使用 的 Amazon Comprehend Medical 範例 AWS CLI - AWS SDK 程式碼範例

文件 AWS SDK AWS 範例 SDK 儲存庫中有更多可用的 GitHub 範例。

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

使用 的 Amazon Comprehend Medical 範例 AWS CLI

下列程式碼範例示範如何搭配 Amazon Comprehend Medical AWS Command Line Interface 使用 來執行動作和實作常見案例。

Actions 是大型程式的程式碼摘錄,必須在內容中執行。雖然 動作會示範如何呼叫個別服務函數,但您可以在其相關案例中查看內容中的動作。

每個範例都包含完整原始程式碼的連結,您可以在其中找到如何在內容中設定和執行程式碼的指示。

主題

動作

下列程式碼範例示範如何使用 describe-entities-detection-v2-job

AWS CLI

描述實體偵測任務

下列describe-entities-detection-v2-job範例顯示與非同步實體偵測工作相關聯的屬性。

aws comprehendmedical describe-entities-detection-v2-job \ --job-id "ab9887877365fe70299089371c043b96"

輸出:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "ab9887877365fe70299089371c043b96", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-18T21:20:15.614000+00:00", "EndTime": "2020-03-18T21:27:07.350000+00:00", "ExpirationTime": "2020-07-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-EntitiesDetection-ab9887877365fe70299089371c043b96/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "DetectEntitiesModelV20190930" } }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的批次APIs

下列程式碼範例示範如何使用 describe-icd10-cm-inference-job

AWS CLI

描述 ICD-10-CM 推論任務

下列describe-icd10-cm-inference-job範例說明具有指定任務 ID 的請求推論任務屬性。

aws comprehendmedical describe-icd10-cm-inference-job \ --job-id "5780034166536cdb52ffa3295a1b00a7"

輸出:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "5780034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-18T21:20:15.614000+00:00", "EndTime": "2020-05-18T21:27:07.350000+00:00", "ExpirationTime": "2020-09-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 describe-phi-detection-job

AWS CLI

描述 PHI 偵測任務

下列describe-phi-detection-job範例顯示與非同步受保護健康資訊 (PHI) 偵測工作相關聯的屬性。

aws comprehendmedical describe-phi-detection-job \ --job-id "4750034166536cdb52ffa3295a1b00a3"

輸出:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "4750034166536cdb52ffa3295a1b00a3", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-19T20:38:37.594000+00:00", "EndTime": "2020-03-19T20:45:07.894000+00:00", "ExpirationTime": "2020-07-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-PHIDetection-4750034166536cdb52ffa3295a1b00a3/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "PHIModelV20190903" } }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的批次APIs

下列程式碼範例示範如何使用 describe-rx-norm-inference-job

AWS CLI

描述 a RxNorm 推論任務

下列describe-rx-norm-inference-job範例說明具有指定任務 ID 的請求推論任務屬性。

aws comprehendmedical describe-rx-norm-inference-job \ --job-id "eg8199877365fc70299089371c043b96"

輸出:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "g8199877365fc70299089371c043b96", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-18T21:20:15.614000+00:00", "EndTime": "2020-05-18T21:27:07.350000+00:00", "ExpirationTime": "2020-09-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.0.0" } }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 describe-snomedct-inference-job

AWS CLI

描述 SNOMED CT 推論任務

下列describe-snomedct-inference-job範例說明具有指定任務 ID 的請求推論任務屬性。

aws comprehendmedical describe-snomedct-inference-job \ --job-id "2630034166536cdb52ffa3295a1b00a7"

輸出:

{ "ComprehendMedicalAsyncJobProperties": { "JobId": "2630034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2021-12-18T21:20:15.614000+00:00", "EndTime": "2021-12-18T21:27:07.350000+00:00", "ExpirationTime": "2022-05-16T21:20:15+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 detect-entities-v2

AWS CLI

範例 1:直接從文字偵測實體

下列detect-entities-v2範例顯示偵測到的實體,並直接從輸入文字根據類型對其進行標籤。

aws comprehendmedical detect-entities-v2 \ --text "Sleeping trouble on present dosage of Clonidine. Severe rash on face and leg, slightly itchy."

