本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
Amazon Titan 內嵌文字
Titan Embeddings G1 - Text 不支援使用推論參數。下列各節詳細說明請求和回應格式,並提供程式碼範例。
請求和回應
請求內文會在InvokeModel請求的 body
欄位中傳遞。
- V2 Request
-
inputText 參數為必填。標準化和維度參數為選用。
-
inputText – 輸入要轉換為內嵌的文字。
-
標準化 – (選用) 指示是否標準化輸出內嵌的旗標。預設為 true。
-
維度 – (選用) 輸出內嵌應具有的維度。接受下列值:1024 (預設)、512、256。
-
embeddingTypes – (選用) 接受包含「浮點」、「二進位」或兩者的清單。預設為
float
。
{ "inputText": string, "dimensions": int, "normalize": boolean, "embeddingTypes": list }
-
- V2 Response
-
這些 欄位如下所述。
-
內嵌 – 表示您提供的輸入內嵌向量的陣列。這一律是類型
float
。 -
inputTextToken計數 – 輸入中的權杖數目。
-
embeddingsByType – 內嵌清單的字典或地圖。根據輸入, 會列出「浮點」、「二進位」或兩者。
-
範例:
"embeddingsByType": {"binary": [int,..], "float": [float,...]}
-
此欄位一律會顯示。即使您未在輸入
embeddingTypes
中指定 ,仍然會有「浮點」。範例:"embeddingsByType": {"float": [float,...]}
-
{ "embedding": [float, float, ...], "inputTextTokenCount": int, "embeddingsByType": {"binary": [int,..], "float": [float,...]} }
-
- G1 Request
-
唯一可用的欄位是
inputText
,其中您可以包含要轉換為內嵌的文字。{ "inputText": string }
- G1 Response
-
回應
body
的 包含下列欄位。{ "embedding": [float, float, ...], "inputTextTokenCount": int }
這些 欄位如下所述。
-
內嵌 – 表示您提供的輸入內嵌向量的陣列。
-
inputTextToken計數 – 輸入中的權杖數目。
-
範例程式碼
下列範例示範如何呼叫 Amazon Titan 內嵌模型來產生內嵌。選取與您正在使用的模型對應的索引標籤:
- Amazon Titan Embeddings G1 - Text
-
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to generate embeddings with the Amazon Titan Embeddings G1 - Text model (on demand). """ import json import logging import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_embeddings(model_id, body): """ Generate a vector of embeddings for a text input using Amazon Titan Embeddings G1 - Text on demand. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (JSON): The embedding created by the model and the number of input tokens. """ logger.info("Generating embeddings with Amazon Titan Embeddings G1 - Text model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get('body').read()) return response_body def main(): """ Entrypoint for Amazon Titan Embeddings G1 - Text example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = "amazon.titan-embed-text-v1" input_text = "What are the different services that you offer?" # Create request body. body = json.dumps({ "inputText": input_text, }) try: response = generate_embeddings(model_id, body) print(f"Generated embeddings: {response['embedding']}") print(f"Input Token count: {response['inputTextTokenCount']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) else: print(f"Finished generating embeddings with Amazon Titan Embeddings G1 - Text model {model_id}.") if __name__ == "__main__": main()
- Amazon Titan Text Embeddings V2
-
使用 時 Titan Text Embeddings V2,如果
embeddingTypes
僅包含 ,則embedding
欄位不會在回應中binary
。# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to generate embeddings with the Amazon Titan Text Embeddings V2 Model """ import json import logging import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_embeddings(model_id, body): """ Generate a vector of embeddings for a text input using Amazon Titan Text Embeddings G1 on demand. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (JSON): The embedding created by the model and the number of input tokens. """ logger.info("Generating embeddings with Amazon Titan Text Embeddings V2 model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get('body').read()) return response_body def main(): """ Entrypoint for Amazon Titan Embeddings V2 - Text example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = "amazon.titan-embed-text-v2:0" input_text = "What are the different services that you offer?" # Create request body. body = json.dumps({ "inputText": input_text, "embeddingTypes": ["binary"] }) try: response = generate_embeddings(model_id, body) print(f"Generated embeddings: {response['embeddingByTypes']['binary']}") # returns binary embedding # print(f"Generated embeddings: {response['embedding']}") NOTE:"embedding" field is not in "response". print(f"Input Token count: {response['inputTextTokenCount']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) else: print(f"Finished generating embeddings with Amazon Titan Text Embeddings V2 model {model_id}.") if __name__ == "__main__": main()