使用 a AWS SDK 從 Lookout for Vision 專案匯出資料集 - AWS SDK 程式碼範例

文件 AWS SDK AWS 範例 SDK 儲存庫中有更多可用的 GitHub 範例。

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

使用 a AWS SDK 從 Lookout for Vision 專案匯出資料集

下列程式碼範例示範如何從 Lookout for Vision 專案匯出資料集。

如需詳細資訊,請參閱從專案匯出資料集 (SDK)

Python
SDK for Python (Boto3)
注意

還有更多 on GitHub。尋找完整範例,並了解如何在 AWS 程式碼範例儲存庫中設定和執行。

""" Purpose Shows how to export the datasets (manifest files and images) from an Amazon Lookout for Vision project to a new Amazon S3 location. """ import argparse import json import logging import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) def copy_file(s3_resource, source_file, destination_file): """ Copies a file from a source Amazon S3 folder to a destination Amazon S3 folder. The destination can be in a different S3 bucket. :param s3: An Amazon S3 Boto3 resource. :param source_file: The Amazon S3 path to the source file. :param destination_file: The destination Amazon S3 path for the copy operation. """ source_bucket, source_key = source_file.replace("s3://", "").split("/", 1) destination_bucket, destination_key = destination_file.replace("s3://", "").split( "/", 1 ) try: bucket = s3_resource.Bucket(destination_bucket) dest_object = bucket.Object(destination_key) dest_object.copy_from(CopySource={"Bucket": source_bucket, "Key": source_key}) dest_object.wait_until_exists() logger.info("Copied %s to %s", source_file, destination_file) except ClientError as error: if error.response["Error"]["Code"] == "404": error_message = ( f"Failed to copy {source_file} to " f"{destination_file}. : {error.response['Error']['Message']}" ) logger.warning(error_message) error.response["Error"]["Message"] = error_message raise def upload_manifest_file(s3_resource, manifest_file, destination): """ Uploads a manifest file to a destination Amazon S3 folder. :param s3: An Amazon S3 Boto3 resource. :param manifest_file: The manifest file that you want to upload. :destination: The Amazon S3 folder location to upload the manifest file to. """ destination_bucket, destination_key = destination.replace("s3://", "").split("/", 1) bucket = s3_resource.Bucket(destination_bucket) put_data = open(manifest_file, "rb") obj = bucket.Object(destination_key + manifest_file) try: obj.put(Body=put_data) obj.wait_until_exists() logger.info("Put manifest file '%s' to bucket '%s'.", obj.key, obj.bucket_name) except ClientError: logger.exception( "Couldn't put manifest file '%s' to bucket '%s'.", obj.key, obj.bucket_name ) raise finally: if getattr(put_data, "close", None): put_data.close() def get_dataset_types(lookoutvision_client, project): """ Determines the types of the datasets (train or test) in an Amazon Lookout for Vision project. :param lookoutvision_client: A Lookout for Vision Boto3 client. :param project: The Lookout for Vision project that you want to check. :return: The dataset types in the project. """ try: response = lookoutvision_client.describe_project(ProjectName=project) datasets = [] for dataset in response["ProjectDescription"]["Datasets"]: if dataset["Status"] in ("CREATE_COMPLETE", "UPDATE_COMPLETE"): datasets.append(dataset["DatasetType"]) return datasets except lookoutvision_client.exceptions.ResourceNotFoundException: logger.exception("Project %s not found.", project) raise def process_json_line(s3_resource, entry, dataset_type, destination): """ Creates a JSON line for a new manifest file, copies image and mask to destination. :param s3_resource: An Amazon S3 Boto3 resource. :param entry: A JSON line from the manifest file. :param dataset_type: The type (train or test) of the dataset that you want to create the manifest file for. :param destination: The destination Amazon S3 folder for the manifest file and dataset images. :return: A JSON line with details for the destination location. """ entry_json = json.loads(entry) print(f"source: {entry_json['source-ref']}") # Use existing folder paths to ensure console added image names don't clash. bucket, key = entry_json["source-ref"].replace("s3://", "").split("/", 1) logger.info("Source