輸出:

{ "Id": 0, "BeginOffset": 38, "EndOffset": 47, "Score": 0.9942955374717712, "Text": "Clonidine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Traits": [] }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的偵測實體版本 2

範例 2:從檔案路徑偵測實體

下列detect-entities-v2範例顯示偵測到的實體,並根據檔案路徑中的類型對其進行標籤。

aws comprehendmedical detect-entities-v2 \ --text file://medical_entities.txt

medical_entities.txt 的內容:

{ "Sleeping trouble on present dosage of Clonidine. Severe rash on face and leg, slightly itchy." }

輸出:

{ "Id": 0, "BeginOffset": 38, "EndOffset": 47, "Score": 0.9942955374717712, "Text": "Clonidine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Traits": [] }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的偵測實體版本 2

  • 如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DetectEntitiesV2

下列程式碼範例示範如何使用 detect-phi

AWS CLI

範例 1:直接從文字偵測受保護的健康資訊 (PHI)

下列detect-phi範例會直接從輸入文字顯示偵測到的受保護健康資訊 (PHI) 實體。

aws comprehendmedical detect-phi \ --text "Patient Carlos Salazar presented with rash on his upper extremities and dry cough. He lives at 100 Main Street, Anytown, USA where he works from his home as a carpenter."

輸出:

{ "Entities": [ { "Id": 0, "BeginOffset": 8, "EndOffset": 21, "Score": 0.9914507269859314, "Text": "Carlos Salazar", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "NAME", "Traits": [] }, { "Id": 1, "BeginOffset": 94, "EndOffset": 109, "Score": 0.871849775314331, "Text": "100 Main Street, Anytown, USA", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "ADDRESS", "Traits": [] }, { "Id": 2, "BeginOffset": 145, "EndOffset": 154, "Score": 0.8302185535430908, "Text": "carpenter", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "PROFESSION", "Traits": [] } ], "ModelVersion": "0.0.0" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Detect PHI

範例 2:直接從檔案路徑偵測保護運作狀態資訊 (PHI)

下列detect-phi範例顯示從檔案路徑偵測到的受保護健康資訊 (PHI) 實體。

aws comprehendmedical detect-phi \ --text file://phi.txt

phi.txt 的內容:

"Patient Carlos Salazar presented with a rash on his upper extremities and a dry cough. He lives at 100 Main Street, Anytown, USA, where he works from his home as a carpenter."

輸出:

{ "Entities": [ { "Id": 0, "BeginOffset": 8, "EndOffset": 21, "Score": 0.9914507269859314, "Text": "Carlos Salazar", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "NAME", "Traits": [] }, { "Id": 1, "BeginOffset": 94, "EndOffset": 109, "Score": 0.871849775314331, "Text": "100 Main Street, Anytown, USA", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "ADDRESS", "Traits": [] }, { "Id": 2, "BeginOffset": 145, "EndOffset": 154, "Score": 0.8302185535430908, "Text": "carpenter", "Category": "PROTECTED_HEALTH_INFORMATION", "Type": "PROFESSION", "Traits": [] } ], "ModelVersion": "0.0.0" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Detect PHI

  • 如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 DetectPhi

下列程式碼範例示範如何使用 infer-icd10-cm

AWS CLI

範例 1:直接從文字偵測醫療狀況實體和 ICD-10-CM Ontology 的連結

下列infer-icd10-cm範例會標記偵測到的醫療狀況實體,並將這些實體與 2019 年國際疾病分類臨床修改 (ICD-10-CM) 版中的代碼連結。

aws comprehendmedical infer-icd10-cm \ --text "The patient complains of abdominal pain, has a long-standing history of diabetes treated with Micronase daily."

