本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。
適用於 Python 的 AWS Encryption SDK 範例程式碼
以下範例說明如何使用 適用於 Python 的 AWS Encryption SDK 來加密和解密資料。
本節中的範例展示如何使用2.0 版。x和後來的適用於 Python 的 AWS Encryption SDK。有關使用早期版本的示例,請在版本
加密和解密字串
以下範例說明如何使用 AWS Encryption SDK 來加密和解密字串。此範例使用AWS KMS key在AWS Key Management Service(AWS KMS)
加密時,StrictAwsKmsMasterKeyProvider
構造函數採用金鑰 ID、金鑰 ARN、別名名稱或別名 ARN。解密時,它需要金鑰 ARN。在這種情況下,因為keyArn
參數用於加密和解密,其值必須是密鑰 ARN。如需有關 ID 的資訊AWS KMS鍵,請參閲密鑰標識符中的AWS Key Management Service開發人員指南。
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Example showing basic encryption and decryption of a value already in memory.""" import aws_encryption_sdk from aws_encryption_sdk import CommitmentPolicy def cycle_string(key_arn, source_plaintext, botocore_session=None): """Encrypts and then decrypts a string under an &KMS; key. :param str key_arn: Amazon Resource Name (ARN) of the &KMS; key :param bytes source_plaintext: Data to encrypt :param botocore_session: existing botocore session instance :type botocore_session: botocore.session.Session """ # Set up an encryption client with an explicit commitment policy. If you do not explicitly choose a # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default. client = aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT) # Create an AWS KMS master key provider kms_kwargs = dict(key_ids=[key_arn]) if botocore_session is not None: kms_kwargs["botocore_session"] = botocore_session master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(**kms_kwargs) # Encrypt the plaintext source data ciphertext, encryptor_header = client.encrypt(source=source_plaintext, key_provider=master_key_provider) # Decrypt the ciphertext cycled_plaintext, decrypted_header = client.decrypt(source=ciphertext, key_provider=master_key_provider) # Verify that the "cycled" (encrypted, then decrypted) plaintext is identical to the source plaintext assert cycled_plaintext == source_plaintext # Verify that the encryption context used in the decrypt operation includes all key pairs from # the encrypt operation. (The SDK can add pairs, so don't require an exact match.) # # In production, always use a meaningful encryption context. In this sample, we omit the # encryption context (no key pairs). assert all( pair in decrypted_header.encryption_context.items() for pair in encryptor_header.encryption_context.items() )
加密和解密位元組串流
以下範例說明如何使用 AWS Encryption SDK來加密和解密位元組串流。此範例不使用 AWS。它使用靜態、暫時性主金鑰提供者。
加密時,本示例使用一個不帶數字簽名(AES_256_GCM_HKDF_SHA512_COMMIT_KEY
。當正在加密和解密數據的用户同樣受信任時,此算法套件適用。然後,解密時,該示例使用decrypt-unsigned
流模式,如果遇到簽名密文,該模式將失敗。所以此decrypt-unsigned
流媒體模式被引入AWS Encryption SDK1.9 版。x和 2.2.x。
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Example showing creation and use of a RawMasterKeyProvider.""" import filecmp import os import aws_encryption_sdk from aws_encryption_sdk.identifiers import Algorithm, CommitmentPolicy, EncryptionKeyType, WrappingAlgorithm from aws_encryption_sdk.internal.crypto.wrapping_keys import WrappingKey from aws_encryption_sdk.key_providers.raw import RawMasterKeyProvider class StaticRandomMasterKeyProvider(RawMasterKeyProvider): """Randomly generates 256-bit keys for each unique key ID.""" provider_id = "static-random" def __init__(self, **kwargs): # pylint: disable=unused-argument """Initialize empty map of keys.""" self._static_keys = {} def _get_raw_key(self, key_id): """Returns a static, randomly-generated symmetric key for the specified key ID. :param str key_id: Key ID :returns: Wrapping key that contains the specified static key :rtype: :class:`aws_encryption_sdk.internal.crypto.WrappingKey` """ try: static_key = self._static_keys[key_id] except KeyError: static_key = os.urandom(32) self._static_keys[key_id] = static_key return WrappingKey( wrapping_algorithm=WrappingAlgorithm.AES_256_GCM_IV12_TAG16_NO_PADDING, wrapping_key=static_key, wrapping_key_type=EncryptionKeyType.SYMMETRIC, ) def cycle_file(source_plaintext_filename): """Encrypts and then decrypts a file under a custom static master key provider. :param str source_plaintext_filename: Filename of file to encrypt """ # Set up an encryption client with an explicit commitment policy. Note that if you do not explicitly choose a # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default. client = aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT) # Create a static random master key provider key_id = os.urandom(8) master_key_provider = StaticRandomMasterKeyProvider() master_key_provider.add_master_key(key_id) ciphertext_filename = source_plaintext_filename + ".encrypted" cycled_plaintext_filename = source_plaintext_filename + ".decrypted" # Encrypt the plaintext source data # We can use an unsigning algorithm suite here under the assumption that the contexts