選取您的 Cookie 偏好設定

我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。

如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。

在 Amazon Bedrock 上調用 Amazon Titan 文字內嵌

焦點模式
在 Amazon Bedrock 上調用 Amazon Titan 文字內嵌 - Amazon Bedrock

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

下列程式碼範例示範如何:

  • 開始建立您的第一個內嵌。

  • 建立內嵌設定維度和標準化的數量 (僅限 V2)。

Java
適用於 Java 2.x 的 SDK
注意

GitHub 上提供更多範例。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Titan Text Embeddings V2 建立您的第一個內嵌。

// Generate and print an embedding with Amazon Titan Text Embeddings. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Titan Text Embeddings V2. var modelId = "amazon.titan-embed-text-v2:0"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html var nativeRequestTemplate = "{ \"inputText\": \"{{inputText}}\" }"; // The text to convert into an embedding. var inputText = "Please recommend books with a theme similar to the movie 'Inception'."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{inputText}}", inputText); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/embedding").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }

叫用 Titan Text Embeddings V2 來設定維度和標準化的數量。

/** * Invoke Amazon Titan Text Embeddings V2 with additional inference parameters. * * @param inputText - The text to convert to an embedding. * @param dimensions - The number of dimensions the output embeddings should have. * Values accepted by the model: 256, 512, 1024. * @param normalize - A flag indicating whether or not to normalize the output embeddings. * @return The {@link JSONObject} representing the model's response. */ public static JSONObject invokeModel(String inputText, int dimensions, boolean normalize) { // Create a Bedrock Runtime client in the AWS Region of your choice. var client = BedrockRuntimeClient.builder() .region(Region.US_WEST_2) .build(); // Set the model ID, e.g., Titan Embed Text v2.0. var modelId = "amazon.titan-embed-text-v2:0"; // Create the request for the model. var nativeRequest = """ { "inputText": "%s", "dimensions": %d, "normalize": %b } """.formatted(inputText, dimensions, normalize); // Encode and send the request. var response = client.invokeModel(request -> { request.body(SdkBytes.fromUtf8String(nativeRequest)); request.modelId(modelId); }); // Decode the model's response. var modelResponse = new JSONObject(response.body().asUtf8String()); // Extract and print the generated embedding and the input text token count. var embedding = modelResponse.getJSONArray("embedding"); var inputTokenCount = modelResponse.getBigInteger("inputTextTokenCount"); System.out.println("Embedding: " + embedding); System.out.println("\nInput token count: " + inputTokenCount); // Return the model's native response. return modelResponse; }
  • 如需 API 詳細資訊,請參閱AWS SDK for Java 2.x 《 API 參考》中的 InvokeModel

Python
SDK for Python (Boto3)
注意

GitHub 上提供更多範例。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Amazon Titan Text Embeddings 建立您的第一個內嵌。

# Generate and print an embedding with Amazon Titan Text Embeddings V2. import boto3 import json # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client("bedrock-runtime", region_name="us-east-1") # Set the model ID, e.g., Titan Text Embeddings V2. model_id = "amazon.titan-embed-text-v2:0" # The text to convert to an embedding. input_text = "Please recommend books with a theme similar to the movie 'Inception'." # Create the request for the model. native_request = {"inputText": input_text} # Convert the native request to JSON. request = json.dumps(native_request) # Invoke the model with the request. response = client.invoke_model(modelId=model_id, body=request) # Decode the model's native response body. model_response = json.loads(response["body"].read()) # Extract and print the generated embedding and the input text token count. embedding = model_response["embedding"] input_token_count = model_response["inputTextTokenCount"] print("\nYour input:") print(input_text) print(f"Number of input tokens: {input_token_count}") print(f"Size of the generated embedding: {len(embedding)}") print("Embedding:") print(embedding)
  • 如需 API 詳細資訊,請參閱《適用於 AWS Python (Boto3) 的 SDK API 參考》中的 InvokeModel