輸出:

{ "Entities": [ { "Id": 0, "Text": "abdominal pain", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9475538730621338, "BeginOffset": 28, "EndOffset": 42, "Attributes": [], "Traits": [ { "Name": "SYMPTOM", "Score": 0.6724207401275635 } ], "ICD10CMConcepts": [ { "Description": "Unspecified abdominal pain", "Code": "R10.9", "Score": 0.6904221177101135 }, { "Description": "Epigastric pain", "Code": "R10.13", "Score": 0.1364113688468933 }, { "Description": "Generalized abdominal pain", "Code": "R10.84", "Score": 0.12508003413677216 }, { "Description": "Left lower quadrant pain", "Code": "R10.32", "Score": 0.10063883662223816 }, { "Description": "Lower abdominal pain, unspecified", "Code": "R10.30", "Score": 0.09933677315711975 } ] }, { "Id": 1, "Text": "diabetes", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9899052977561951, "BeginOffset": 75, "EndOffset": 83, "Attributes": [], "Traits": [ { "Name": "DIAGNOSIS", "Score": 0.9258432388305664 } ], "ICD10CMConcepts": [ { "Description": "Type 2 diabetes mellitus without complications", "Code": "E11.9", "Score": 0.7158446311950684 }, { "Description": "Family history of diabetes mellitus", "Code": "Z83.3", "Score": 0.5704703330993652 }, { "Description": "Family history of other endocrine, nutritional and metabolic diseases", "Code": "Z83.49", "Score": 0.19856023788452148 }, { "Description": "Type 1 diabetes mellitus with ketoacidosis without coma", "Code": "E10.10", "Score": 0.13285516202449799 }, { "Description": "Type 2 diabetes mellitus with hyperglycemia", "Code": "E11.65", "Score": 0.0993388369679451 } ] } ], "ModelVersion": "0.1.0" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的推論 ICD10-CM

範例 2:從檔案路徑偵測醫療狀況實體和 ICD-10-CM Ontology 的連結

下列infer-icd-10-cm範例會標記偵測到的醫療狀況實體,並將這些實體與 2019 年國際疾病臨床修改分類 (ICD-10-CM) 版中的代碼連結。

aws comprehendmedical infer-icd10-cm \ --text file://icd10cm.txt

icd10cm.txt 的內容:

{ "The patient complains of abdominal pain, has a long-standing history of diabetes treated with Micronase daily." }

輸出:

{ "Entities": [ { "Id": 0, "Text": "abdominal pain", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9475538730621338, "BeginOffset": 28, "EndOffset": 42, "Attributes": [], "Traits": [ { "Name": "SYMPTOM", "Score": 0.6724207401275635 } ], "ICD10CMConcepts": [ { "Description": "Unspecified abdominal pain", "Code": "R10.9", "Score": 0.6904221177101135 }, { "Description": "Epigastric pain", "Code": "R10.13", "Score": 0.1364113688468933 }, { "Description": "Generalized abdominal pain", "Code": "R10.84", "Score": 0.12508003413677216 }, { "Description": "Left lower quadrant pain", "Code": "R10.32", "Score": 0.10063883662223816 }, { "Description": "Lower abdominal pain, unspecified", "Code": "R10.30", "Score": 0.09933677315711975 } ] }, { "Id": 1, "Text": "diabetes", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Score": 0.9899052977561951, "BeginOffset": 75, "EndOffset": 83, "Attributes": [], "Traits": [ { "Name": "DIAGNOSIS", "Score": 0.9258432388305664 } ], "ICD10CMConcepts": [ { "Description": "Type 2 diabetes mellitus without complications", "Code": "E11.9", "Score": 0.7158446311950684 }, { "Description": "Family history of diabetes mellitus", "Code": "Z83.3", "Score": 0.5704703330993652 }, { "Description": "Family history of other endocrine, nutritional and metabolic diseases", "Code": "Z83.49", "Score": 0.19856023788452148 }, { "Description": "Type 1 diabetes mellitus with ketoacidosis without coma", "Code": "E10.10", "Score": 0.13285516202449799 }, { "Description": "Type 2 diabetes mellitus with hyperglycemia", "Code": "E11.65", "Score": 0.0993388369679451 } ] } ], "ModelVersion": "0.1.0" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Infer-ICD10-CM