location: %s/%s", bucket, key) destination_image_location = destination + dataset_type + "/images/" + key copy_file(s3_resource, entry_json["source-ref"], destination_image_location) # Update JSON for writing. entry_json["source-ref"] = destination_image_location if "anomaly-mask-ref" in entry_json: source_anomaly_ref = entry_json["anomaly-mask-ref"] mask_bucket, mask_key = source_anomaly_ref.replace("s3://", "").split("/", 1) destination_mask_location = destination + dataset_type + "/masks/" + mask_key entry_json["anomaly-mask-ref"] = destination_mask_location copy_file(s3_resource, source_anomaly_ref, entry_json["anomaly-mask-ref"]) return entry_json def write_manifest_file( lookoutvision_client, s3_resource, project, dataset_type, destination ): """ Creates a manifest file for a dataset. Copies the manifest file and dataset images (and masks, if present) to the specified Amazon S3 destination. :param lookoutvision_client: A Lookout for Vision Boto3 client. :param project: The Lookout for Vision project that you want to use. :param dataset_type: The type (train or test) of the dataset that you want to create the manifest file for. :param destination: The destination Amazon S3 folder for the manifest file and dataset images. """ try: # Create a reusable Paginator paginator = lookoutvision_client.get_paginator("list_dataset_entries") # Create a PageIterator from the Paginator page_iterator = paginator.paginate( ProjectName=project, DatasetType=dataset_type, PaginationConfig={"PageSize": 100}, ) output_manifest_file = dataset_type + ".manifest" # Create manifest file then upload to Amazon S3 with images. with open(output_manifest_file, "w", encoding="utf-8") as manifest_file: for page in page_iterator: for entry in page["DatasetEntries"]: try: entry_json = process_json_line( s3_resource, entry, dataset_type, destination ) manifest_file.write(json.dumps(entry_json) + "\n") except ClientError as error: if error.response["Error"]["Code"] == "404": print(error.response["Error"]["Message"]) print(f"Excluded JSON line: {entry}") else: raise upload_manifest_file( s3_resource, output_manifest_file, destination + "datasets/" ) except ClientError: logger.exception("Problem getting dataset_entries") raise def export_datasets(lookoutvision_client, s3_resource, project, destination): """ Exports the datasets from an Amazon Lookout for Vision project to a specified Amazon S3 destination. :param project: The Lookout for Vision project that you want to use. :param destination: The destination Amazon S3 folder for the exported datasets. """ # Add trailing backslash, if missing. destination = destination if destination[-1] == "/" else destination + "/" print(f"Exporting project {project} datasets to {destination}.") # Get each dataset and export to destination. dataset_types = get_dataset_types(lookoutvision_client, project) for dataset in dataset_types: logger.info("Copying %s dataset to %s.", dataset, destination) write_manifest_file( lookoutvision_client, s3_resource, project, dataset, destination ) print("Exported dataset locations") for dataset in dataset_types: print(f" {dataset}: {destination}datasets/{dataset}.manifest") print("Done.") def add_arguments(parser): """ Adds command line arguments to the parser. :param parser: The command line parser. """ parser.add_argument("project", help="The project that contains the dataset.") parser.add_argument("destination", help="The destination Amazon S3 folder.") def main(): """ Exports the datasets from an Amazon Lookout for Vision project to a destination Amazon S3 location. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) add_arguments(parser) args = parser.parse_args() try: session = boto3.Session(profile_name="lookoutvision-access") lookoutvision_client = session.client("lookoutvision") s3_resource = session.resource("s3") export_datasets( lookoutvision_client, s3_resource, args.project, args.destination ) except ClientError as err: logger.exception(err) print(f"Failed: {format(err)}") if __name__ == "__main__": main()