWS 以编程方式访问,则会 AWS 提供软件开发套件 (SDK) 和命令行接口 (CLI),以便使用您的凭据对请求进行加密签名。如果您不使用 AWS 工具,则必须自己签署请求。有关使用推荐的方法自行签署请求的更多信息,请参阅 IAM 用户指南中的签署 AWS API 请求。

无论使用何种身份验证方法,您可能需要提供其他安全信息。例如, AWS 建议您使用多重身份验证 (MFA) 来提高账户的安全性。要了解更多信息,请参阅《AWS IAM Identity Center 用户指南》中的<u>多</u>重身份验证和《IAM 用户指南》中的在 AWS中使用多重身份验证(MFA)。

AWS 账户 root 用户

创建时 AWS 账户,首先要有一个登录身份,该身份可以完全访问账户中的所有资源 AWS 服务 和资源。此身份被称为 AWS 账户 root 用户,使用您创建账户时使用的电子邮件地址和密码登录即可访问该身份。强烈建议您不要使用根用户执行日常任务。保护好根用户凭证,并使用这些凭证来执行仅根用户可以执行的任务。有关要求您以根用户身份登录的任务的完整列表,请参阅《IAM 用户指南》中的需要根用户凭证的任务。

联合身份

作为最佳实践,要求人类用户(包括需要管理员访问权限的用户)使用与身份提供商的联合身份验证 AWS 服务 通过临时证书进行访问。

联合身份是指您的企业用户目录、Web 身份提供商、Identity C enter 目录中的用户,或者任何使用 AWS 服务 通过身份源提供的凭据进行访问的用户。 AWS Directory Service当联合身份访问时 AWS 账户,他们将扮演角色,角色提供临时证书。

要集中管理访问权限,建议您使用 AWS IAM Identity Center。您可以在 IAM Identity Center 中创建用户和群组,也可以连接并同步到您自己的身份源中的一组用户和群组,以便在您的所有 AWS 账户 和应用程序中使用。有关 IAM Identity Center 的信息,请参阅《AWS IAM Identity Center 用户指南》中的什么是 IAM Identity Center?。

IAM 用户和群组

I AM 用户是您 AWS 账户 内部对个人或应用程序具有特定权限的身份。在可能的情况下,我们建议使用临时凭证,而不是创建具有长期凭证(如密码和访问密钥)的 IAM 用户。但是,如果您有一些特定的使用场景需要长期凭证以及 IAM 用户,建议您轮换访问密钥。有关更多信息,请参阅《IAM 用户指南》中的对于需要长期凭证的使用场景定期轮换访问密钥。

IAM 组是一个指定一组 IAM 用户的身份。您不能使用组的身份登录。您可以使用组来一次性为多个用户指定权限。如果有大量用户,使用组可以更轻松地管理用户权限。例如,您可能具有一个名为 IAMAdmins 的组,并为该组授予权限以管理 IAM 资源。

使用身份进行身份验证 229

用户与角色不同。用户唯一地与某个人员或应用程序关联,而角色旨在让需要它的任何人代入。用户具有永久的长期凭证,而角色提供临时凭证。要了解更多信息,请参阅《IAM 用户指南》中的<u>何时创建</u>IAM 用户(而不是角色)。

IAM 角色

I AM 角色是您内部具有特定权限 AWS 账户 的身份。它类似于 IAM 用户,但与特定人员不关联。您可以 AWS Management Console 通过切换角色在中临时担任 IAM 角色。您可以通过调用 AWS CLI 或 AWS API 操作或使用自定义 URL 来代入角色。有关使用角色的方法的更多信息,请参阅《IAM 用户指南》中的 使用 IAM 角色。

具有临时凭证的 IAM 角色在以下情况下很有用:

- 联合用户访问 要向联合身份分配权限,请创建角色并为角色定义权限。当联合身份进行身份验证时,该身份将与角色相关联并被授予由此角色定义的权限。有关联合身份验证的角色的信息,请参阅《IAM 用户指南》中的为第三方身份提供商创建角色。如果您使用 IAM Identity Center,则需要配置权限集。为控制您的身份在进行身份验证后可以访问的内容,IAM Identity Center 将权限集与 IAM中的角色相关联。有关权限集的信息,请参阅《AWS IAM Identity Center 用户指南》中的权限集。
- 临时 IAM 用户权限 IAM 用户可代入 IAM 用户或角色,以暂时获得针对特定任务的不同权限。
- 跨账户存取 您可以使用 IAM 角色以允许不同账户中的某个人(可信主体)访问您的账户中的资源。角色是授予跨账户访问权限的主要方式。但是,对于某些资源 AWS 服务,您可以将策略直接附加到资源(而不是使用角色作为代理)。要了解用于跨账户访问的角色和基于资源的策略之间的差别,请参阅《IAM 用户指南》中的 IAM 角色与基于资源的策略有何不同。
- 跨服务访问 有些 AWS 服务 使用其他 AWS 服务服务中的功能。例如,当您在某个服务中进行调用时,该服务通常会在 Amazon EC2 中运行应用程序或在 Amazon S3 中存储对象。服务可能会使用发出调用的主体的权限、使用服务角色或使用服务相关角色来执行此操作。
 - 转发访问会话 (FAS) 当您使用 IAM 用户或角色在中执行操作时 AWS,您被视为委托人。使用某些服务时,您可能会执行一个操作,然后此操作在其他服务中启动另一个操作。FAS 使用调用委托人的权限以及 AWS 服务 向下游服务发出请求的请求。 AWS 服务只有当服务收到需要与其他AWS 服务 或资源交互才能完成的请求时,才会发出 FAS 请求。在这种情况下,您必须具有执行这两个操作的权限。有关发出 FAS 请求时的策略详情,请参阅转发访问会话。
 - 服务角色 服务角色是服务代表您在您的账户中执行操作而分派的 <u>IAM 角色</u>。IAM 管理员可以在 IAM 中创建、修改和删除服务角色。有关更多信息,请参阅《IAM 用户指南》中的<u>创建向 AWS 服</u>务委派权限的角色。
 - 服务相关角色-服务相关角色是一种与服务相关联的服务角色。 AWS 服务服务可以代入代表您执行操作的角色。服务相关角色出现在您的中 AWS 账户 ,并且归服务所有。IAM 管理员可以查看但不能编辑服务相关角色的权限。

使用身份进行身份验证 230

• 在 A@@ mazon EC2 上运行的应用程序 — 您可以使用 IAM 角色管理在 EC2 实例上运行并发出 AWS CLI 或 AWS API 请求的应用程序的临时证书。这优先于在 EC2 实例中存储访问密钥。要向 EC2 实例分配 AWS 角色并使其可供其所有应用程序使用,您需要创建附加到该实例的实例配置文件。实例配置文件包含角色,并使 EC2 实例上运行的程序能够获得临时凭证。有关更多信息,请参 阅《IAM 用户指南》中的 使用 IAM 角色为 Amazon EC2 实例上运行的应用程序授予权限。

要了解是使用 IAM 角色还是 IAM 用户,请参阅《IAM 用户指南》中的<u>何时创建 IAM 角色(而不是用</u>户)。

使用策略管理访问

您可以 AWS 通过创建策略并将其附加到 AWS 身份或资源来控制中的访问权限。策略是其中的一个对象 AWS ,当与身份或资源关联时,它会定义其权限。 AWS 在委托人(用户、root 用户或角色会话)发出请求时评估这些策略。策略中的权限确定是允许还是拒绝请求。大多数策略都以 JSON 文档的 AWS 形式存储在中。有关 JSON 策略文档的结构和内容的更多信息,请参阅《IAM 用户指南》中的 JSON 策略概览。

管理员可以使用 AWS JSON 策略来指定谁有权访问什么。也就是说,哪个主体 可以对什么资源执行操作,以及在什么条件下执行。

默认情况下,用户和角色没有权限。要授予用户对所需资源执行操作的权限,IAM 管理员可以创建 IAM 策略。管理员随后可以向角色添加 IAM 策略,用户可以代入角色。

IAM 策略定义操作的权限,无关乎您使用哪种方法执行操作。例如,假设您有一个允许 iam: GetRole操作的策略。拥有该策略的用户可以从 AWS Management Console AWS CLI、或 AWS API 获取角色信息。

基于身份的策略

基于身份的策略是可附加到身份(如 IAM 用户、用户组或角色)的 JSON 权限策略文档。这些策略控制用户和角色可在何种条件下对哪些资源执行哪些操作。要了解如何创建基于身份的策略,请参阅《IAM 用户指南》中的创建 IAM 策略。

基于身份的策略可以进一步归类为内联策略或托管式策略。内联策略直接嵌入单个用户、组或角色中。托管策略是独立的策略,您可以将其附加到中的多个用户、群组和角色 AWS 账户。托管策略包括 AWS 托管策略和客户托管策略。要了解如何在托管式策略和内联策略之间进行选择,请参阅《IAM 用户指南》中的在托管式策略与内联策略之间进行选择。