  • 如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 InferIcd10Cm

下列程式碼範例示範如何使用 infer-rx-norm

AWS CLI

範例 1:直接從文字偵測藥品實體和連結至 RxNorm

下列infer-rx-norm範例顯示並標記偵測到的藥品實體,並將這些實體連結至 National Library of MedicineCUI 資料庫的概念識別碼 (Rx RxNorm )。

aws comprehendmedical infer-rx-norm \ --text "Patient reports taking Levothyroxine 125 micrograms p.o. once daily, but denies taking Synthroid."

輸出:

{ "Entities": [ { "Id": 0, "Text": "Levothyroxine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Score": 0.9996285438537598, "BeginOffset": 23, "EndOffset": 36, "Attributes": [ { "Type": "DOSAGE", "Score": 0.9892290830612183, "RelationshipScore": 0.9997978806495667, "Id": 1, "BeginOffset": 37, "EndOffset": 51, "Text": "125 micrograms", "Traits": [] }, { "Type": "ROUTE_OR_MODE", "Score": 0.9988924860954285, "RelationshipScore": 0.998291552066803, "Id": 2, "BeginOffset": 52, "EndOffset": 56, "Text": "p.o.", "Traits": [] }, { "Type": "FREQUENCY", "Score": 0.9953463673591614, "RelationshipScore": 0.9999889135360718, "Id": 3, "BeginOffset": 57, "EndOffset": 67, "Text": "once daily", "Traits": [] } ], "Traits": [], "RxNormConcepts": [ { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet", "Code": "966224", "Score": 0.9912070631980896 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Capsule", "Code": "966405", "Score": 0.8698278665542603 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.7448257803916931 }, { "Description": "levothyroxine", "Code": "10582", "Score": 0.7050482630729675 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Levoxyl]", "Code": "966190", "Score": 0.6921631693840027 } ] }, { "Id": 4, "Text": "Synthroid", "Category": "MEDICATION", "Type": "BRAND_NAME", "Score": 0.9946461319923401, "BeginOffset": 86, "EndOffset": 95, "Attributes": [], "Traits": [ { "Name": "NEGATION", "Score": 0.5167351961135864 } ], "RxNormConcepts": [ { "Description": "Synthroid", "Code": "224920", "Score": 0.9462039470672607 }, { "Description": "Levothyroxine Sodium 0.088 MG Oral Tablet [Synthroid]", "Code": "966282", "Score": 0.8309829235076904 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.4945160448551178 }, { "Description": "Levothyroxine Sodium 0.05 MG Oral Tablet [Synthroid]", "Code": "966247", "Score": 0.3674522042274475 }, { "Description": "Levothyroxine Sodium 0.025 MG Oral Tablet [Synthroid]", "Code": "966158", "Score": 0.2588822841644287 } ] } ], "ModelVersion": "0.0.0" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Infer RxNorm

範例 2:從檔案路徑偵測藥品實體和連結至 RxNorm 。

下列infer-rx-norm範例顯示並標記偵測到的藥品實體,並將這些實體連結至 National Library of MedicineCUI 資料庫的概念識別碼 (Rx RxNorm )。

aws comprehendmedical infer-rx-norm \ --text file://rxnorm.txt

rxnorm.txt 的內容:

{ "Patient reports taking Levothyroxine 125 micrograms p.o. once daily, but denies taking Synthroid." }

輸出:

