本文件 AWS CLI 僅適用於 的第 1 版。如需與 第 2 版相關的文件 AWS CLI,請參閱 第 2 版使用者指南 。
本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
使用 的 Amazon Textract 範例 AWS CLI
下列程式碼範例示範如何搭配 Amazon Textract AWS Command Line Interface 使用 來執行動作和實作常見案例。
Actions 是大型程式的程式碼摘錄,必須在內容中執行。雖然動作會示範如何呼叫個別服務函數,但您可以在相關案例中查看內容中的動作。
每個範例都包含完整原始程式碼的連結,您可以在其中找到如何在內容中設定和執行程式碼的指示。
主題
動作
下列程式碼範例示範如何使用 analyze-document
。
- AWS CLI
-
若要分析文件中的文字
下列
analyze-document
範例顯示如何分析文件中的文字。Linux/macOS:
aws textract analyze-document \ --document '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --feature-types '["TABLES","FORMS"]
'Windows:
aws textract analyze-document \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\",\"FORMS\"]" \ --region
region-name
輸出:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "87586964-d50d-43e2-ace5-8a890657b9a0", "a1e72126-21d9-44f4-a8d6-5c385f9002ba", "e889d012-8a6b-4d2e-b7cd-7a8b327d876a" ] } ], "BlockType": "PAGE", "Id": "c2227f12-b25d-4e1f-baea-1ee180d926b2" } ], "DocumentMetadata": { "Pages": 1 } }
如需詳細資訊,請參閱 Amazon Textract 開發人員指南中的使用 Amazon Textract 分析文件文字
-
如需API詳細資訊,請參閱 命令參考 AnalyzeDocument
中的 。 AWS CLI
-
下列程式碼範例示範如何使用 detect-document-text
。
- AWS CLI
-
若要偵測文件中的文字
下列
detect-document-text
範例顯示如何偵測文件中的文字。Linux/macOS:
aws textract detect-document-text \ --document '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
'Windows:
aws textract detect-document-text \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region
region-name
輸出:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "896a9f10-9e70-4412-81ce-49ead73ed881", "0da18623-dc4c-463d-a3d1-9ac050e9e720", "167338d7-d38c-4760-91f1-79a8ec457bb2" ] } ], "BlockType": "PAGE", "Id": "21f0535e-60d5-4bc7-adf2-c05dd851fa25" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "62490c26-37ea-49fa-8034-7a9ff9369c9c", "1e4f3f21-05bd-4da9-ba10-15d01e66604c" ] } ], "Confidence": 89.11581420898438, "Geometry": { "BoundingBox": { "Width": 0.33642634749412537, "Top": 0.17169663310050964, "Left": 0.13885067403316498, "Height": 0.49159330129623413 }, "Polygon": [ { "Y": 0.17169663310050964, "X": 0.13885067403316498 }, { "Y": 0.17169663310050964, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.13885067403316498 } ] }, "Text": "He llo,", "BlockType": "LINE", "Id": "896a9f10-9e70-4412-81ce-49ead73ed881" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "19b28058-9516-4352-b929-64d7cef29daf" ] } ], "Confidence": 85.5694351196289, "Geometry": { "BoundingBox": { "Width": 0.33182239532470703, "Top": 0.23131252825260162, "Left": 0.5091826915740967, "Height": 0.3766750991344452 }, "Polygon": [ { "Y": 0.23131252825260162, "X": 0.5091826915740967 }, { "Y": 0.23131252825260162, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.5091826915740967 } ] }, "Text": "worlc", "BlockType": "LINE", "Id": "0da18623-dc4c-463d-a3d1-9ac050e9e720" } ], "DocumentMetadata": { "Pages": 1 } }
如需詳細資訊,請參閱 Amazon Textract 開發人員指南中的使用 Amazon Textract 偵測文件文字
-
如需API詳細資訊,請參閱 命令參考 DetectDocumentText
中的 。 AWS CLI
-