使用策略管理访问 231

基干资源的策略

基于资源的策略是附加到资源的 JSON 策略文档。基于资源的策略的示例包括 IAM 角色信任策略和 Simple Storage Service (Amazon S3) 存储桶策略。在支持基于资源的策略的服务中,服务管理员可以使用它们来控制对特定资源的访问。对于在其中附加策略的资源,策略定义指定主体可以对该资源执行哪些操作以及在什么条件下执行。您必须在基于资源的策略中指定主体。委托人可以包括账户、用户、角色、联合用户或 AWS 服务。

基于资源的策略是位于该服务中的内联策略。您不能在基于资源的策略中使用 IAM 中的 AWS 托管策略。

访问控制列表 (ACL)

访问控制列表(ACL)控制哪些主体(账户成员、用户或角色)有权访问资源。ACL 与基于资源的策略类似,尽管它们不使用 JSON 策略文档格式。

Amazon S3 和 Amazon VPC 就是支持 ACL 的服务示例。 AWS WAF要了解有关 ACL 的更多信息,请参阅《Amazon Simple Storage Service 开发人员指南》 中的访问控制列表(ACL)概览。

其他策略类型

AWS 支持其他不太常见的策略类型。这些策略类型可以设置更常用的策略类型向您授予的最大权限。

- 权限边界 权限边界是一个高级功能,用于设置基于身份的策略可以为 IAM 实体(IAM 用户或角色)授予的最大权限。您可为实体设置权限边界。这些结果权限是实体基于身份的策略及其权限边界的交集。在 Principal 中指定用户或角色的基于资源的策略不受权限边界限制。任一项策略中的显式拒绝将覆盖允许。有关权限边界的更多信息,请参阅《IAM 用户指南》中的 IAM 实体的权限边界。
- 服务控制策略 (SCP)-SCP 是 JSON 策略,用于指定组织或组织单位 (OU) 的最大权限。 AWS Organizations AWS Organizations 是一项用于对您的企业拥有的多 AWS 账户 项进行分组和集中管理的服务。如果在组织内启用了所有功能,则可对任意或全部账户应用服务控制策略 (SCP)。 SCP 限制成员账户中的实体(包括每个 AWS 账户根用户实体)的权限。有关 Organizations 和 SCP 的更多信息,请参阅《AWS Organizations 用户指南》中的 SCP 的工作原理。
- 会话策略 会话策略是当您以编程方式为角色或联合用户创建临时会话时作为参数传递的高级策略。结果会话的权限是用户或角色的基于身份的策略和会话策略的交集。权限也可以来自基于资源的策略。任一项策略中的显式拒绝将覆盖允许。有关更多信息,请参阅《IAM 用户指南》中的会话策略。

使用策略管理访问 232

多个策略类型

当多个类型的策略应用于一个请求时,生成的权限更加复杂和难以理解。要了解在涉及多种策略类型时如何 AWS 确定是否允许请求,请参阅 IAM 用户指南中的策略评估逻辑。

Amazon Route 53 应用程序恢复控制器功能如何与 IAM 配合使用

有关每个 Amazon Route 53 应用程序恢复控制器功能如何与 IAM 配合使用的信息,请参阅以下主题:

- 用于区域转移的 IAM
- 区域自动换档的 IAM
- 用于路由控制的 IAM
- IAM 用于准备情况检查

Amazon Route 53 应用程序恢复控制器中基于身份的策略示例

要查看 Amazon Route 53 应用程序恢复控制器中每项功能的基于身份的策略示例,请参阅每项功能 AWS Identity and Access Management 章节中的以下主题:

- 基于身份的区域自动换档策略示例
- Amazon Route 53 应用程序恢复控制器中区域转移的基于身份的策略示例
- Amazon Route 53 应用程序恢复控制器中用于路由控制的基于身份的策略示例
- Amazon Route 53 应用程序恢复控制器中准备情况检查的基于身份的策略示例

AWS Amazon Route 53 应用程序恢复控制器的托管策略

有关带有 AWS 托管策略的 Amazon Route 53 应用程序恢复控制器功能的托管策略(包括服务相关角色的托管策略)的信息,请参阅以下主题:

- 区域自动换档的托管策略
- 用于路由控制的托管策略
- 用于准备情况检查的托管策略

Amazon Route 53 应用程序恢复控制器 AWS 托管策略的更新

查看自该服务开始跟踪这些更改以来对 Route 53 ARC 中功能的 AWS 托管策略更新的详细信息。要自动获取此页面的变动提醒,请在 Route 53 ARC <u>文档历史记录页面</u>上订阅 RSS 源。

