本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
访问模型摘要文件
摘要文件包含有关整个模型的评估结果信息以及每个标签的指标。这些指标包括精度、召回率、F1 分数。此外,还提供了模型的阈值。可从 DescribeProjectVersions
返回的 EvaluationResult
对象获取摘要文件的位置。有关更多信息,请参阅 参考:训练结果摘要文件。
下面是一个示例摘要文件。
{ "Version": 1, "AggregatedEvaluationResults": { "ConfusionMatrix": [ { "GroundTruthLabel": "CAP", "PredictedLabel": "CAP", "Value": 0.9948717948717949 }, { "GroundTruthLabel": "CAP", "PredictedLabel": "WATCH", "Value": 0.008547008547008548 }, { "GroundTruthLabel": "WATCH", "PredictedLabel": "CAP", "Value": 0.1794871794871795 }, { "GroundTruthLabel": "WATCH", "PredictedLabel": "WATCH", "Value": 0.7008547008547008 } ], "F1Score": 0.9726959470546408, "Precision": 0.9719115848331294, "Recall": 0.9735042735042735 }, "EvaluationDetails": { "EvaluationEndTimestamp": "2019-11-21T07:30:23.910943", "Labels": [ "CAP", "WATCH" ], "NumberOfTestingImages": 624, "NumberOfTrainingImages": 5216, "ProjectVersionArn": "arn:aws:rekognition:us-east-1:nnnnnnnnn:project/my-project/version/v0/1574317227432" }, "LabelEvaluationResults": [ { "Label": "CAP", "Metrics": { "F1Score": 0.9794344473007711, "Precision": 0.9819587628865979, "Recall": 0.9769230769230769, "Threshold": 0.9879502058029175 }, "NumberOfTestingImages": 390 }, { "Label": "WATCH", "Metrics": { "F1Score": 0.9659574468085106, "Precision": 0.961864406779661, "Recall": 0.9700854700854701, "Threshold": 0.014450683258473873 }, "NumberOfTestingImages": 234 } ] }