適用於 Java 2.x 的 SDK
注意

GitHub 上提供更多範例。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

使用 Titan Text Embeddings V2 建立您的第一個內嵌。

// Generate and print an embedding with Amazon Titan Text Embeddings. import org.json.JSONObject; import org.json.JSONPointer; import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.core.exception.SdkClientException; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.bedrockruntime.BedrockRuntimeClient; public class InvokeModel { public static String invokeModel() { // Create a Bedrock Runtime client in the AWS Region you want to use. // Replace the DefaultCredentialsProvider with your preferred credentials provider. var client = BedrockRuntimeClient.builder() .credentialsProvider(DefaultCredentialsProvider.create()) .region(Region.US_EAST_1) .build(); // Set the model ID, e.g., Titan Text Embeddings V2. var modelId = "amazon.titan-embed-text-v2:0"; // The InvokeModel API uses the model's native payload. // Learn more about the available inference parameters and response fields at: // https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-titan-embed-text.html var nativeRequestTemplate = "{ \"inputText\": \"{{inputText}}\" }"; // The text to convert into an embedding. var inputText = "Please recommend books with a theme similar to the movie 'Inception'."; // Embed the prompt in the model's native request payload. String nativeRequest = nativeRequestTemplate.replace("{{inputText}}", inputText); try { // Encode and send the request to the Bedrock Runtime. var response = client.invokeModel(request -> request .body(SdkBytes.fromUtf8String(nativeRequest)) .modelId(modelId) ); // Decode the response body. var responseBody = new JSONObject(response.body().asUtf8String()); // Retrieve the generated text from the model's response. var text = new JSONPointer("/embedding").queryFrom(responseBody).toString(); System.out.println(text); return text; } catch (SdkClientException e) { System.err.printf("ERROR: Can't invoke '%s'. Reason: %s", modelId, e.getMessage()); throw new RuntimeException(e); } } public static void main(String[] args) { invokeModel(); } }

叫用 Titan Text Embeddings V2 來設定維度和標準化的數量。

/** * Invoke Amazon Titan Text Embeddings V2 with additional inference parameters. * * @param inputText - The text to convert to an embedding. * @param dimensions - The number of dimensions the output embeddings should have. * Values accepted by the model: 256, 512, 1024. * @param normalize - A flag indicating whether or not to normalize the output embeddings. * @return The {@link JSONObject} representing the model's response. */ public static JSONObject invokeModel(String inputText, int dimensions, boolean normalize) { // Create a Bedrock Runtime client in the AWS Region of your choice. var client = BedrockRuntimeClient.builder() .region(Region.US_WEST_2) .build(); // Set the model ID, e.g., Titan Embed Text v2.0. var modelId = "amazon.titan-embed-text-v2:0"; // Create the request for the model. var nativeRequest = """ { "inputText": "%s", "dimensions": %d, "normalize": %b } """.formatted(inputText, dimensions, normalize); // Encode and send the request. var response = client.invokeModel(request -> { request.body(SdkBytes.fromUtf8String(nativeRequest)); request.modelId(modelId); }); // Decode the model's response. var modelResponse = new JSONObject(response.body().asUtf8String()); // Extract and print the generated embedding and the input text token count. var embedding = modelResponse.getJSONArray("embedding"); var inputTokenCount = modelResponse.getBigInteger("inputTextTokenCount"); System.out.println("Embedding: " + embedding); System.out.println("\nInput token count: " + inputTokenCount); // Return the model's native response. return modelResponse; }
  • 如需 API 詳細資訊,請參閱AWS SDK for Java 2.x 《 API 參考》中的 InvokeModel

如需 AWS SDK 開發人員指南的完整清單和程式碼範例,請參閱 搭配 AWS SDK 使用 Amazon Bedrock。此主題也包含有關入門的資訊和舊版 SDK 的詳細資訊。

隱私權網站條款Cookie 偏好設定
© 2025, Amazon Web Services, Inc.或其附屬公司。保留所有權利。