更改	描述	日期
AWSServiceRoleForP ercPracticePolicy— 新政策	Route 53 ARC 为自动转移和 练习运行添加了新的服务相关 角色。	2023 年 11 月 30 日
	Route 53 ARC 使用服务相关 角色启用的权限来监控客户 提供的 Amazon CloudWatc h 警报和客户 AWS Health Dashboard 活动以进行练习, 并开始练习。	
	要了解有关新服务相关角色的更多信息,请参阅的服务相关角色权限 AWSServiceRoleForZonalAutoshiftPracticeRun。	
AmazonRoute53 RecoveryC ontrol ConfigRead OnlyAccess — 更新了政策	为添加权限GetResour cePolicy ,以支持返回有关 共享 AWS Resource Access Manager 资源的资源策略的详 细信息。	2023 年 10 月 18 日
Route53 RecoveryReadiness ServiceRole 政策 — 更新的政 策	Route 53 ARC 增加了新权限,以查询有关 Amazon EC2实例的信息。	2023年2月17日
	Route 53 ARC 使用以下权限 来支持轮询 Amazon EC2 实 例,以运行就绪检查并确定实 例的就绪状态。	

更改	描述	日期
	ec2:DescribeVpnGat eways	
	ec2:DescribeCustom erGateways	
Route53 RecoveryReadiness ServiceRole 政策 — 更新的政 策	Route 53 ARC 增加了一项新 权限,以查询有关 Lambda 函 数的信息。	2022 年 8 月 31 日
	Route 53 ARC 使用以下权限 来查询有关 Lambda 函数的信息,以运行就绪检查并确定函 数的就绪状态。	
	<pre>lambda:ListProvisi onedConcurrencyCon figs</pre>	
AmazonRoute5.3 RecoveryC ontrol ConfigFull 访问权限-更新了政策	从策略中删除了 Amazon Route 53 权限,并增加了列出 可选权限的注释。	2022 年 5 月 26 日
AmazonRoute5.3 RecoveryC ontrol ConfigFull 访问权限-更新了政策	在策略中增加了缺少的 Amazon Route 53 必要权限。	2022 年 4 月 15 日
AmazonRoute5.3 RecoveryC luster ReadOnly 访问权限-更新了政策	Route 53 ARC 增加了一项新 权限 route53-recovery- cluster:ListRouting Controls ,允许列出高度可 用的路由控制 ARN。	2022 年 3 月 15 日

更改	描述	日期
AmazonRoute53 RecoveryC ontrol ConfigRead OnlyAccess — 更新了政策	Route 53 ARC 增加了一项新 权限 route53-recovery- control-config:List TagsForResources ,允 许列出资源的标签。	2021年12月20日
Route53 RecoveryReadiness ServiceRole 政策 — 更新的政 策	Route 53 ARC 增加了一项新权限,以查询有关 Amazon API Gateway 的信息。 Route 53 ARC 使用权限 apigateway: GET 来查询有关 API Gateway 的信息,以运行就绪检查并确定就绪状态。	2021年10月28日
AmazonRoute53 RecoveryR eadiness ReadOnly 访问权限-添加了新权限	Route 53 ARC 在 5 AmazonRoute3 Access 中 添加了两个新RecoveryRea dinessReadOnly权限: Route 53 ARC 使用 route53-recovery-r eadiness:GetArchit ectureRecommendati ons 和 route53-r ecovery-readiness: GetCellReadinessSu mmary 允许对恢复就绪操作 的只读访问。	2021年10月15日

更改	描述	日期
Route53 RecoveryReadiness ServiceRole 政策 — 更新的政 策	Route 53 ARC 增加了新权 限,以查询有关 Lambda 函数 的信息。	2021年10月8日
	Route 53 ARC 使用以下权限 来查询有关 Lambda 函数的信 息,以运行就绪检查并确定这 些函数的就绪状态。	
	lambda:GetFunction Concurrency	
	lambda:GetFunction Configuration	
	<pre>lambda:GetProvisio nedConcurrencyConf ig</pre>	
	lambda:ListAliases	
	<pre>lambda:ListVersion sByFunction</pre>	
	<pre>lambda:ListEventSo urceMappings</pre>	
	lambda:ListFunctions	