{ "Entities": [ { "Id": 0, "Text": "Levothyroxine", "Category": "MEDICATION", "Type": "GENERIC_NAME", "Score": 0.9996285438537598, "BeginOffset": 23, "EndOffset": 36, "Attributes": [ { "Type": "DOSAGE", "Score": 0.9892290830612183, "RelationshipScore": 0.9997978806495667, "Id": 1, "BeginOffset": 37, "EndOffset": 51, "Text": "125 micrograms", "Traits": [] }, { "Type": "ROUTE_OR_MODE", "Score": 0.9988924860954285, "RelationshipScore": 0.998291552066803, "Id": 2, "BeginOffset": 52, "EndOffset": 56, "Text": "p.o.", "Traits": [] }, { "Type": "FREQUENCY", "Score": 0.9953463673591614, "RelationshipScore": 0.9999889135360718, "Id": 3, "BeginOffset": 57, "EndOffset": 67, "Text": "once daily", "Traits": [] } ], "Traits": [], "RxNormConcepts": [ { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet", "Code": "966224", "Score": 0.9912070631980896 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Capsule", "Code": "966405", "Score": 0.8698278665542603 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.7448257803916931 }, { "Description": "levothyroxine", "Code": "10582", "Score": 0.7050482630729675 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Levoxyl]", "Code": "966190", "Score": 0.6921631693840027 } ] }, { "Id": 4, "Text": "Synthroid", "Category": "MEDICATION", "Type": "BRAND_NAME", "Score": 0.9946461319923401, "BeginOffset": 86, "EndOffset": 95, "Attributes": [], "Traits": [ { "Name": "NEGATION", "Score": 0.5167351961135864 } ], "RxNormConcepts": [ { "Description": "Synthroid", "Code": "224920", "Score": 0.9462039470672607 }, { "Description": "Levothyroxine Sodium 0.088 MG Oral Tablet [Synthroid]", "Code": "966282", "Score": 0.8309829235076904 }, { "Description": "Levothyroxine Sodium 0.125 MG Oral Tablet [Synthroid]", "Code": "966191", "Score": 0.4945160448551178 }, { "Description": "Levothyroxine Sodium 0.05 MG Oral Tablet [Synthroid]", "Code": "966247", "Score": 0.3674522042274475 }, { "Description": "Levothyroxine Sodium 0.025 MG Oral Tablet [Synthroid]", "Code": "966158", "Score": 0.2588822841644287 } ] } ], "ModelVersion": "0.0.0" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Infer RxNorm

  • 如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 InferRxNorm

下列程式碼範例示範如何使用 infer-snomedct

AWS CLI

範例:直接從文字偵測實體並連結至 SNOMED CT Ontology

下列infer-snomedct範例示範如何偵測醫療實體,並將其連結至 2021-03 版本的 Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT) 概念。

aws comprehendmedical infer-snomedct \ --text "The patient complains of abdominal pain, has a long-standing history of diabetes treated with Micronase daily."

輸出:

{ "Entities": [ { "Id": 3, "BeginOffset": 26, "EndOffset": 40, "Score": 0.9598260521888733, "Text": "abdominal pain", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Traits": [ { "Name": "SYMPTOM", "Score": 0.6819021701812744 } ] }, { "Id": 4, "BeginOffset": 73, "EndOffset": 81, "Score": 0.9905840158462524, "Text": "diabetes", "Category": "MEDICAL_CONDITION", "Type": "DX_NAME", "Traits": [ { "Name": "DIAGNOSIS", "Score": 0.9255214333534241 } ] }, { "Id": 1, "BeginOffset": 95, "EndOffset": 104, "Score": 0.6371926665306091, "Text": "Micronase", "Category": "MEDICATION", "Type": "BRAND_NAME", "Traits": [], "Attributes": [ { "Type": "FREQUENCY", "Score": 0.9761165380477905, "RelationshipScore": 0.9984188079833984, "RelationshipType": "FREQUENCY", "Id": 2, "BeginOffset": 105, "EndOffset": 110, "Text": "daily", "Category": "MEDICATION", "Traits": [] } ] } ], "UnmappedAttributes": [], "ModelVersion": "1.0.0" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 InferSNOMEDCT