that encrypt # and decrypt are equally trusted. with open(source_plaintext_filename, "rb") as plaintext, open(ciphertext_filename, "wb") as ciphertext: with client.stream( algorithm=Algorithm.AES_256_GCM_HKDF_SHA512_COMMIT_KEY, mode="e", source=plaintext, key_provider=master_key_provider, ) as encryptor: for chunk in encryptor: ciphertext.write(chunk) # Decrypt the ciphertext # We can use the recommended "decrypt-unsigned" streaming mode since we encrypted with an unsigned algorithm suite. with open(ciphertext_filename, "rb") as ciphertext, open(cycled_plaintext_filename, "wb") as plaintext: with client.stream(mode="decrypt-unsigned", source=ciphertext, key_provider=master_key_provider) as decryptor: for chunk in decryptor: plaintext.write(chunk) # Verify that the "cycled" (encrypted, then decrypted) plaintext is identical to the source # plaintext assert filecmp.cmp(source_plaintext_filename, cycled_plaintext_filename) # Verify that the encryption context used in the decrypt operation includes all key pairs from # the encrypt operation # # In production, always use a meaningful encryption context. In this sample, we omit the # encryption context (no key pairs). assert all( pair in decryptor.header.encryption_context.items() for pair in encryptor.header.encryption_context.items() ) return ciphertext_filename, cycled_plaintext_filename
加密和解密具有多個主金鑰提供程序的位元組串流
以下範例顯示如何使用 AWS Encryption SDK搭配多個主金鑰提供者。使用多個主金鑰提供者可在一個主金鑰提供者無法用於解密時建立備援。此範例使用AWS KMS key和 RSA 金 key pair 做為主金鑰。
此示例使用默認算法套件,其中包含資訊簽章。流式傳輸時,AWS Encryption SDK在完整性檢查後發佈明文,但在驗證數字簽名之前。為了避免在驗證簽名之前使用明文,本示例緩衝明文,並且僅在解密和驗證完成時才將其寫入磁盤。
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Example showing creation of a RawMasterKeyProvider, how to use multiple master key providers to encrypt, and demonstrating that each master key provider can then be used independently to decrypt the same encrypted message. """ import filecmp import os from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import serialization from cryptography.hazmat.primitives.asymmetric import rsa import aws_encryption_sdk from aws_encryption_sdk.identifiers import CommitmentPolicy, EncryptionKeyType, WrappingAlgorithm from aws_encryption_sdk.internal.crypto.wrapping_keys import WrappingKey from aws_encryption_sdk.key_providers.raw import RawMasterKeyProvider class StaticRandomMasterKeyProvider(RawMasterKeyProvider): """Randomly generates and provides 4096-bit RSA keys consistently per unique key id.""" provider_id = "static-random" def __init__(self, **kwargs): # pylint: disable=unused-argument """Initialize empty map of keys.""" self._static_keys = {} def _get_raw_key(self, key_id): """Retrieves a static, randomly generated, RSA key for the specified key id. :param str key_id: User-defined ID for the static key :returns: Wrapping key that contains the specified static key :rtype: :class:`aws_encryption_sdk.internal.crypto.WrappingKey` """ try: static_key = self._static_keys[key_id] except KeyError: private_key = rsa.generate_private_key(public_exponent=65537, key_size=4096, backend=default_backend()) static_key = private_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption(), ) self._static_keys[key_id] = static_key return WrappingKey( wrapping_algorithm=WrappingAlgorithm.RSA_OAEP_SHA1_MGF1, wrapping_key=static_key, wrapping_key_type=EncryptionKeyType.PRIVATE, ) def cycle_file(key_arn, source_plaintext_filename, botocore_session=None): """Encrypts and then decrypts a file using an AWS KMS master key provider and a custom static master key provider. Both master key providers are used to encrypt the plaintext file, so either one alone can decrypt it. :param str key_arn: Amazon Resource Name (ARN) of the &KMS; key (http://docs.aws.amazon.com/kms/latest/developerguide/viewing-keys.html) :param str source_plaintext_filename: Filename of file to encrypt :param botocore_session: existing botocore session instance :type botocore_session: botocore.session.Session """ # "Cycled" means encrypted and then decrypted ciphertext_filename = source_plaintext_filename + ".encrypted" cycled_kms_plaintext_filename = source_plaintext_filename + ".kms.decrypted" cycled_static_plaintext_filename = source_plaintext_filename + ".static.decrypted" # Set up an encryption client with an explicit commitment policy. Note that if you do not explicitly choose a # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default. client = aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT) # Create an AWS KMS master key provider kms_kwargs = dict(key_ids=[key_arn]) if botocore_session is not None: kms_kwargs["botocore_session"] = botocore_session kms_master_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(**kms_kwargs) # Create a static master key provider and add a master key to it static_key_id = os.urandom(8) static_master_key_provider = StaticRandomMasterKeyProvider() static_master_key_provider.add_master_key(static_key_id) # Add the static master key provider to the AWS KMS master key provider # The resulting master key provider uses AWS KMS master keys to generate (and encrypt) # data keys and static master keys to create an additional encrypted copy of each data key. kms_master_key_provider.add_master_key_provider(static_master_key_provider) # Encrypt plaintext with both AWS KMS and static master keys with open(source_plaintext_filename, "rb") as plaintext, open(ciphertext_filename, "wb") as ciphertext: with client.stream(source=plaintext, mode="e", key_provider=kms_master_key_provider) as encryptor: for chunk in encryptor: ciphertext.write(chunk) # Decrypt the ciphertext with only the AWS KMS master key # Buffer the data in memory before writing to disk. This ensures verfication of the digital signature before returning plaintext. with open(ciphertext_filename, "rb") as ciphertext, open(cycled_kms_plaintext_filename, "wb") as plaintext: with client.stream( source=ciphertext, mode="d", key_provider=aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(**kms_kwargs) ) as kms_decryptor: plaintext.write(kms_decryptor.read()) # Decrypt the ciphertext with only the static master key # Buffer the data in memory before writing to disk to ensure verfication of the signature before returning plaintext. with open(ciphertext_filename, "rb") as ciphertext, open(cycled_static_plaintext_filename, "wb") as plaintext: with client.stream(source=ciphertext, mode="d", key_provider=static_master_key_provider) as static_decryptor: plaintext.write(static_decryptor.read()) # Verify that the "cycled" (encrypted, then decrypted) plaintext is identical to the source plaintext assert filecmp.cmp(source_plaintext_filename, cycled_kms_plaintext_filename) assert filecmp.cmp(source_plaintext_filename, cycled_static_plaintext_filename) # Verify that the encryption context in the decrypt operation includes all key pairs from the # encrypt operation. # # In production, always use a meaningful encryption context. In this sample, we omit the # encryption context (no key pairs). assert all( pair in kms_decryptor.header.encryption_context.items() for pair in encryptor.header.encryption_context.items() ) assert all( pair in static_decryptor.header.encryption_context.items() for pair in encryptor.header.encryption_context.items() ) return (ciphertext_filename, cycled_kms_plaintext_filename, cycled_static_plaintext_filename)
使用資料金鑰快取來加密訊息
下列範例示範如何使用資料金鑰快取中的適用於 Python 的 AWS Encryption SDK。它旨在向您展示如何設定本機快取(LocalCryptoMaterialsCache),其中包含所需容量值和快取密碼編譯資料管理員(緩存 CMM)快取安全性閾值。
這個非常基本的範例建立一個函數來加密固定字串。它允許您指定AWS KMS key、所需的快取大小 (容量) 和存留期上限值。如需更複雜、實際的資料金鑰快取範例,請參閱 資料金鑰快取範例程式碼。
這個範例也使用加密內容做為額外驗證的資料 (選用)。當您解密以加密內容所加密的資料時,請確保您的應用程式在將純文字資料傳回給發起人之前,將會驗證加密內容是否如您所預期。加密內容是任何加密或解密操作的最佳實務元素,但在資料金鑰快取中扮演特殊的角色。如需詳細資訊,請參閱加密內容:如何選擇快取項目。
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Example of encryption with data key caching.""" import aws_encryption_sdk from aws_encryption_sdk import CommitmentPolicy def encrypt_with_caching(kms_key_arn, max_age_in_cache, cache_capacity): """Encrypts a string using an &KMS; key and data key caching. :param str kms_key_arn: Amazon Resource Name (ARN) of the &KMS; key :param float max_age_in_cache: Maximum time in seconds that a cached entry can be used :param int cache_capacity: Maximum number of entries to retain in cache at once """ # Data to be encrypted my_data = "My plaintext data" # Security thresholds # Max messages (or max bytes per) data key are optional MAX_ENTRY_MESSAGES = 100 # Create an encryption context encryption_context = {"purpose": "test"} # Set up an encryption client with an explicit commitment policy. Note that if you do not explicitly choose a # commitment policy, REQUIRE_ENCRYPT_REQUIRE_DECRYPT is used by default. client = aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.REQUIRE_ENCRYPT_REQUIRE_DECRYPT) # Create a master key provider for the &KMS; key key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(key_ids=[kms_key_arn]) # Create a local cache cache = aws_encryption_sdk.LocalCryptoMaterialsCache(cache_capacity) # Create a caching CMM caching_cmm = aws_encryption_sdk.CachingCryptoMaterialsManager( master_key_provider=key_provider, cache=cache, max_age=max_age_in_cache, max_messages_encrypted=MAX_ENTRY_MESSAGES, ) # When the call to encrypt data specifies a caching CMM, # the encryption operation uses the data key cache specified # in the caching CMM encrypted_message, _header = client.encrypt( source=my_data, materials_manager=caching_cmm, encryption_context=encryption_context ) return encrypted_message