更改	描述	日期
Route53 RecoveryReadiness ServiceRole 策略-添加了新的 托管策略	Route 53 ARC 增加了以下新的托管策略: AmazonRoute53 RecoveryReadiness FullAccess AmazonRoute53 RecoveryReadiness ReadOnly访问权限 AmazonRoute53 RecoveryCluster FullAccess AmazonRoute53 RecoveryCluster ReadOnly访问权限 AmazonRoute53 RecoveryCluster ReadOnly访问权限 AmazonRoute53 RecoveryCluster ReadOnly访问权限 AmazonRoute53 RecoveryCluster ReadOnly访问权限 AmazonRoute53 RecoveryCluster ReadOnly 访问权限	2021年8月18日
Route 53 ARC 开始跟踪变动	Route 53 ARC 开始跟踪其 AWS 托管策略的更改。	2021年7月27日

Amazon Route 53 应用程序恢复控制器身份和访问的故障排除

使用以下信息来帮助您诊断和修复在使用 Amazon Route 53 应用程序恢复控制器和 IAM 时可能遇到的常见问题。

主题

- 我无权在 Route 53 ARC 中执行操作
- 我无权执行 iam: PassRole
- 我想允许我以外的人访问我 AWS 账户 的 Route 53 ARC 资源

我无权在 Route 53 ARC 中执行操作

如果 AWS Management Console 告诉您您无权执行某项操作,则必须联系管理员寻求帮助。管理员是向您提供凭证的人员。

当 mateojackson IAM 用户尝试使用控制台查看有关虚构 my-example-widget 资源的详细信息,但不拥有虚构 route53-recovery-readiness: GetWidget 权限时,会发生以下示例错误。

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: route53-recovery-readiness:GetWidget on resource: my-example-widget

在这种情况下,Mateo 请求他的管理员更新其策略,以允许他使用 route53-recovery-readiness: GetWidget 操作访问 my-example-widget 资源。

我无权执行 iam:PassRole

如果您收到一个错误,表明您无权执行 iam: PassRole 操作,则必须更新策略以允许您将角色传递给Route 53 ARC。

有些 AWS 服务 允许您将现有角色传递给该服务,而不是创建新的服务角色或服务相关角色。为此,您必须具有将角色传递到服务的权限。

当名为 marymajor 的 IAM 用户尝试使用控制台在 Route 53 ARC 中执行操作时,会发生以下示例错误。但是,服务必须具有服务角色所授予的权限才可执行此操作。Mary 不具有将角色传递到服务的权限。

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

在这种情况下,必须更新 Mary 的策略以允许她执行 iam: PassRole 操作。

如果您需要帮助,请联系您的 AWS 管理员。您的管理员是提供登录凭证的人。

我想允许我以外的人访问我 AWS 账户 的 Route 53 ARC 资源

您可以创建一个角色,以便其他账户中的用户或您组织外的人员可以使用该角色来访问您的资源。您可以指定谁值得信赖,可以担任角色。对于支持基于资源的策略或访问控制列表(ACL)的服务,您可以使用这些策略向人员授予对您的资源的访问权。

要了解更多信息,请参阅以下内容:

故障排除 239

- 要了解 Route 53 ARC 是否支持这些功能,请参阅Amazon Route 53 应用程序恢复控制器功能如何与 IAM 配合使用。
- 要了解如何提供对您拥有的资源的访问权限 AWS 账户 ,请参阅 <u>IAM 用户指南中的向您拥有 AWS</u> 账户 的另一个 IAM 用户提供访问权限。
- 要了解如何向第三方提供对您的资源的访问权限 AWS 账户,请参阅 IAM 用户指南中的向第三方提供访问权限。 AWS 账户
- 要了解如何通过身份联合验证提供访问权限,请参阅《IAM 用户指南》中的为经过外部身份验证的用户(身份联合验证)提供访问权限。
- 要了解使用角色和基于资源的策略进行跨账户存取之间的差别,请参阅《IAM 用户指南》中的 <u>IAM</u> 角色与基于资源的策略有何不同。

Amazon Route 53 应用程序恢复控制器中的日志记录和监控

监控是维护 Amazon Route 53 应用程序恢复控制器和您的 AWS 解决方案可用性和性能的重要组成部分。您应该从 AWS 解决方案的所有部分收集监控数据,以便在出现多点故障时可以更轻松地对其进行调试。 AWS 提供了多种工具,用于监控您的 Route 53 ARC 资源和活动,以及响应潜在事件(例如 AWS CloudTrail 和 Amazon) CloudWatch。

有关监控 Route 53 ARC 中每项功能的信息,请参阅以下主题:

- 记录和监控区域偏移
- 记录和监控区域自动换档
- 记录和监控路由控制
- 记录和监控准备情况检查

Amazon Route 53 应用程序恢复控制器的合规性验证

作为多个合规计划的一部分,第三方审计师评估 Amazon Route 53 应用程序恢复控制器的安全 AWS 性和合规性。其中包括 SOC、PCI、HIPAA 等。

