选择您的 Cookie 首选项

我们使用必要 Cookie 和类似工具提供我们的网站和服务。我们使用性能 Cookie 收集匿名统计数据,以便我们可以了解客户如何使用我们的网站并进行改进。必要 Cookie 无法停用,但您可以单击“自定义”或“拒绝”来拒绝性能 Cookie。

如果您同意,AWS 和经批准的第三方还将使用 Cookie 提供有用的网站功能、记住您的首选项并显示相关内容,包括相关广告。要接受或拒绝所有非必要 Cookie,请单击“接受”或“拒绝”。要做出更详细的选择,请单击“自定义”。

CreateModel - Amazon SageMaker
此页面尚未翻译为您的语言。 请求翻译

CreateModel

Creates a model in SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions.

Use this API to create a model if you want to use SageMaker hosting services or run a batch transform job.

To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. SageMaker then deploys all of the containers that you defined for the model in the hosting environment.

To run a batch transform using your model, you start a job with the CreateTransformJob API. SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.

In the request, you also provide an IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.

Request Syntax

{ "Containers": [ { "AdditionalModelDataSources": [ { "ChannelName": "string", "S3DataSource": { "CompressionType": "string", "ETag": "string", "HubAccessConfig": { "HubContentArn": "string" }, "ManifestEtag": "string", "ManifestS3Uri": "string", "ModelAccessConfig": { "AcceptEula": boolean }, "S3DataType": "string", "S3Uri": "string" } } ], "ContainerHostname": "string", "Environment": { "string" : "string" }, "Image": "string", "ImageConfig": { "RepositoryAccessMode": "string", "RepositoryAuthConfig": { "RepositoryCredentialsProviderArn": "string" } }, "InferenceSpecificationName": "string", "Mode": "string", "ModelDataSource": { "S3DataSource": { "CompressionType": "string", "ETag": "string", "HubAccessConfig": { "HubContentArn": "string" }, "ManifestEtag": "string", "ManifestS3Uri": "string", "ModelAccessConfig": { "AcceptEula": boolean }, "S3DataType": "string", "S3Uri": "string" } }, "ModelDataUrl": "string", "ModelPackageName": "string", "MultiModelConfig": { "ModelCacheSetting": "string" } } ], "EnableNetworkIsolation": boolean, "ExecutionRoleArn": "string", "InferenceExecutionConfig": { "Mode": "string" }, "ModelName": "string", "PrimaryContainer": { "AdditionalModelDataSources": [ { "ChannelName": "string", "S3DataSource": { "CompressionType": "string", "ETag": "string", "HubAccessConfig": { "HubContentArn": "string" }, "ManifestEtag": "string", "ManifestS3Uri": "string", "ModelAccessConfig": { "AcceptEula": boolean }, "S3DataType": "string", "S3Uri": "string" } } ], "ContainerHostname": "string", "Environment": { "string" : "string" }, "Image": "string", "ImageConfig": { "RepositoryAccessMode": "string", "RepositoryAuthConfig": { "RepositoryCredentialsProviderArn": "string" } }, "InferenceSpecificationName": "string", "Mode": "string", "ModelDataSource": { "S3DataSource": { "CompressionType": "string", "ETag": "string", "HubAccessConfig": { "HubContentArn": "string" }, "ManifestEtag": "string", "ManifestS3Uri": "string", "ModelAccessConfig": { "AcceptEula": boolean }, "S3DataType": "string", "S3Uri": "string" } }, "ModelDataUrl": "string", "ModelPackageName": "string", "MultiModelConfig": { "ModelCacheSetting": "string" } }, "Tags": [ { "Key": "string", "Value": "string" } ], "VpcConfig": { "SecurityGroupIds": [ "string" ], "Subnets": [ "string" ] } }

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

Containers

Specifies the containers in the inference pipeline.

Type: Array of ContainerDefinition objects

Array Members: Maximum number of 15 items.

Required: No

EnableNetworkIsolation

Isolates the model container. No inbound or outbound network calls can be made to or from the model container.

Type: Boolean

Required: No

ExecutionRoleArn

The Amazon Resource Name (ARN) of the IAM role that SageMaker can assume to access model artifacts and docker image for deployment on ML compute instances or for batch transform jobs. Deploying on ML compute instances is part of model hosting. For more information, see SageMaker Roles.

Note

To be able to pass this role to SageMaker, the caller of this API must have the iam:PassRole permission.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: ^arn:aws[a-z\-]*:iam::\d{12}:role/?[a-zA-Z_0-9+=,.@\-_/]+$

Required: No

InferenceExecutionConfig

Specifies details of how containers in a multi-container endpoint are called.

Type: InferenceExecutionConfig object

Required: No

ModelName

The name of the new model.

Type: String

Length Constraints: Maximum length of 63.

Pattern: ^[a-zA-Z0-9]([\-a-zA-Z0-9]*[a-zA-Z0-9])?

Required: Yes

PrimaryContainer

The location of the primary docker image containing inference code, associated artifacts, and custom environment map that the inference code uses when the model is deployed for predictions.

Type: ContainerDefinition object

Required: No

Tags

An array of key-value pairs. You can use tags to categorize your AWS resources in different ways, for example, by purpose, owner, or environment. For more information, see Tagging AWS Resources.

Type: Array of Tag objects

Array Members: Minimum number of 0 items. Maximum number of 50 items.

Required: No

VpcConfig

A VpcConfig object that specifies the VPC that you want your model to connect to. Control access to and from your model container by configuring the VPC. VpcConfig is used in hosting services and in batch transform. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Data in Batch Transform Jobs by Using an Amazon Virtual Private Cloud.

Type: VpcConfig object

Required: No

Response Syntax

{ "ModelArn": "string" }

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

ModelArn

The ARN of the model created in SageMaker.

Type: String

Length Constraints: Minimum length of 20. Maximum length of 2048.

Pattern: arn:aws[a-z\-]*:sagemaker:[a-z0-9\-]*:[0-9]{12}:model/.*

Errors

For information about the errors that are common to all actions, see Common Errors.

ResourceLimitExceeded

You have exceeded an SageMaker resource limit. For example, you might have too many training jobs created.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

隐私网站条款Cookie 首选项
© 2025, Amazon Web Services, Inc. 或其附属公司。保留所有权利。