本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
下列程式碼範例示範如何使用調用模型 API 將文字訊息傳送至 Meta Llama 3。
- SDK for .NET
-
注意
GitHub 上提供更多範例。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫
中設定和執行。 使用調用模型 API 傳送文字訊息。
// Use the native inference API to send a text message to Meta Llama 3. using System; using System.IO; using System.Text.Json; using System.Text.Json.Nodes; using Amazon; using Amazon.BedrockRuntime; using Amazon.BedrockRuntime.Model; // Create a Bedrock Runtime client in the AWS Region you want to use. var client = new AmazonBedrockRuntimeClient(RegionEndpoint.USWest2); // Set the model ID, e.g., Llama 3 70b Instruct. var modelId = "meta.llama3-70b-instruct-v1:0"; // Define the prompt for the model. var prompt = "Describe the purpose of a 'hello world' program in one line."; // Embed the prompt in Llama 2's instruction format. var formattedPrompt = $@" <|begin_of_text|><|start_header_id|>user<|end_header_id|> {prompt} <|eot_id|> <|start_header_id|>assistant<|end_header_id|> "; //Format the request payload using the model's native structure. var nativeRequest = JsonSerializer.Serialize(new { prompt = formattedPrompt, max_gen_len = 512, temperature = 0.5 }); // Create a request with the model ID and the model's native request payload. var request = new InvokeModelRequest() { ModelId = modelId, Body = new MemoryStream(System.Text.Encoding.UTF8.GetBytes(nativeRequest)), ContentType = "application/json" }; try { // Send the request to the Bedrock Runtime and wait for the response. var response = await client.InvokeModelAsync(request); // Decode the response body. var modelResponse = await JsonNode.ParseAsync(response.Body); // Extract and print the response text. var responseText = modelResponse["generation"] ?? ""; Console.WriteLine(responseText); } catch (AmazonBedrockRuntimeException e) { Console.WriteLine($"ERROR: Can't invoke '{modelId}'. Reason: {e.Message}"); throw; }
-
如需 API 詳細資訊,請參閱AWS SDK for .NET 《 API 參考》中的 InvokeModel。
-
如需 AWS SDK 開發人員指南的完整清單和程式碼範例,請參閱 搭配 AWS SDK 使用 Amazon Bedrock。此主題也包含有關入門的資訊和舊版 SDK 的詳細資訊。