推荐结果 - Amazon SageMaker

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

推荐结果

每个 Inference Recommender 作业结果均包括 InstanceTypeInitialInstanceCountEnvironmentParameters,它们是已针对您的容器调整的环境变量参数,以减少延迟并提高吞吐量。结果还包括性能和成本指标,例如 MaxInvocationsModelLatencyCostPerHourCostPerInferenceCpuUtilization、和 MemoryUtilization

在下表中,我们提供了对这些指标的描述。这些指标有助于您缩小搜索范围,以找到适合您的使用案例的最佳端点配置。例如,如果您的目标是整体性价比,并且重点放在吞吐量上,那么您应专注于 CostPerInference

指标 描述 应用场景

ModelLatency

从中可以看出,模型做出响应所花费的时间间隔 SageMaker。此时间间隔包括发送请求以及从模型容器提取响应的本地通信时间,以及在容器中完成推理所用的时间。

单位:毫秒

延迟敏感型工作负载,例如广告服务和医疗诊断

MaximumInvocations

一分钟内发送到模型端点的 InvokeEndpoint 请求的最大数量。

单位:无

侧重于吞吐量的工作负载,例如视频处理或批量推理

CostPerHour

您的实时端点的每小时估计成本。

单位:美元

成本敏感型工作负载,无延迟截止日期

CostPerInference

您的实时端点的每次推理估计成本。

单位:美元

最大限度地提高整体性价比,以吞吐量为重点

CpuUtilization

终端节点实例每分钟最大调用次数时的预期CPU利用率。

单位:百分比

通过了解实例的核心CPU利用率,在基准测试期间了解实例的运行状况

MemoryUtilization

端点实例的每分钟最大调用次数时的预期内存使用率。

单位:百分比

通过显示实例的核心内存利用率,了解基准测试期间的实例运行状况

在某些情况下,您可能需要探索其他SageMaker 端点调用指标CPUUtilization例如。每个 Inference Recommender 作业结果均包含负载测试期间启动的端点的名称。即使这些终端节点已被删除,您也可以使用 CloudWatch 来查看日志。

下图是您可以查看推荐结果中单个端点的 CloudWatch 指标和图表的示例。此推荐结果来自默认作业。解释推荐结果中的标量值的方法是,这些值基于调用图表第一次开始趋于平稳的时间点。例如,报告的 ModelLatency 值位于平稳期开始的 03:00:31 左右。

CloudWatch 指标图表。

有关上述图表中使用的 CloudWatch 指标的完整描述,请参阅SageMaker 端点调用指标

您还可以在 /aws/sagemaker/InferenceRecommendationsJobs 命名空间中查看 Inference Recommender 发布的性能指标,如 ClientInvocationsNumberOfUsers。有关 Inference Recommender 发布的指标和描述的完整列表,请参阅 SageMaker 推理推荐者作业指标

有关如何使用适用于 Pyth on (Boto3) 浏览终端节点 CloudWatch 指标的示例,请参阅 amazon-sagemaker-examplesGithub 存储库中的 Amaz AWS SDK on SageMaker 推理推荐器——指标 Jupyter 笔记本。 CloudWatch