本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
擷取資料目錄中 AWS Glue 的資料以進行 Amazon Chime SDK 呼叫分析
使用這些範例查詢來擷取和整理 Amazon Chime SDK 呼叫分析 Glue 資料目錄中的資料。
注意
如需有關連線至 Amazon Athena 和查詢 Glue 資料目錄的資訊,請參閱使用 ODBC 連線至 Amazon Athena。
視需要展開每個區段。
call_analytics_metadata
具有 JSON 字串格式metadata
的欄位。使用 Athena 中的 json_extract_scalar 函數來查詢此字串中的元素。
SELECT json_extract_scalar(metadata,'$.voiceConnectorId') AS "VoiceConnector ID", json_extract_scalar(metadata,'$.fromNumber') AS "From Number", json_extract_scalar(metadata,'$.toNumber') AS "To Number", json_extract_scalar(metadata,'$.callId') AS "Call ID", json_extract_scalar(metadata,'$.direction') AS Direction, json_extract_scalar(metadata,'$.transactionId') AS "Transaction ID" FROM "GlueDatabaseName"."call_analytics_metadata"
call_analytics_metadata
欄位具有 JSON 字串格式的中繼資料欄位。 metadata
具有另一個名為 的巢狀物件oneTimeMetadata
,此物件包含原始 XML 和轉換 JSON 格式的 SIPRec 中繼資料。使用 Athena 中的 json_extract_scalar
函數來查詢此字串中的元素。
SELECT json_extract_scalar(metadata,'$.voiceConnectorId') AS "VoiceConnector ID", json_extract_scalar(metadata,'$.fromNumber') AS "From Number", json_extract_scalar(metadata,'$.toNumber') AS "To Number", json_extract_scalar(metadata,'$.callId') AS "Call ID", json_extract_scalar(metadata,'$.direction') AS Direction, json_extract_scalar(metadata,'$.transactionId') AS "Transaction ID", json_extract_scalar(json_extract_scalar(metadata,'$.oneTimeMetadata'),'$.siprecMetadata') AS "siprec Metadata XML", json_extract_scalar(json_extract_scalar(metadata,'$.oneTimeMetadata'),'$.siprecMetadataJson') AS "Siprec Metadata JSON", json_extract_scalar(json_extract_scalar(metadata,'$.oneTimeMetadata'),'$.inviteHeaders') AS "Invite Headers" FROM "GlueDatabaseName"."call_analytics_metadata" WHERE callevent-type = "update";
call_analytics_recording_metadata
具有 JSON 字串格式的中繼資料欄位。使用 Athena 中的 json_extract_scalar 函數來查詢此字串中的元素。
SELECT json_extract_scalar(metadata,'$.voiceConnectorId') AS "VoiceConnector ID", json_extract_scalar(metadata,'$.fromNumber') AS "From Number", json_extract_scalar(metadata,'$.toNumber') AS "To Number", json_extract_scalar(metadata,'$.callId') AS "Call ID", json_extract_scalar(metadata,'$.direction') AS Direction, json_extract_scalar(metadata,'$.transactionId') AS "Transaction ID" FROM "GlueDatabaseName"."call_analytics_recording_metadata" WHERE detail-subtype = "Recording"
voice_analytics_status
struct
資料類型中有詳細資訊欄位。下列範例示範如何查詢struct
資料類型欄位:
SELECT detail.transactionId AS "Transaction ID", detail.voiceConnectorId AS "VoiceConnector ID", detail.siprecmetadata AS "Siprec Metadata", detail.inviteheaders AS "Invite Headers", detail.streamStartTime AS "Stream Start Time" FROM "GlueDatabaseName"."voice_analytics_status"
下列範例查詢會聯結 call_analytics_metadata
和 voice_analytics_status
:
SELECT a.detail.transactionId AS "Transaction ID", a.detail.voiceConnectorId AS "VoiceConnector ID", a.detail.siprecmetadata AS "Siprec Metadata", a.detail.inviteheaders AS "Invite Headers", a.detail.streamStartTime AS "Stream Start Time" json_extract_scalar(b.metadata,'$.fromNumber') AS "From Number", json_extract_scalar(b.metadata,'$.toNumber') AS "To Number", json_extract_scalar(b.metadata,'$.callId') AS "Call ID", json_extract_scalar(b.metadata,'$.direction') AS Direction FROM "GlueDatabaseName"."voice_analytics_status" a INNER JOIN "GlueDatabaseName"."call_analytics_metadata" b ON a.detail.transactionId = json_extract_scalar(b.metadata,'$.transactionId')
