Neptune ML 中的 Gremlin 節點分類查詢 - Amazon Neptune

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

Neptune ML 中的 Gremlin 節點分類查詢

對於 Neptune ML 中的 Gremlin 節點分類:

  • 模型根據頂點的一個屬性進行訓練。這個屬性的唯一值集被稱為節點類別集,或者簡稱為類別。

  • 頂點屬性的節點類別屬性值可從節點分類模型中推斷出來。這在此屬性尚未附加至頂點時很有用。

  • 為了從節點分類模型中擷取一個或多個類別,您需要使用 with() 步驟搭配述詞 Neptune#ml.classification 來設定 properties() 步驟。如果輸出格式是頂點屬性,則輸出格式與您所期望的格式相似。

注意

節點分類僅會使用字串屬性值。這表示不支援數值屬性值 (例如 01),儘管字串等同於 "0""1"。同樣地,布林屬性值 truefalse 不起作用,但 "true""false" 可以。

以下是範例節點分類查詢:

g.with( "Neptune#ml.endpoint","node-classification-movie-lens-endpoint" ) .with( "Neptune#ml.iamRoleArn","arn:aws:iam::0123456789:role/sagemaker-role" ) .with( "Neptune#ml.limit", 2 ) .with( "Neptune#ml.threshold", 0.5D ) .V( "movie_1", "movie_2", "movie_3" ) .properties("genre").with("Neptune#ml.classification")

此查詢的輸出如下所示:

==>vp[genre->Action]
==>vp[genre->Crime]
==>vp[genre->Comedy]

在上述查詢中,V()properties() 步驟的使用方式如下:

V() 步驟包含您要從節點分類模型中擷取其類別的頂點集:

.V( "movie_1", "movie_2", "movie_3" )

properties() 步驟包含模型訓練時根據的索引鍵,而且具有 .with("Neptune#ml.classification") 指示這是節點分類 ML 推論查詢。

properties().with("Neptune#ml.classification") 步驟中目前不支援多個內容索引鍵。例如,下列查詢會導致例外狀況:

g.with("Neptune#ml.endpoint", "node-classification-movie-lens-endpoint") .with("Neptune#ml.iamRoleArn","arn:aws:iam::0123456789:role/sagemaker-role") .V( "movie_1", "movie_2", "movie_3" ) .properties("genre", "other_label").with("Neptune#ml.classification")

如需特定錯誤訊息,請參閱 Neptune ML 例外狀況清單

properties().with("Neptune#ml.classification") 步驟可與下列任一步驟搭配使用:

  • value()

  • value().is()

  • hasValue()

  • has(value,"")

  • key()

  • key().is()

  • hasKey()

  • has(key,"")

  • path()

其他節點分類查詢

如果推論端點和對應的IAM角色都已儲存在您的資料庫叢集參數群組中,節點分類查詢可以很簡單:

g.V("movie_1", "movie_2", "movie_3").properties("genre").with("Neptune#ml.classification")

您可以使用 union() 步驟,在查詢中混合頂點屬性和類別:

g.with("Neptune#ml.endpoint","node-classification-movie-lens-endpoint") .with("Neptune#ml.iamRoleArn","arn:aws:iam::0123456789:role/sagemaker-role") .V( "movie_1", "movie_2", "movie_3" ) .union( properties("genre").with("Neptune#ml.classification"), properties("genre") )

您也可以建立無限制的查詢,如下所示:

g.with("Neptune#ml.endpoint","node-classification-movie-lens-endpoint") .with("Neptune#ml.iamRoleArn","arn:aws:iam::0123456789:role/sagemaker-role") .V() .properties("genre").with("Neptune#ml.classification")

您可以使用 select() 步驟搭配 as() 步驟來擷取節點類別以及頂點:

g.with("Neptune#ml.endpoint","node-classification-movie-lens-endpoint") .with("Neptune#ml.iamRoleArn","arn:aws:iam::0123456789:role/sagemaker-role") .V( "movie_1", "movie_2", "movie_3" ).as("vertex") .properties("genre").with("Neptune#ml.classification").as("properties") .select("vertex","properties")

您也可以根據節點類別篩選,如下列範例所示:

g.with("Neptune#ml.endpoint", "node-classification-movie-lens-endpoint") .with("Neptune#ml.iamRoleArn","arn:aws:iam::0123456789:role/sagemaker-role") .V( "movie_1", "movie_2", "movie_3" ) .properties("genre").with("Neptune#ml.classification") .has(value, "Horror") g.with("Neptune#ml.endpoint","node-classification-movie-lens-endpoint") .with("Neptune#ml.iamRoleArn","arn:aws:iam::0123456789:role/sagemaker-role") .V( "movie_1", "movie_2", "movie_3" ) .properties("genre").with("Neptune#ml.classification") .has(value, P.eq("Action")) g.with("Neptune#ml.endpoint","node-classification-movie-lens-endpoint") .with("Neptune#ml.iamRoleArn","arn:aws:iam::0123456789:role/sagemaker-role") .V( "movie_1", "movie_2", "movie_3" ) .properties("genre").with("Neptune#ml.classification") .has(value, P.within("Action", "Horror"))

您可以使用 Neptune#ml.score 述詞,取得節點分類可信度分數:

g.with("Neptune#ml.endpoint","node-classification-movie-lens-endpoint") .with("Neptune#ml.iamRoleArn","arn:aws:iam::0123456789:role/sagemaker-role") .V( "movie_1", "movie_2", "movie_3" ) .properties("genre", "Neptune#ml.score").with("Neptune#ml.classification")

回應看起來像這樣:

==>vp[genre->Action]
==>vp[Neptune#ml.score->0.01234567]
==>vp[genre->Crime]
==>vp[Neptune#ml.score->0.543210]
==>vp[genre->Comedy]
==>vp[Neptune#ml.score->0.10101]

在節點分類查詢中使用歸納推論

假設您要在 Jupyter 筆記本中將新節點新增至現有圖形,如下所示:

%%gremlin g.addV('label1').property(id,'101').as('newV') .V('1').as('oldV1') .V('2').as('oldV2') .addE('eLabel1').from('newV').to('oldV1') .addE('eLabel2').from('oldV2').to('newV')

您接著可以使用歸納推論查詢,取得反映了新節點的類型和可信度分數:

%%gremlin g.with("Neptune#ml.endpoint", "nc-ep") .with("Neptune#ml.iamRoleArn", "arn:aws:iam::123456789012:role/NeptuneMLRole") .V('101').properties("genre", "Neptune#ml.score") .with("Neptune#ml.classification") .with("Neptune#ml.inductiveInference")

不過,如果您執行了多次查詢,則可能會得到有些不同的結果:

# First time ==>vp[genre->Action] ==>vp[Neptune#ml.score->0.12345678] # Second time ==>vp[genre->Action] ==>vp[Neptune#ml.score->0.21365921]

你可以使相同的查詢具有確定性:

%%gremlin g.with("Neptune#ml.endpoint", "nc-ep") .with("Neptune#ml.iamRoleArn", "arn:aws:iam::123456789012:role/NeptuneMLRole") .V('101').properties("genre", "Neptune#ml.score") .with("Neptune#ml.classification") .with("Neptune#ml.inductiveInference") .with("Neptune#ml.deterministic")

在這種情況下,每次結果將大致相同:

# First time ==>vp[genre->Action] ==>vp[Neptune#ml.score->0.12345678] # Second time ==>vp[genre->Action] ==>vp[Neptune#ml.score->0.12345678]