  • 如需 API 詳細資訊,請參閱 AWS CLI 命令參考中的 InferSnomedct

下列程式碼範例示範如何使用 list-entities-detection-v2-jobs

AWS CLI

若要列出實體偵測任務

下列list-entities-detection-v2-jobs範例列出目前的非同步偵測任務。

aws comprehendmedical list-entities-detection-v2-jobs

輸出:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "ab9887877365fe70299089371c043b96", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-19T20:38:37.594000+00:00", "EndTime": "2020-03-19T20:45:07.894000+00:00", "ExpirationTime": "2020-07-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-EntitiesDetection-ab9887877365fe70299089371c043b96/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "DetectEntitiesModelV20190930" } ] }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的批次APIs

下列程式碼範例示範如何使用 list-icd10-cm-inference-jobs

AWS CLI

若要列出所有目前的 ICD-10-CM 推論任務

下列範例顯示 list-icd10-cm-inference-jobs操作如何傳回目前非同步 ICD-10-CM 批次推論任務的清單。

aws comprehendmedical list-icd10-cm-inference-jobs

輸出:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "5780034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-19T20:38:37.594000+00:00", "EndTime": "2020-05-19T20:45:07.894000+00:00", "ExpirationTime": "2020-09-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } ] }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 list-phi-detection-jobs

AWS CLI

若要列出受保護的健康資訊 (PHI) 偵測任務

下列list-phi-detection-jobs範例列出目前受保護的健康資訊 (PHI) 偵測任務

aws comprehendmedical list-phi-detection-jobs

輸出:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "4750034166536cdb52ffa3295a1b00a3", "JobStatus": "COMPLETED", "SubmitTime": "2020-03-19T20:38:37.594000+00:00", "EndTime": "2020-03-19T20:45:07.894000+00:00", "ExpirationTime": "2020-07-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "867139942017-PHIDetection-4750034166536cdb52ffa3295a1b00a3/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "PHIModelV20190903" } ] }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的批次APIs

下列程式碼範例示範如何使用 list-rx-norm-inference-jobs

AWS CLI

若要列出所有目前的 Rx-Norm 推論任務

下列範例顯示如何list-rx-norm-inference-jobs傳回目前非同步 Rx-Norm 批次推論任務的清單。

aws comprehendmedical list-rx-norm-inference-jobs

輸出:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "4980034166536cfb52gga3295a1b00a3", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-19T20:38:37.594000+00:00", "EndTime": "2020-05-19T20:45:07.894000+00:00", "ExpirationTime": "2020-09-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.0.0" } ] }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 list-snomedct-inference-jobs

AWS CLI

若要列出所有 SNOMED CT 推論任務

下列範例顯示 list-snomedct-inference-jobs操作如何傳回目前非同步 SNOMED CT 批次推論任務的清單。

aws comprehendmedical list-snomedct-inference-jobs

輸出:

{ "ComprehendMedicalAsyncJobPropertiesList": [ { "JobId": "5780034166536cdb52ffa3295a1b00a7", "JobStatus": "COMPLETED", "SubmitTime": "2020-05-19T20:38:37.594000+00:00", "EndTime": "2020-05-19T20:45:07.894000+00:00", "ExpirationTime": "2020-09-17T20:38:37+00:00", "InputDataConfig": { "S3Bucket": "comp-med-input", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "OutputDataConfig": { "S3Bucket": "comp-med-output", "S3Key": "AKIAIOSFODNN7EXAMPLE" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole", "ModelVersion": "0.1.0" } ] }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 start-entities-detection-v2-job

AWS CLI

啟動實體偵測任務

下列start-entities-detection-v2-job範例會啟動非同步實體偵測任務。

aws comprehendmedical start-entities-detection-v2-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

輸出:

{ "JobId": "ab9887877365fe70299089371c043b96" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的批次APIs