要了解是否属于特定合规计划的范围,请参阅AWS 服务 "<u>按合规计划划分的范围</u>" ",然后选择您感兴趣的合规计划。 AWS 服务 有关一般信息,请参阅AWS 合规计划AWS。

您可以使用下载第三方审计报告 AWS Artifact。有关更多信息,请参阅中的 "<u>下载报告" 中的 " AWS</u> Artifact。

日记账记录和监控 240

您在使用 AWS 服务 时的合规责任取决于您的数据的敏感性、贵公司的合规目标以及适用的法律和法规。 AWS 提供了以下资源来帮助实现合规性:

- 安全与合规性快速入门指南 这些部署指南讨论了架构注意事项,并提供了部署以安全性和合规性 为重点 AWS 的基准环境的步骤。
- 在 A@@ mazon Web Services 上构建 HIPAA 安全与合规性 本白皮书描述了各公司如何使用 AWS 来创建符合 HIPAA 资格的应用程序。

Note

并非所有 AWS 服务 人都符合 HIPAA 资格。有关更多信息,请参阅符合 HIPAA 要求的服务参考。

- AWS 合规资源AWS 此工作簿和指南集可能适用于您所在的行业和所在地区。
- AWS 客户合规指南 从合规角度了解责任共担模式。这些指南总结了保护的最佳实践, AWS 服务 并将指南映射到跨多个框架(包括美国国家标准与技术研究院 (NIST)、支付卡行业安全标准委员会 (PCI) 和国际标准化组织 (ISO))的安全控制。
- 使用AWS Config 开发人员指南中的规则评估资源 该 AWS Config 服务评估您的资源配置在多大程度上符合内部实践、行业准则和法规。
- <u>AWS Security Hub</u>— 这 AWS 服务 提供了您内部安全状态的全面视图 AWS。Security Hub 通过安全控件评估您的 AWS 资源并检查其是否符合安全行业标准和最佳实践。有关受支持服务及控件的列表,请参阅 Security Hub 控件参考。
- Amazon GuardDuty 它通过监控您的 AWS 账户环境中是否存在可疑和恶意活动,来 AWS 服务 检测您的工作负载、容器和数据面临的潜在威胁。 GuardDuty 通过满足某些合规性框架规定的入侵 检测要求,可以帮助您满足各种合规性要求,例如 PCI DSS。
- AWS Audit Manager— 这 AWS 服务 可以帮助您持续审计 AWS 使用情况,从而简化风险管理以及对法规和行业标准的合规性。

Amazon Route 53 应用程序恢复控制器中的故障恢复能力

AWS 全球基础设施是围绕 AWS 区域 可用区构建的。 AWS 区域 提供多个物理隔离和隔离的可用区,这些可用区通过低延迟、高吞吐量和高度冗余的网络连接。利用可用区,您可以设计和操作在可用区之间无中断地自动实现失效转移的应用程序和数据库。与传统的单个或多个数据中心基础设施相比,可用区具有更高的可用性、容错性和可扩展性。

有关 AWS 区域 和可用区的更多信息,请参阅AWS 全球基础设施。

韧性 241

除了 AWS 全球基础架构外,Route 53 ARC 还提供多项功能来帮助支持您的数据弹性和备份需求。

Amazon Route 53 应用程序恢复控制器的基础设施安全性

作为一项托管服务,Amazon Route 53 应用程序恢复控制器受 AWS 全球网络安全的保护。有关 AWS 安全服务以及如何 AWS 保护基础设施的信息,请参阅 AWS 云安全。要使用基础设施安全的最佳实践来设计您的 AWS 环境,请参阅 S AWS ecurity Pillar Well-Architected Fram ework 中的基础设施保护。

您可以使用 AWS 已发布的 API 调用通过网络访问 Route 53 ARC。客户端必须支持以下内容:

- 传输层安全性协议 (TLS)。我们要求使用 TLS 1.2,建议使用 TLS 1.3。
- 具有完全向前保密 (PFS) 的密码套件,例如 DHE(临时 Diffie-Hellman)或 ECDHE(临时椭圆曲线 Diffie-Hellman)。大多数现代系统(如 Java 7 及更高版本)都支持这些模式。

此外,必须使用访问密钥 ID 和与 IAM 委托人关联的秘密访问密钥来对请求进行签名。或者,您可以使用 AWS Security Token Service(AWS STS)生成临时安全凭证来对请求进行签名。

