本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
经过测试的模型
以下可折叠部分提供有关经过 Amazon SageMaker Neo 团队测试的机器学习模型的信息。展开可折叠部分,根据您的框架去查看模型是否经过测试。
注意
这不是可以使用 Neo 编译的模型的完整列表。
参见支持的框架和 SageMaker Neo 支持的运算符
模型 |
ARMV8 |
ARM马里 |
Ambarella CV22 |
Nvidia |
Panorama |
TI TDA4VM |
高通 QCS6 03 |
X86_Linux |
X86_Windows |
---|---|---|---|---|---|---|---|---|---|
Alexnet |
|||||||||
Resnet50 |
X |
X |
X |
X |
X |
X |
X |
||
YOLOv2 |
X |
X |
X |
X |
X |
||||
YOLOv2_tiny |
X |
X |
X |
X |
X |
X |
X |
||
YOLOv3_416 |
X |
X |
X |
X |
X |
||||
YOLOv3_tiny |
X |
X |
X |
X |
X |
X |
X |
模型 |
ARMV8 |
ARM马里 |
Ambarella CV22 |
Nvidia |
Panorama |
TI TDA4VM |
高通 QCS6 03 |
X86_Linux |
X86_Windows |
---|---|---|---|---|---|---|---|---|---|
Alexnet |
X |
||||||||
Densenet121 |
X |
||||||||
DenseNet201 |
X |
X |
X |
X |
X |
X |
X |
X |
|
GoogLeNet |
X |
X |
X |
X |
X |
X |
X |
||
InceptionV3 |
X |
X |
X |
X |
X |
||||
MobileNet0.75 |
X |
X |
X |
X |
X |
X |
|||
MobileNet1.0 |
X |
X |
X |
X |
X |
X |
X |
||
MobileNetV2_0.5 |
X |
X |
X |
X |
X |
X |
|||
MobileNetV2_1.0 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
MobileNetV3_Large |
X |
X | X |
X |
X |
X |
X |
X |
X |
MobileNetV3_Small |
X |
X |
X |
X |
X |
X |
X |
X |
X |
ResNeSt50 |
X |
X |
X |
X |
|||||
ResNet18_v1 |
X |
X |
X |
X |
X |
X |
X |
||
ResNet18_v2 |
X |
X |
X |
X |
X |
X |
|||
ResNet50_v1 |
X |
X |
X |
X |
X |
X |
X |
X |
|
ResNet50_v2 |
X | X |
X |
X |
X |
X |
X |
X |
|
ResNext101_32x4d |
|||||||||
ResNext50_32x4d |
X |
X |
X |
X |
X |
X |
|||
SENet_154 |
X |
X |
X |
X |
X |
||||
SE_ 50_32x4d ResNext |
X |
X |
X |
X |
X | X |
X |
||
SqueezeNet1.0 |
X |
X |
X |
X |
X |
X |
X |
||
SqueezeNet1.1 |
X |
X |
X |
X |
X |
X |
X |
X |
|
VGG11 |
X |
X |
X |
X |
X |
X |
X |
||
Xception |
X |
X |
X |
X |
X |
X |
X |
X |
|
darknet53 |
X |
X |
X |
X |
X |
X |
X |
||
resnet18_v1b_0.89 |
X |
X |
X |
X |
X |
X |
|||
resnet50_v1d_0.11 |
X |
X |
X |
X |
X |
X |
|||
resnet50_v1d_0.86 |
X |
X |
X |
X |
X |
X |
X |
X |
|
ssd_512_mobilenet1.0_coco |
X |
X |
X |
X |
X |
X |
X |
||
ssd_512_mobilenet1.0_voc |
X |
X | X |
X |
X |
X |
X |
||
ssd_resnet50_v1 |
X |
X |
X |
X |
X |
X |
|||
yolo3_darknet53_coco |
X |
X |
X |
X |
X |
||||
yolo3_mobilenet1.0_coco |
X |
X |
X |
X |
X |
X |
X |
||
deeplab_resnet50 |
X |
模型 |
ARMV8 |
ARM马里 |
Ambarella CV22 |
Nvidia |
Panorama |
TI TDA4VM |
高通 QCS6 03 |
X86_Linux |
X86_Windows |
---|---|---|---|---|---|---|---|---|---|
densenet121 |
X |
X |
X |
X |
X |
X |
X |
X |
|
densenet201 |
X |
X |
X |
X |
X |
X |
X |
||
inception_v3 |
X |
X |
X |
X |
X |
X |
X |
||
mobilenet_v1 |
X |
X |
X |
X |
X |
X |
X |
X |
|
mobilenet_v2 |
X |
X |
X |
X |
X |
X |
X |
X |
|
resnet152_v1 |
X |
X |
X |
||||||
resnet152_v2 |
X |
X |
X |
||||||
resnet50_v1 |
X |
X |
X |
X |
X |
X |
X |
||
resnet50_v2 |
X |
X |
X |
X |
X |
X |
X |
X |
|
vgg16 |
X |
X |
X |
X |
X |
模型 |
ARMV8 |
ARM马里 |
Ambarella CV22 |
Nvidia |
Panorama |
TI TDA4VM |
高通 QCS6 03 |
X86_Linux |
X86_Windows |
---|---|---|---|---|---|---|---|---|---|
alexnet |
X |
||||||||
mobilenetv2-1.0 |
X |
X |
X |
X |
X |
X |
X |
X |
|
resnet18v1 |
X |
X |
X |
X |
|||||
resnet18v2 |
X |
X |
X |
X |
|||||
resnet50v1 |
X |
X |
X |
X |
X |
X |
|||
resnet50v2 |
X |
X |
X |
X |
X |
X |
|||
resnet152v1 |
X |
X |
X |
X |
|||||
resnet152v2 |
X |
X |
X |
X |
|||||
squeezenet1.1 |
X |
X |
X |
X |
X |
X |
X |
||
vgg19 |
X |
X |
模型 |
ARMV8 |
ARM马里 |
Ambarella CV22 |
Ambarella CV25 |
Nvidia |
Panorama |
TI TDA4VM |
高通 QCS6 03 |
X86_Linux |
X86_Windows |
---|---|---|---|---|---|---|---|---|---|---|
densenet121 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
|
inception_v3 |
X |
X |
X |
X |
X |
X |
||||
resnet152 |
X |
X |
X |
X |
||||||
resnet18 |
X |
X |
X |
X |
X |
X |
||||
resnet50 |
X |
X |
X |
X |
X |
X |
X |
X |
||
squeezenet1.0 |
X |
X |
X |
X |
X |
X | ||||
squeezenet1.1 |
X |
X |
X |
X |
X |
X |
X |
X |
X |
|
yolov4 |
X |
X |
||||||||
yolov5 |
X |
X |
X |
|||||||
fasterrcnn_resnet50_fpn |
X |
X |
||||||||
maskrcnn_resnet50_fpn |
X |
X |