下列程式碼範例示範如何使用 start-icd10-cm-inference-job

AWS CLI

若要啟動 ICD-10-CM 推論任務

下列start-icd10-cm-inference-job範例會啟動 ICD-10-CM 推論批次分析任務。

aws comprehendmedical start-icd10-cm-inference-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

輸出:

{ "JobId": "ef7289877365fc70299089371c043b96" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 start-phi-detection-job

AWS CLI

啟動 PHI 偵測任務

下列start-phi-detection-job範例會啟動非同步 PHI 實體偵測任務。

aws comprehendmedical start-phi-detection-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

輸出:

{ "JobId": "ab9887877365fe70299089371c043b96" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的批次APIs

下列程式碼範例示範如何使用 start-rx-norm-inference-job

AWS CLI

啟動 a RxNorm 推論任務

下列start-rx-norm-inference-job範例會啟動 RxNorm 推論批次分析任務。

aws comprehendmedical start-rx-norm-inference-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

輸出:

{ "JobId": "eg8199877365fc70299089371c043b96" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 start-snomedct-inference-job

AWS CLI

啟動 SNOMED CT 推論任務

下列start-snomedct-inference-job範例會啟動 SNOMED CT 推論批次分析任務。

aws comprehendmedical start-snomedct-inference-job \ --input-data-config "S3Bucket=comp-med-input" \ --output-data-config "S3Bucket=comp-med-output" \ --data-access-role-arn arn:aws:iam::867139942017:role/ComprehendMedicalBatchProcessingRole \ --language-code en

輸出:

{ "JobId": "dg7289877365fc70299089371c043b96" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 stop-entities-detection-v2-job

AWS CLI

停止實體偵測任務

下列stop-entities-detection-v2-job範例會停止非同步實體偵測工作。

aws comprehendmedical stop-entities-detection-v2-job \ --job-id "ab9887877365fe70299089371c043b96"

輸出:

{ "JobId": "ab9887877365fe70299089371c043b96" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的批次APIs

下列程式碼範例示範如何使用 stop-icd10-cm-inference-job

AWS CLI

停止 ICD-10-CM 推論任務

下列stop-icd10-cm-inference-job範例會停止 ICD-10-CM 推論批次分析工作。

aws comprehendmedical stop-icd10-cm-inference-job \ --job-id "4750034166536cdb52ffa3295a1b00a3"

輸出:

{ "JobId": "ef7289877365fc70299089371c043b96", }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 stop-phi-detection-job

AWS CLI

若要停止受保護的健康資訊 (PHI) 偵測工作

下列stop-phi-detection-job範例會停止非同步受保護健康資訊 (PHI) 偵測工作。

aws comprehendmedical stop-phi-detection-job \ --job-id "4750034166536cdb52ffa3295a1b00a3"

輸出:

{ "JobId": "ab9887877365fe70299089371c043b96" }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的批次APIs

下列程式碼範例示範如何使用 stop-rx-norm-inference-job

AWS CLI

若要停止 a RxNorm 推論任務

下列stop-rx-norm-inference-job範例會停止 ICD-10-CM 推論批次分析工作。

aws comprehendmedical stop-rx-norm-inference-job \ --job-id "eg8199877365fc70299089371c043b96"

輸出:

{ "JobId": "eg8199877365fc70299089371c043b96", }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析

下列程式碼範例示範如何使用 stop-snomedct-inference-job

AWS CLI

若要停止 SNOMED CT 推論任務

下列stop-snomedct-inference-job範例會停止 SNOMED CT 推論批次分析工作。

aws comprehendmedical stop-snomedct-inference-job \ --job-id "8750034166436cdb52ffa3295a1b00a1"

輸出:

{ "JobId": "8750034166436cdb52ffa3295a1b00a1", }

如需詳細資訊,請參閱 Amazon Comprehend Medical 開發人員指南中的 Ontology 連結批次分析