基础设施安全性 242

《Amazon Route 53 应用程序恢复控制器开发人员指南》的 文档历史记录

以下条目介绍了 Amazon Route 53 应用程序恢复控制器文档的一些重要改动。

• 版本:最新

• 最新文档更新: 2024 年 4 月 30 日

更改	描述	日期
按每种能力对文档进行重组	重新组织开发者指南内容,将 其分成子开发指南。也就是 说,现在有单独的章节包含 Route 53 ARC 中每项功能的 全面信息:用于多可用区恢复 的区域转移和区域自动移动, 以及用于多区域恢复的路由控 制和准备情况检查。 有关更多信息,请参阅 <u>什么是</u> Amazon Route 53 应用程序恢 复控制器。	2024年4月30日
增加了可用区自动转移功能	在 Route 53 ARC 中添加了一项新功能,您可以代表您授权 AWS 将应用程序的资源流量从可用区转移出去,以帮助缩短事件期间的恢复时间。 有关更多信息,请参阅 Amazon Route 53 应用程序恢复控制器中的可用区自动转移。	2023 年 11 月 30 日
添加了新服务相关角色	为分区自动换档练习 跑AWSServiceRoleForZ	2023 年 11 月 30 日

更改	描述	日期
	onalAutoshiftPracticeRun添加新的服务相关角色。 有关更多信息,请参阅的服务相关角色权限。AWSServiceRuneRoleForZonalAutoshiftPracticeRun	
增加了对集群的跨账户支持	添加了对 Route 53 ARC 中集群的跨账户支持 AWS Resource Access Manager,这样您就可以轻松安全地使用一个集群来托管由多个不同 AWS 账户拥有的控制面板和路由控件。 有关更多信息,请参阅 <u>跨账</u> 户支持 Route 53 ARC 中的集群。	2023年10月18日
更新了托管策略	更新AmazonRoute53RecoveryControlConfigReadOnly 托管策略以添加权限GetResourcePolicy,以支持返回有关共享 AWSResource Access Manager资源的资源策略的详细信息。 有关更多信息,请参阅 AWS托管策略。	2023 年 9 月 19 日

更改	描述	日期
更新了服务相关角色	在 Route 53 ARC 服务相 关角色中增加了新的权限 ec2:DescribeVpnGat eways 和 ec2:Descr ibeCustomerGateway s ,以支持轮询 Amazon EC2 实例。 有关更多信息,请参阅使用 Route 53 ARC 服务相关角 色。	2023年2月17日
可用区转移 GA 版本	支持 Route 53 ARC 可用区转移的 GA 版本,其中包括针对托管资源的基于属性的访问权限控制 (ABAC),这些资源已在Route 53 ARC 中注册,要进行可用区转移。 有关更多信息,请参阅 Route 53 ARC 中基于属性的访问权限控制 (ABAC)。	2023年1月10日
增加了新的多可用区的可用区转移	增加了描述可用区转移的内容,这是 Route 53 ARC 中针对多可用区应用程序的新服务。您可以启动可用区转移,将负载均衡器资源的流量暂时从一个可用区移走。 有关更多信息,请参阅 Route 53 ARC 中的可用区转移。	2022年11月28日

更改	描述	日期
更新了服务相关角色	在 Route 53 ARC 服务相关角色中增加了新权限 lambda:ListProvisionedConcurrencyConfigs ,以查询有关 Lambda 函数的信息。 有关更多信息,请参阅使用Route 53 ARC 服务相关角色。	2022 年 8 月 31 日
更新了托管策略	更新了 AmazonRou te53RecoveryContro lConfigFullAccess 托管 策略,删除了 Amazon Route 53 权限并将其列为可选权限。 有关更多信息,请参阅 <u>适用于 Amazon Route 53 应用程序恢复控制器的AWS 托管策略</u> 。	2022年5月26日
更新了托管策略	更新了 AmazonRou te53RecoveryContro lConfigFullAccess 托管策略,使其包含所需的 Amazon Route 53 权限。 有关更多信息,请参阅适用于 Amazon Route 53 应用程序恢复控制器的AWS 托管策略。	2022 年 4 月 15 日