下列程式碼範例示範如何使用 get-document-analysis
。
- AWS CLI
-
取得多頁文件的非同步文字分析結果
下列
get-document-analysis
範例顯示如何取得多頁文件的非同步文字分析結果。aws textract get-document-analysis \ --job-id
df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b
\ --max-results1000
輸出:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "75966e64-81c2-4540-9649-d66ec341cd8f", "bb099c24-8282-464c-a179-8a9fa0a057f0", "5ebf522d-f9e4-4dc7-bfae-a288dc094595" ] } ], "BlockType": "PAGE", "Id": "247c28ee-b63d-4aeb-9af0-5f7ea8ba109e", "Page": 1 } ], "NextToken": "cY1W3eTFvoB0cH7YrKVudI4Gb0H8J0xAYLo8xI/JunCIPWCthaKQ+07n/ElyutsSy0+1VOImoTRmP1zw4P0RFtaeV9Bzhnfedpx1YqwB4xaGDA==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }
如需詳細資訊,請參閱 Amazon Textract 開發人員指南中的偵測和分析多頁文件中的文字
-
如需API詳細資訊,請參閱 命令參考 GetDocumentAnalysis
中的 。 AWS CLI
-
下列程式碼範例示範如何使用 get-document-text-detection
。
- AWS CLI
-
在多頁文件中取得非同步文字偵測的結果
下列
get-document-text-detection
範例顯示如何在多頁文件中取得非同步文字偵測的結果。aws textract get-document-text-detection \ --job-id
57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9
\ --max-results1000
輸出
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "1b926a34-0357-407b-ac8f-ec473160c6a9", "0c35dc17-3605-4c9d-af1a-d9451059df51", "dea3db8a-52c2-41c0-b50c-81f66f4aa758" ] } ], "BlockType": "PAGE", "Id": "84671a5e-8c99-43be-a9d1-6838965da33e", "Page": 1 } ], "NextToken": "GcqyoAJuZwujOT35EN4LCI3EUzMtiLq3nKyFFHvU5q1SaIdEBcSty+njNgoWwuMP/muqc96S4o5NzDqehhXvhkodMyVO5OJGyms5lsrCxibWJw==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }
如需詳細資訊,請參閱 Amazon Textract 開發人員指南中的偵測和分析多頁文件中的文字
-
如需API詳細資訊,請參閱 命令參考 GetDocumentTextDetection
中的 。 AWS CLI
-
下列程式碼範例示範如何使用 start-document-analysis
。
- AWS CLI
-
若要開始分析多頁文件中的文字
下列
start-document-analysis
範例顯示如何開始多頁文件中文字的非同步分析。Linux/macOS:
aws textract start-document-analysis \ --document-location '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --feature-types '["TABLES","FORMS"]
' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
Windows:
aws textract start-document-analysis \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\", \"FORMS\"]" \ --region
region-name
\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
輸出:
{ "JobId": "df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b" }
如需詳細資訊,請參閱 Amazon Textract 開發人員指南中的偵測和分析多頁文件中的文字
-
如需API詳細資訊,請參閱 命令參考 StartDocumentAnalysis
中的 。 AWS CLI
-
下列程式碼範例示範如何使用 start-document-text-detection
。
- AWS CLI
-
開始偵測多頁文件中的文字
下列
start-document-text-detection
範例示範如何啟動多頁文件中文字的非同步偵測。Linux/macOS:
aws textract start-document-text-detection \ --document-location '
{"S3Object":{"Bucket":"bucket","Name":"document"}}
' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleARN"
Windows:
aws textract start-document-text-detection \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --region
region-name
\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"
輸出:
{ "JobId": "57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9" }
如需詳細資訊,請參閱 Amazon Textract 開發人員指南中的偵測和分析多頁文件中的文字
-
如需API詳細資訊,請參閱 命令參考 StartDocumentTextDetection
中的 。 AWS CLI
-