transcribe_call_analytics_post_call 具有具有巢狀陣列的結構格式文字記錄欄位。使用下列查詢取消巢狀陣列:
SELECT jobstatus, languagecode, IF(CARDINALITY(m.transcript)=0 OR CARDINALITY(m.transcript) IS NULL, NULL, e.transcript.id) AS utteranceId, IF(CARDINALITY(m.transcript)=0 OR CARDINALITY(m.transcript) IS NULL, NULL, e.transcript.content) AS transcript, accountid, channel, sessionid, contentmetadata.output AS "Redaction" FROM "GlueDatabaseName"."transcribe_call_analytics_post_call" m CROSS JOIN UNNEST (IF(CARDINALITY(m.transcript)=0, ARRAY[NULL], transcript)) AS e(transcript)
下列查詢會加入 transcribe_call_analytics_post_call 和 call_analytics_metadata:
WITH metadata AS( SELECT from_iso8601_timestamp(time) AS "Timestamp", date_parse(date_format(from_iso8601_timestamp(time), '%m/%d/%Y %H:%i:%s') , '%m/%d/%Y %H:%i:%s') AS "DateTime", date_parse(date_format(from_iso8601_timestamp(time) , '%m/%d/%Y') , '%m/%d/%Y') AS "Date", date_format(from_iso8601_timestamp(time) , '%H:%i:%s') AS "Time", mediainsightspipelineid, json_extract_scalar(metadata,'$.toNumber') AS "To Number", json_extract_scalar(metadata,'$.voiceConnectorId') AS "VoiceConnector ID", json_extract_scalar(metadata,'$.fromNumber') AS "From Number", json_extract_scalar(metadata,'$.callId') AS "Call ID", json_extract_scalar(metadata,'$.direction') AS Direction, json_extract_scalar(metadata,'$.transactionId') AS "Transaction ID", REGEXP_REPLACE(REGEXP_EXTRACT(json_extract_scalar(metadata,'$.oneTimeMetadata.s3RecordingUrl'), '[^/]+(?=\.[^.]+$)'), '\.wav$', '') AS "SessionID" FROM "GlueDatabaseName"."call_analytics_metadata" ), transcript_events AS( SELECT jobstatus, languagecode, IF(CARDINALITY(m.transcript)=0 OR CARDINALITY(m.transcript) IS NULL, NULL, e.transcript.id) AS utteranceId, IF(CARDINALITY(m.transcript)=0 OR CARDINALITY(m.transcript) IS NULL, NULL, e.transcript.content) AS transcript, accountid, channel, sessionid, contentmetadata.output AS "Redaction" FROM "GlueDatabaseName"."transcribe_call_analytics_post_call" m CROSS JOIN UNNEST (IF(CARDINALITY(m.transcript)=0, ARRAY[NULL], transcript)) AS e(transcript) ) SELECT jobstatus, languagecode, a.utteranceId, transcript, accountid, channel, a.sessionid, "Redaction" "Timestamp", "DateTime", "Date", "Time", mediainsightspipelineid, "To Number", "VoiceConnector ID", "From Number", "Call ID", Direction, "Transaction ID" FROM "GlueDatabaseName"."transcribe_call_analytics_post_call" a LEFT JOIN metadata b ON a.sessionid = b.SessionID
下列查詢範例會加入 Voice enhancement call recording
URL:
SELECT json_extract_scalar(metadata,'$.voiceConnectorId') AS "VoiceConnector ID", json_extract_scalar(metadata,'$.fromNumber') AS "From Number", json_extract_scalar(metadata,'$.toNumber') AS "To Number", json_extract_scalar(metadata,'$.callId') AS "Call ID", json_extract_scalar(metadata,'$.direction') AS Direction, json_extract_scalar(metadata,'$.transactionId') AS "Transaction ID", s3MediaObjectConsoleUrl FROM {GlueDatabaseName}."call_analytics_recording_metadata" WHERE detail-subtype = "VoiceEnhancement"