CreateRealtimeEndpoint
Creates a real-time endpoint for the MLModel. The endpoint contains the URI of the MLModel; that is, the location to send real-time prediction requests for the specified MLModel.
Request Syntax
{
   "MLModelId": "string"
}Request Parameters
For information about the parameters that are common to all actions, see Common Parameters.
The request accepts the following data in JSON format.
- MLModelId
- 
               The ID assigned to the MLModelduring creation.Type: String Length Constraints: Minimum length of 1. Maximum length of 64. Pattern: [a-zA-Z0-9_.-]+Required: Yes 
Response Syntax
{
   "MLModelId": "string",
   "RealtimeEndpointInfo": { 
      "CreatedAt": number,
      "EndpointStatus": "string",
      "EndpointUrl": "string",
      "PeakRequestsPerSecond": number
   }
}Response Elements
If the action is successful, the service sends back an HTTP 200 response.
The following data is returned in JSON format by the service.
- MLModelId
- 
               A user-supplied ID that uniquely identifies the MLModel. This value should be identical to the value of theMLModelIdin the request.Type: String Length Constraints: Minimum length of 1. Maximum length of 64. Pattern: [a-zA-Z0-9_.-]+
- RealtimeEndpointInfo
- 
               The endpoint information of the MLModelType: RealtimeEndpointInfo object 
Errors
For information about the errors that are common to all actions, see Common Errors.
- InternalServerException
- 
               An error on the server occurred when trying to process a request. HTTP Status Code: 500 
- InvalidInputException
- 
               An error on the client occurred. Typically, the cause is an invalid input value. HTTP Status Code: 400 
- ResourceNotFoundException
- 
               A specified resource cannot be located. HTTP Status Code: 400 
Examples
The following is a sample request and response of the CreateRealtimeEndpoint operation.
This example illustrates one usage of CreateRealtimeEndpoint.
Sample Request
POST / HTTP/1.1
Host: machinelearning.<region>.<domain>
x-amz-Date: <Date>
Authorization: AWS4-HMAC-SHA256 Credential=<Credential>, SignedHeaders=contenttype;date;host;user-agent;x-amz-date;x-amz-target;x-amzn-requestid,Signature=<Signature>
User-Agent: <UserAgentString>
Content-Type: application/x-amz-json-1.1
Content-Length: <PayloadSizeBytes>
Connection: Keep-Alive
X-Amz-Target: AmazonML_20141212.CreateRealtimeEndpoint
{
  "MLModelId": "ml-ModelExampleId",
}Sample Response
HTTP/1.1 200 OK
x-amzn-RequestId: <RequestId>
Content-Type: application/x-amz-json-1.1
Content-Length: <PayloadSizeBytes>
Date: <Date>
{
  "MLModelId": "ml-ModelExampleId", 
  "EndpointInfo": 
  {
    "CreatedAt": 1422488124.71, 
    "EndpointUrl": "<realtime endpoint from Amazon Machine Learning for ml-ModelExampleId>", 
    "EndpointStatus": "READY", 
    "PeakRequestsPerSecond": 200
  }
}See Also
For more information about using this API in one of the language-specific AWS SDKs, see the following: