開始您的亞馬遜 Lookout for Vision 模型 - Amazon Lookout for Vision

支援終止通知:在 2025 年 10 月 31 日, AWS 將停止對 Amazon Lookout for Vision 的支援。2025 年 10 月 31 日之後,您將無法再存取 Lookout for Vision 主控台或 Lookout for Vision 資源。如需詳細資訊,請造訪此部落格文章

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

開始您的亞馬遜 Lookout for Vision 模型

您必須先啟動模型,才能使用 Amazon Lookout for Vision 模型偵測異常。您可以透過呼叫 StartModelAPI 並傳遞下列指令來啟動模型:

  • ProjectName— 包含您要啟動之模型的專案名稱。

  • ModelVersion— 您要啟動的模型版本。

  • MinInferenceUnits— 推論單位的最小數目。如需詳細資訊,請參閱推論單位

  • (選擇性) MaxInferenceUnits— Amazon 觀察視覺可用來自動擴展模型的推論單元數目上限。如需詳細資訊,請參閱自動縮放推論單位

Amazon Lookout for Vision 主控台提供範例程式碼,您可以使用這些程式碼來啟動和停止模型。

注意

您需支付模型執行時間的費用。若要停止執行中的模型,請參閱停止您的亞馬遜 Lookout for Vision 模型

您可以使用 AWS SDK 來檢視所有提供瞭解視覺的AWS區域的執行中模型。如需範例程式碼,請參閱 find_running_models.py

啟動您的模型(控制台)

Amazon 視 Lookout for Vision 察主控台提供可用來啟動模型的AWS CLI命令。模型啟動後,您可以開始偵測影像中的異常。如需詳細資訊,請參閱偵測映像中的異常

啟動模型(控制台)
  1. 如果您尚未這樣做,請安裝並設定AWS CLI和 AWS SDK。如需詳細資訊,請參閱步驟 4:設定 AWS CLI 和 AWS SDKs

  2. 打開亞馬遜 Lookout for Vision 控制台 https://console.aws.amazon.com/lookoutvision/.

  3. 選擇 Get started (開始使用)。

  4. 在左側導覽窗格中,選擇 [專案]。

  5. 在 [專案資源] 頁面上,選擇包含您要啟動的訓練模型的專案。

  6. 在「模」區段中,選擇您要啟動的模型。

  7. 在模型的詳細資料頁面上,選擇 [使用模型],然後選擇 [將 API 整合至雲端]。

    提示

    如果要將模型部署到邊緣裝置,請選擇 [建立模型封裝工作]。如需詳細資訊,請參閱包裝您的亞馬遜 Lookout for Vision 模型

  8. AWS CLI 命令下,複製呼叫的 AWS CLI 命令start-model

  9. 於指令提示下,輸入您在上一個步驟中複製的start-model指令。如果您使用lookoutvision設定檔取得認證,請新增--profile lookoutvision-access參數。

  10. 在主控台中,選擇左側導覽頁面中的 [模型]。

  11. 檢查「狀態」欄中的模型目前狀態,當狀態為「託管」時,您可以使用模型偵測影像中的異常。如需詳細資訊,請參閱偵測映像中的異常

開始您的亞馬遜 Lookout for Vision 模型 (SDK)

您可以透過呼叫StartModel作業來啟動模型。

模型可能需要一段時間才能啟動。您可以通過調用來檢查當前狀態DescribeModel。如需詳細資訊,請參閱檢視模型

若要啟動您的模型 (SDK)
  1. 如果您尚未這樣做,請安裝並設定AWS CLI和 AWS SDK。如需詳細資訊,請參閱步驟 4:設定 AWS CLI 和 AWS SDKs

  2. 使用下列範例程式碼來啟動模型。

    CLI

    變更下列值:

    • project-name到包含您要啟動的模型的專案名稱。

    • model-version到您要啟動的模型版本。

    • --min-inference-units到您要使用的推論單元的數量。

    • (選擇性) Amazon Lookout for Vision 可用--max-inference-units來自動擴展模型的推論單元數目上限。

    aws lookoutvision start-model --project-name "project name"\ --model-version model version\ --min-inference-units minimum number of units\ --max-inference-units max number of units \ --profile lookoutvision-access
    Python