更改	描述	日期
增加了新列出路由控制 API 的CLI 示例	为极其可靠的 Route 53 ARC 数据面板 API 中包含的新列出 路由控制 API 操作增加了 CLI 命令示例和最佳实践建议。 有关更多信息,请参阅 <u>列出和</u> 更新路由控制和状态。	2022年3月31日
增加了对覆盖安全规则的支持	增加了对覆盖安全规则的支持,允许您绕过通过配置的安全规则强制执行的路由控制保护措施。例如,在"打碎玻璃"的情况下,为灾难恢复而进行失效转移期间可能需要覆盖安全规则。 有关更多信息,请参阅 <u>覆盖安全规则以重新路由流量</u> 。	2022年3月2日
增加了额外的标记支持	增加了支持,可在 Route 53 ARC 中标记更多资源,包括集群、控制面板、路由控制和安全规则。 有关更多信息,请参阅 Amazon Route 53 应用程序恢复控制器中的标记。	2021年12月20日

更改	描述	日期
更新了托管策略	更新了 AmazonRou te53RecoveryContro 1ConfigReadOnly 托管策略,增加了列出资源标签的权限。 有关更多信息,请参阅 <u>适用于Amazon Route 53 应用程序恢复控制器的AWS 托管策略</u> 。	2021年12月20日
增加了对实时警报的支持 EventBridge	增加了对的支持 EventBrid ge,这意味着现在您可以添加规则以获取警报并对 Route 53 ARC 就绪检查状态的变化采取行动,例如,当状态从"就绪"变为"未就绪"时。 有关更多信息,请参阅在亚马逊上使用 Route 53 ARC EventBridge。	2021年12月20日
增加了路由控制状态代码示例	增加了代码示例,说明在使用API操作获取或更新路由控制状态时按顺序尝试集群端点。 有关更多信息,请参阅Amazon Route 53 应用程序恢复控制器 API 示例。	2021年11月16日

更改	描述	日期
在只读策略中增加了新权限。	在 AmazonRoute53RecoveryReadinessReadOnlyAccess 策略中增加了两个新权限:route53-recovery-readiness:GetArchitectureRecommendations和route53-recovery-readiness:GetCellReadinessSummary。 有关更多信息,请参阅适用于Amazon Route 53 应用程序恢复控制器的AWS 托管策略。	2021年11月9日
增加了对 Amazon API Gateway 资源类型的支持	增加了新的资源类型 Amazon API Gateway,并更新了 Route 53 ARC 服务相关角色 权限,以便 Route 53 ARC 可通过就绪检查来审计 API Gateway。 有关更多信息,请参阅就绪 规则和支持的资源类型和使用 Route 53 ARC 服务相关角色。	2021年10月28日

更改	描述	日期
增加了对 Lambda 函数资源类型的支持	增加了新的资源类型 Lambda 函数,并更新了 Route 53 ARC 服务相关角色权限,以便 Route 53 ARC 可通过就绪检 查来审计 Lambda 函数。 有关更多信息,请参阅 <u>就绪</u> 规则和支持的资源类型和使 用 Route 53 ARC 服务相关角 色。	2021年10月8日
添加了指向 CloudFormation 和 Terraform 模板的链接	添加了指向可下载模板 AWS CloudFormation 和 Hashicorp Terraform 模板的链接,以帮助您快速开始使用 Route 53 arc。有关更多信息,请参阅使用新应用程序做好恢复准备。	2021年9月13日

更改	描述	日期
增加了新的托管策略	为 Route 53 ARC 添加了以下 AWS 托管策略: AmazonRoute53RecoveryReadinessFullAccess AmazonRoute53RecoveryReadinessReadOnlyAccess AmazonRoute53RecoveryClusterFullAccess、AmazonRoute53RecoveryClusterReadOnlyAccess、AmazonRoute53RecoveryClusterReadOnlyAccess、AmazonRoute53RecoveryControlConfigFullAccess、和AmazonRoute53RecoveryControlConfigReadOnlyAccess。 有关更多信息,请参阅适用于Amazon Route 53 应用程序恢复控制器的AWS 托管策略。	2021年8月18日
已开始跟踪 Amazon Route 53 应用程序恢复控制器的 AWS 托管策略	自首次发布日期开始,跟踪托管策略的更新。 有关更多信息,请参阅 <u>适用于Amazon Route 53 应用程序恢复控制器的AWS 托管策略</u> 。	2021年7月27日

更改	描述	日期
首次发布 Amazon Route 53 应用程序恢复控制器	Route 53 ARC 通过集中协调一个 AWS 区域内或多个区域 之间的故障转移来提高应用程序可用性。Route 53 ARC 提供恢复就绪检查,确保您的应用程序经过扩展可处理失效转移流量,并配置为绕过故障。它还提供了极其可靠的路由控制,因此您可以通过重新路由流量(例如跨可用区或区域)来恢复应用程序。有关更多信息,请参阅什么是 Route 53 ARC?	2021年7月27日

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。