使用 的 Amazon RDS Performance Insights 範例 AWS CLI - AWS Command Line Interface

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

使用 的 Amazon RDS Performance Insights 範例 AWS CLI

下列程式碼範例示範如何搭配 Amazon RDS Performance Insights AWS Command Line Interface 使用 來執行動作和實作常見案例。

Actions 是大型程式的程式碼摘錄,必須在內容中執行。雖然動作會示範如何呼叫個別服務函數,但您可以在相關案例中查看內容中的動作。

每個範例都包含完整原始程式碼的連結,您可以在其中找到如何在內容中設定和執行程式碼的指示。

主題

動作

下列程式碼範例示範如何使用 describe-dimension-keys

AWS CLI

描述維度索引鍵

此範例會請求所有等待事件的名稱。資料會依事件名稱,以及指定期間內這些事件的彙總值進行摘要。

命令:

aws pi describe-dimension-keys --service-type RDS --identifier db-LKCGOBK26374TPTDFXOIWVCPPM --start-time 1527026400 --end-time 1527080400 --metric db.load.avg --group-by '{"Group":"db.wait_event"}'

輸出:

{ "AlignedEndTime": 1.5270804E9, "AlignedStartTime": 1.5270264E9, "Keys": [ { "Dimensions": {"db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex"}, "Total": 0.05906906851195666 }, { "Dimensions": {"db.wait_event.name": "wait/io/aurora_redo_log_flush"}, "Total": 0.015824722186149193 }, { "Dimensions": {"db.wait_event.name": "CPU"}, "Total": 0.008014396230265477 }, { "Dimensions": {"db.wait_event.name": "wait/io/aurora_respond_to_client"}, "Total": 0.0036361612526204477 }, { "Dimensions": {"db.wait_event.name": "wait/io/table/sql/handler"}, "Total": 0.0019108398419382965 }, { "Dimensions": {"db.wait_event.name": "wait/synch/cond/mysys/my_thread_var::suspend"}, "Total": 8.533847837782684E-4 }, { "Dimensions": {"db.wait_event.name": "wait/io/file/csv/data"}, "Total": 6.864181956477376E-4 }, { "Dimensions": {"db.wait_event.name": "Unknown"}, "Total": 3.895887056379051E-4 }, { "Dimensions": {"db.wait_event.name": "wait/synch/mutex/sql/FILE_AS_TABLE::LOCK_shim_lists"}, "Total": 3.710368625122906E-5 }, { "Dimensions": {"db.wait_event.name": "wait/lock/table/sql/handler"}, "Total": 0 } ] }

下列程式碼範例示範如何使用 get-resource-metrics

AWS CLI

若要取得資源指標

此範例會請求 db.wait_event 維度群組的資料點,以及該群組內的 db.wait_event.name 維度的資料點。在回應中,相關資料點會依請求的維度 (db.wait_event.name) 分組。

命令:

aws pi get-resource-metrics --service-type RDS --identifier db-LKCGOBK26374TPTDFXOIWVCPPM --start-time 1527026400 --end-time 1527080400 --period-in-seconds 300 --metric db.load.avg --metric-queries file://metric-queries.json

的引數--metric-queries會儲存在 JSON 檔案 中metric-queries.json。以下是該檔案的內容:

[ { "Metric": "db.load.avg", "GroupBy": { "Group":"db.wait_event" } } ]

輸出:

{ "AlignedEndTime": 1.5270804E9, "AlignedStartTime": 1.5270264E9, "Identifier": "db-LKCGOBK26374TPTDFXOIWVCPPM", "MetricList": [ { "Key": { "Metric": "db.load.avg" }, "DataPoints": [ { "Timestamp": 1527026700.0, "Value": 1.3533333333333333 }, { "Timestamp": 1527027000.0, "Value": 0.88 }, <...remaining output omitted...> ] }, { "Key": { "Metric": "db.load.avg", "Dimensions": { "db.wait_event.name": "wait/synch/mutex/innodb/aurora_lock_thread_slot_futex" } }, "DataPoints": [ { "Timestamp": 1527026700.0, "Value": 0.8566666666666667 }, { "Timestamp": 1527027000.0, "Value": 0.8633333333333333 }, <...remaining output omitted...> ], }, <...remaining output omitted...> ] }