    此代碼取自AWS文檔 SDK 示例 GitHub 存儲庫。請參閱此處的完整範例。

    @staticmethod def start_model( lookoutvision_client, project_name, model_version, min_inference_units, max_inference_units = None): """ Starts the hosting of a Lookout for Vision model. :param lookoutvision_client: A Boto3 Lookout for Vision client. :param project_name: The name of the project that contains the version of the model that you want to start hosting. :param model_version: The version of the model that you want to start hosting. :param min_inference_units: The number of inference units to use for hosting. :param max_inference_units: (Optional) The maximum number of inference units that Lookout for Vision can use to automatically scale the model. """ try: logger.info( "Starting model version %s for project %s", model_version, project_name) if max_inference_units is None: lookoutvision_client.start_model( ProjectName = project_name, ModelVersion = model_version, MinInferenceUnits = min_inference_units) else: lookoutvision_client.start_model( ProjectName = project_name, ModelVersion = model_version, MinInferenceUnits = min_inference_units, MaxInferenceUnits = max_inference_units) print("Starting hosting...") status = "" finished = False # Wait until hosted or failed. while finished is False: model_description = lookoutvision_client.describe_model( ProjectName=project_name, ModelVersion=model_version) status = model_description["ModelDescription"]["Status"] if status == "STARTING_HOSTING": logger.info("Host starting in progress...") time.sleep(10) continue if status == "HOSTED": logger.info("Model is hosted and ready for use.") finished = True continue logger.info("Model hosting failed and the model can't be used.") finished = True if status != "HOSTED": logger.error("Error hosting model: %s", status) raise Exception(f"Error hosting model: {status}") except ClientError: logger.exception("Couldn't host model.") raise
    Java V2

    此代碼取自AWS文檔 SDK 示例 GitHub 存儲庫。請參閱此處的完整範例。

    /** * Starts hosting an Amazon Lookout for Vision model. Returns when the model has * started or if hosting fails. You are charged for the amount of time that a * model is hosted. To stop hosting a model, use the StopModel operation. * * @param lfvClient An Amazon Lookout for Vision client. * @param projectName The name of the project that contains the model that you * want to host. * @modelVersion The version of the model that you want to host. * @minInferenceUnits The number of inference units to use for hosting. * @maxInferenceUnits The maximum number of inference units that Lookout for * Vision can use for automatically scaling the model. If the * value is null, automatic scaling doesn't happen. * @return ModelDescription The description of the model, which includes the * model hosting status. */ public static ModelDescription startModel(LookoutVisionClient lfvClient, String projectName, String modelVersion, Integer minInferenceUnits, Integer maxInferenceUnits) throws LookoutVisionException, InterruptedException { logger.log(Level.INFO, "Starting Model version {0} for project {1}.", new Object[] { modelVersion, projectName }); StartModelRequest startModelRequest = null; if (maxInferenceUnits == null) { startModelRequest = StartModelRequest.builder().projectName(projectName).modelVersion(modelVersion) .minInferenceUnits(minInferenceUnits).build(); } else { startModelRequest = StartModelRequest.builder().projectName(projectName).modelVersion(modelVersion) .minInferenceUnits(minInferenceUnits).maxInferenceUnits(maxInferenceUnits).build(); } // Start hosting the model. lfvClient.startModel(startModelRequest); DescribeModelRequest describeModelRequest = DescribeModelRequest.builder().projectName(projectName) .modelVersion(modelVersion).build(); ModelDescription modelDescription = null; boolean finished = false; // Wait until model is hosted or failure occurs. do { modelDescription = lfvClient.describeModel(describeModelRequest).modelDescription(); switch (modelDescription.status()) { case HOSTED: logger.log(Level.INFO, "Model version {0} for project {1} is running.", new Object[] { modelVersion, projectName }); finished = true; break; case STARTING_HOSTING: logger.log(Level.INFO, "Model version {0} for project {1} is starting.", new Object[] { modelVersion, projectName }); TimeUnit.SECONDS.sleep(60); break; case HOSTING_FAILED: logger.log(Level.SEVERE, "Hosting failed for model version {0} for project {1}.", new Object[] { modelVersion, projectName }); finished = true; break; default: logger.log(Level.SEVERE, "Unexpected error when hosting model version {0} for project {1}: {2}.", new Object[] { projectName, modelVersion, modelDescription.status() }); finished = true; break; } } while (!finished); logger.log(Level.INFO, "Finished starting model version {0} for project {1} status: {2}", new Object[] { modelVersion, projectName, modelDescription.statusMessage() }); return modelDescription; }
  3. 如果程式碼的輸出為Model is hosted and ready for use,您可以使用模型偵測影像中的異常。如需詳細資訊,請參閱偵測映像中的異常